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Abstract Parkinson's disease (PD) is a major neurodegenera-
tive chronic disease, most likely caused by a complex interplay
of genetic and environmental factors. Information on various
aspects of PD pathogenesis is rapidly increasing and needs to
be efficiently organized, so that the resulting data is available
for exploration and analysis. Here we introduce a computa-
tionally tractable, comprehensive molecular interaction map of
PD. This map integrates pathways implicated in PD pathogen-
esis such as synaptic and mitochondrial dysfunction, impaired
protein degradation, alpha-synuclein pathobiology and
neuroinflammation. We also present bioinformatics tools for
the analysis, enrichment and annotation of the map, allowing
the research community to open new avenues in PD research.
The PD map is accessible at http://minerva.uni.lu/pd_map.
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Introduction

Parkinson’s disease (PD) is a major neurodegenerative dis-
ease, characterized clinically by a range of symptoms, in
particular, impaired motor behaviour. The pathogenesis of
PD is multi-factorial and age-related, implicating various ge-
netic and environmental factors [1]. Gaps in the understanding
of the underlying molecular mechanisms hamper the design of
effective disease modifying therapies. Investigation of such a
complex disease requires a proper knowledge repository that
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organizes the rapidly growing PD-related knowledge — a
disease map.

The concept of a disease map is relatively new and has found
only a limited application in the field of neurodegenerative
diseases thus far [2, 3]. Such a map represents diagrammatically
interactions between molecular components and pathways re-
ported to play a role in disease pathogenesis and progression. It
provides navigation and exploration tools that help the user to
locate specific areas of interest and visualize known interac-
tions. Associated analytical tools allow investigators to develop
a profound understanding of the disease, detect unexpected
interactions and ultimately identify new research hypotheses.

In this paper, we present a PD molecular interaction map that
captures and visualizes all major molecular pathways involved
in PD pathogenesis. Furthermore, it constitutes a resource for
computational analyses and a platform for community level
collaborations [4, 5] (see Fig. 1). We also present how a set of
bioinformatics tools applied to the map can facilitate in-depth
knowledge extraction and continuous curation.

The paper is divided into two parts. In the first part, we
review the pathways implicated in PD, with a focus on synap-
tic and mitochondrial dysfunction, x-synuclein pathobiology,
failure of protein degradation systems, neuroinflammation and
apoptosis. In the second part of the paper, we demonstrate how
the PD map interfaces with bioinformatics tools and databases
for its content annotation, enrichment with experimental
results, and analysis of its complex structure and dynamics.
The PD map is accessible under http://minerva.uni.lu/pd map
(Online resource 1), as a SBML file (Online resource 2), and
Payao, a community platform for pathway model curation
[264].

Neurodegeneration in Parkinson’s Disease Arises
from Dysregulation of Interlinked Molecular Pathways

The major pathological feature of PD is the progressive degen-
eration of the nigrostriatal system, leading to the loss of dopa-
minergic (DA) neurons in the substantia nigra pars compacta
(SNpc) [6]. The degeneration of the nigrostriatal pathway and
subsequent loss of striatal dopamine contributes to the cardinal
clinical motor symptoms: tremor, rigidity, bradykinesia and
postural instability [7]. Although treatments such as dopamine
substitution and deep brain stimulation alleviate many of the
motor symptoms, there is no disease-modifying therapy
preventing the progressive loss of DA neurons [8].
Susceptibility for PD is modulated by various environmen-
tal factors [9—13], genetic predisposition or risk factors [14]
and epigenetic alterations [15, 16]." Exposure to pesticides
and industrial agents has been associated with an increased

! Epigenetic alterations — secondary, environmentally induced changes
of gene expression.

risk for PD [17, 18], but to date none of these agents have been
consistently identified as a causal factor for PD [19]. It is
known that exposure to inhibitors of mitochondrial respiration
[20-25] are sufficient to induce PD symptoms in humans and
DA neurodegeneration in animal models.

In this paper, we focus on DA neurons as a major point of
convergence in PD disease pathways. However, pathogenic
pathways leading to the demise of DA neurons may impact
any neuronal population affected in PD, including those of the
autonomic ganglia [26, 27]. The demise of these populations
may contribute to a range of PD-typical non-motor symptoms
hampering the life of PD patients, such as constipation and
dysautonomia (ganglia of autonomous nervous system), cog-
nitive decline and REM sleep behaviour (cholinergic neurons
of the nucleus basalis of Meynert, noradrenergic coeruleus—
subcoeruleus complex), depression and apathy (serotinergic
caudal raphe nuclei, cholinergic gigantocellular reticular nu-
cleus) [28, 29].

Vulnerability and Preferential Loss of Midbrain
Dopaminergic Neurons

SNpc DA neurons are the most vulnerable population of
neurons in PD. It has been suggested that their loss is multi-
factorial and related to the characteristic features of these cells:
complex morphology, high energy demand, high calcium
flux, and dopamine metabolism [30]. Consequently, these
neurons are particularly susceptible to various stressors, which
contribute to their preferential loss (see Fig. 2).

SNpc DA neurons have one of the longest yet most dense
arborisation of all neurons [31, 32]. They project to the stria-
tum, providing it with DA [33, 34]. These neurons have long,
thin, mostly unmyelineated axons [35] and up to 150,000
presynaptic terminals per neuron [30]. The high energy de-
mand required to support synaptic activity, compensation for
the potential risk of depolarization in the unmyelinated mem-
brane, and axonal transport over long distances put a huge
burden on the mitochondria. Interestingly, toxins that perturb
the energy production and the axonal transport of mitochondria
[36], cause parkinsonism in humans and preferential loss of
DA neurons in animal models [22, 36, 37]. Finally, the large
number of synapses increases the risk for local x-synuclein (-
syn) misfolding (see sections “Synaptic Dysfunction” and “o-
Synuclein Misfolding and Pathobiology™).

SNpc DA neurons can fire autonomously and have specific
calcium L-type Cav 1.3 channels that regulate this pacemak-
ing activity [38, 39]. The resulting high intracytosolic Ca*"
concentrations induce cellular stress, elevate the levels of
reactive oxygen species (ROS), and increase demand for
calcium buffering, which is handled by the endoplasmic re-
ticulum (ER) and the mitochondria. Maintaining proper calci-
um homeostasis in such an environment increases again the
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Fig. 1 The concept of Parkinson's disease map and its possibilities. The
PD map is a knowledge repository bringing together different molecular
mechanisms and pathways considered to be the key players in the
disease. The current focus of the map is illustrated by the pieces in the
“PD puzzle” These modules include synaptic and mitochondrial dys-
function, failure of protein degradation systems, x-synuclein pathobi-
ology and misfolding, and neuroinflammation. Processes important in
PD-associated neurodegeneration, such calcium homeostasis or apo-
ptosis, are discussed within their appropriate context in the main text,
and included into the PD map pathways. The PD map is represented as a
graph constructed with all gene-regulatory protein and metabolic in-
teractions extracted from published data. Currently the map has 2,285
elements and 989 reactions supported by 429 articles and 254 entries
from publicly available bioinformatic databases. It is compliant with

energy needs. In contrast, neighbouring dopamine neurons in
the ventral tegmental area use Na'" channels for pacemaking
and are relatively spared in PD [37].

Cytosolic DA also contributes to the vulnerability of DA
neurons, primarily because its metabolism induces oxidative
and nitrative stress in an age-dependent manner [40—42].
Neurotoxicity of DA increases with its concentration, which
is thought to be regulated by Ca*' concentration [43].
Additionally, dopamine metabolism is involved in a number
of PD-associated pathways, as it can impair synapse func-
tion, inhibit protein degradation and disturb mitochondrial
dynamics by inhibiting the function of Parkin.

Ageing, the primary risk factor for PD, especially affects
DA neurons (see Fig. 2). «-Syn accumulation increases with
age in the SNpc and correlates with the loss of DA neurons in
non-human primates [42]. This could be linked to the age-
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standardized graphical representation, Systems Biology Graphical No-
tation (SBGN) [265]. This standardized representation of the map could
become a common language for the PD research community to discuss
disease-related molecular mechanisms [5]. Detailed contents of the PD
map are accessible at http://minerva.uni.lu/Map Viewer/map?id=pdmap
(Online resource 1) as an SBML file (Online resource 2) and in Payao
[264]. The map can be updated with information from the PD research
community, as well as by searching bioinformatics databases. Explora-
tion and analysis of the content has the potential to broaden knowledge on
the molecular processes in PD, generate of new hypotheses on disease
pathogenesis, or prioritize the most interesting areas and molecules for
investigation. Approaches to facilitate this knowledge acquisition process
are discussed in detail in the section “Annotation, enrichment and
Analysis of the PD Map”

Explor:

related impairment of the two protein degradation systems:
the ubiquitin—proteasome system (UPS) [42] and the autoph-
agy-lysosome system [44]. ROS accumulate in an ageing
brain [42, 45], partially due to mitochondria dysfunction, as
mitophagy” is decreased with ageing [45, 46]. Finally, the
threshold required to trigger a neuroinflammatory response
may decrease with age, since glial activation in SNpc in-
creases in the ageing brain [42, 47].

Synaptic Dysfunction

The main function of a synapse is to establish a connection
between neurons allowing communication via chemical or

2 Mitophagy — autophagy of mitochondria.
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Fig. 2 Pathways implicated in PD and their relationship to susceptibil-
ity factors of SNpc DA neurons. The black arrows represent direct
molecular interactions between the dysregulated pathways. Red arrows
denote pathways affected by or generating ROS. Dashed lines represent

electric signals. The synapse has emerged as a neuronal
structure highly susceptible to a variety of chronic insults
[48-51]. Below, we discuss the increasing evidence indicat-
ing that synapses are also affected in PD, and that their
dysfunction and demise contributes to the disease.

«-Syn is a presynaptic protein. Point mutations, duplica-
tions or triplications of its gene are associated with familial
PD [52-54]. In cultured neurons, it transiently associates
with synaptic vesicles prior to neurotransmitter release, upon
which it rapidly redistributes to the cytosol [55]. Association
of a-syn with the synaptic vesicle may occur through its
binding to SNARE complex proteins [56], and, as shown in
mice, «-syn positively influences functional SNARE levels
[57]. Similarly, upregulation of x-syn in synapses and cell
somas of cultured neurons protects against oxidative stress
[58]. However, the protective effect of «-syn is limited to a
narrow concentration range, since high levels of «-syn cause
familial PD [53]. Even modest overexpression of x-syn has
been reported to markedly inhibit neurotransmitter release
[59]. Also, x-syn forms potentially pathogenic micro-
aggregates in the synapse [60]. Another protein involved
familial and sporadic PD, LRRK2, is also present in the
synapse. Its experimentally induced upregulation or knock-
down impairs the dynamics of synaptic vesicle release and
recycling [61, 62]. However, the influence of mutated or
dysfunctional LRRK?2 on these processes in PD remains to
be investigated.

A number of other PD-related pathological events might
affect synapses. Synapses of the nigrostriatal pathway, with
their high level of &-syn and dopamine, are likely to be the
major site of the formation of toxic adducts of «-syn and

Susceptiblity factors

% Complex  wo._~ _~_» Dopamine
morphology metabolism

® High e High
calcium flux /7% energy demand

o

indirect associations of these pathways and neurodegeneration. Suscep-
tibility factors of SNpc DA neurons associated with a given pathway are
indicated by their corresponding symbols

oxidized DA [40, 63, 64]. Furthermore, the energy demands
of synapses may be compromised by dysfunctional mito-
chondrial respiration, turnover, or axonal transport [65].
Locally dysfunctional protein degradation and turnover
may directly affect synaptic function and plasticity [66].

Mitochondrial Dysfunction

Mitochondria are highly dynamic organelles essential for a
range of cellular processes including ATP production, ROS
management, calcium homeostasis, and control of apoptosis.
The maintenance of mitochondrial homoeostasis by
mitophagy involves multiple factors ranging from the con-
trol of mitochondrial fusion and fission to mitochondrial
motility [67]. These processes are strongly related to proteins
involved in familial and sporadic PD [65, 68, 69].

A number of proteins associated with familial PD are relat-
ed to mitochondrial function [70], with PINK1 and Parkin
playing a particularly important role. Control of mitochondrial
turnover and protection against oxidative stress are mediated
via the kinase activity of PINK targeting Parkin [71], HTRA2
[72] and TRAP1[73] proteins. In turn, mitophagy is driven by
PINK1-mediated translocation of Parkin from the cytosol to
mitochondria [71, 74]. Importantly, both mitophagy [75, 76]
and transcriptional control of mitochondrial biogenesis
[77=79] depend on the E3 ubiquitin ligase activity of Parkin.

Familial PD genes are also implicated in ROS production
by mitochondria. Mitochondrial respiration and calcium bal-
ance are perturbed by PINK1 deficiency [80, 81]. The resulting
reduced mitochondrial calcium capacity and increased ROS
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could lower the threshold for mitochondrial outer membrane
permeabilization (MOMP) and thereby increase the vulnera-
bility for cell death [80]. Additional detrimental downstream
effects of excessive ROS are mitochondrial DNA damage and
inflammation [65, 82]. It has been suggested that DJ1 works in
parallel to the PINK 1—-Parkin pathway to maintain mitochon-
drial function in the presence of an oxidative environment [83].
DJ1 was shown to interact with a mitochondrial protein
mortalin, which maintains mitochondrial homeostasis and an-
tagonizes oxidative stress injury [84]. Remarkably, Parkin
overexpression has been demonstrated to prevent mitochon-
drial dysfunction caused by a mortalin knockdown [85].

Mitochondrial trafficking is necessary for proper energy
supply. This process is particularly demanding in long axons
of DA neurons. Recent findings suggest that mitochondrial
transport may be affected in PD. Axonal transport of mito-
chondria along the microtubules is directly influenced by
PINK through its supporting role in the kinesin motor
complex [86]. Also, PINK and Parkin may play an impor-
tant role in the process of quarantining the damaged mito-
chondria prior to their clearance [87]. However, the role of
PINK1 in the dynamics of mitochondrial trafficking is not
yet fully understood [88]. Mitochondrial trafficking may also
be impaired by Parkin, a-syn, or LRRK2 as they modulate
microtubule stability [89-92], or by formation of a-syn
aggregates [93].

Finally, other proteins associated with familial PD have
recently been linked to mitochondrial pathways. UCHLI-
mediated cell death can be attenuated by mitochondrial pro-
tein HTRA2 [94], ATP13A2 regulates mitochondrial bioen-
ergetics through macroautophagy [95], VPS35 mediates ves-
icle transport between mitochondria and peroxisomes [96],
and EIF4G1 is involved in stress related protection of mito-
chondria [97].

Failure of Protein Degradation Systems

In long-lived post-mitotic cells, such as neurons, the degrada-
tion systems assuring the removal of damaged, dysfunctional
cellular structures play a key role in cellular homeostasis.
These degradation systems are involved in the clearance of
defective cellular structures such as misfolded or damaged
proteins, and dysfunctional organelles such as defective mito-
chondria [98]. The two major degradation systems are the
UPS and the autophagy—lysosome system. The complex ma-
chinery and biology of these two systems have been exten-
sively reviewed elsewhere [66, 99—101]. The dysfunction of
clearance systems, especially in the synapse, can lead to the
accumulation of «-syn and defective mitochondria. These, in
turn, can interfere with proper synaptic function, lead to the
formation of toxic assemblies or aggregates, or impair energy
metabolism and cause oxidative stress.
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Genetic and pathological evidence strongly indicate the
involvement of defective clearance systems in PD [102—104].
Interestingly, patients with Gaucher’s disease, a lysosomal
storage disorder [105, 106], have an increased risk for PD
and accumulate x-syn in their brains [107]. Mutated forms of
a-syn have been reported to inhibit their own degradation by
chaperone-mediated autophagy (CMA), while DA-modified
o-syn also blocks CMA degradation of other proteins [103].
Finally, pathological observations in PD autopsy brains and
brains of PD animal models show an increased number of
autophagy vacuoles and other autophagy markers [108, 109].
Interestingly, neurons containing Lewy bodies (LB) were
shown to have decreased UPS and lysosomal markers [110].

While this evidence demonstrates the involvement of
cellular clearance mechanisms in PD, it is unclear whether
that involvement is primarily beneficial or detrimental. It has
been argued that exaggerated clearance activity may contrib-
ute to neuronal injury [111, 112]. The predominant view,
however, is that the removal of abnormal proteins and or-
ganelles is neuroprotective [102, 113—118].

a-Synuclein Misfolding and Pathobiology

The pathobiology of o-syn is implicated in a number of
pathways involved in PD. «-Syn is an intrinsically disor-
dered protein [119], which can spontaneously and dynami-
cally adopt either physiological or misfolded conformations.
The latter contains [3-sheet structure, which promotes
oligomerisation and fibrilisation [120—122]. High-order olig-
omeric and pre-fibrillar forms are thought to be cytotoxic,
while fibrillar and aggregated forms may be harmless, de-
toxified depositions [119, 123]. This is still controversial,
since familial PD o-syn mutants promote both misfolding
and aggregation of o-syn, suggesting a pathological role of
this process [103, 121, 124, 125].

Mutated, misfolded or overexpressed x-syn is involved in
a number of pathways associated with degeneration of SNpc
DA neurons. It is thought to impair synapse function
[126—129] and to affect the respiration, morphology and
turnover of mitochondria [130—134]. Axonal transport might
be impaired by misfolded o-syn through perturbation of
microtubule assembly [135-137], especially together with
MAPT protein [138—143]. Also, oligomers of mutant «-syn
induce chronic ER stress [125, 144], which seems to precede
actual neurodegeneration [145]. Finally, «-syn degradation
by CMA [146] might be perturbed by mutated or dopamine-
modified a-syn [103, 146, 147]. Reduction of lysosomal
activity by a-syn overexpression might lead to «-syn accu-
mulation [148], suggesting a vicious loop of CMA deficien-
cy and «-syn misfolding. The proteasome system has also
been reported to be inhibited either by «-syn mutants
[149-151], or oligomers [152].
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Recent studies suggest that «-syn aggregates spread be-
tween cells and that this contributes to the PD disease process
[123, 153]. This hypothesis is supported by reports of protein
inclusions detected in previously unaffected DA neurons
grafted into the striatum of PD patients [154—156]. The exis-
tence of a neuron-to-neuron transfer mechanism for misfolded
a-syn has been shown in cell culture, primary mouse neurons
and mouse models [157—159]. Moreover, it was observed that
different types of cellular stress associated with PD pathogen-
esis, such as misfolded protein accumulation [160],
proteasomal and mitochondrial dysfunction [161], are able
to increase secretion of «-syn and its aggregates.

It has been shown that exogenous o-syn preformed fibrils
might promote the aggregation of endogenous x-syn in neu-
ronal cells [158, 159, 162] impairing neural function [158,
159]. Taken together, these results suggest that misfolded -
syn can be secreted and taken up, introducing additional
cellular stress and promoting further protein misfolding.

Neuroinflammation

Neuroinflammation and chronic activation of the immune sys-
tem are pathological processes associated with all chronic neu-
rodegenerative diseases, such as PD, AD or multiple sclerosis
[163]. Although the involvement of the adaptive immune sys-
tem in PD-related neuroinflammation has been suggested [164,
165], in particular in the context of «-syn and neuromelanin
[166, 167], current research of neuroinflammation in PD focuses
primarily on the innate immune system. Of particular interest are
microglia® [168] and astrocytes® [169, 170].

Microglia constantly explore and monitor the local envi-
ronment [171, 172], modulating the response of the immune
system in relation to the level of their perturbation. At the first
sign of stress, they produce and release anti-inflammatory
cytokines and supportive growth factors [168]. Neurons play
an active role in regulating the microglial response. Many of
their products inhibit microglia activation by binding to spe-
cific microglial receptors [173—177].

The SNpc is a brain region that may be especially vulner-
able to elevated neuroinflammation. The SNpc contains more
microglia [178] and less astrocytes than other brain regions
[179]. With a high microglial density promoting the inflam-
matory response, and low astroglial density to downregulate
it, neuroinflammation in the SNpc may be particularly strong.
Moreover, SNpc neurons contain neuromelanin, which has
been shown to activate microglia [180] and could be another
factor promoting neuroinflammation.

? Microglia — the most abundant of the resident macrophage popula-
tions in the CNS.

4 Astrocytes — glial cells that play a supportive role for neurons and
modulate microglia response.

The response of glial cells in the context of PD has been
studied in humans, animal models and cell cultures. The
presence of reactive microglia in human post-mortem brain
tissue has been reported in PD patients [181] and in people
exposed to MPTP [182]. In animal models of PD, microglial
activation has been studied in primates [183], mice [184] and
rats [185], supporting the notion that neuroinflammation is
intrinsically associated with the PD pathological process. In
cellular co-cultures of neuronal cells and microglia, neuronal
injury drives microglia activation, which in turn enhances
neurodegeneration [186].

In vitro systems demonstrate that the delicate balance
between protective and detrimental effects of glial response
might be disrupted by PD-related stress factors. Microglia
can detect misfolded a-syn [187, 188] and increase neuro-
toxicity by producing ROS and pro-inflammatory cytokines
[189, 190]. In turn, activated microglia expressing LRRK2
with a PD-related mutation produce more pro-inflammatory
cytokines than corresponding cells expressing WT LRRK2
[191]. Deficiency in Parkin may indirectly promote microg-
lia activation by increasing neuronal vulnerability for
inflammation-related stress [192] and disturbing the neu-
ron—microglia balance. Finally, DJ-1 deficiency in astrocytes
might contribute to neurodegeneration by deregulating their
neuroinflammatory response [193].

In summary, many in vitro PD models indicate a detrimental
role of microglia. However, the situation in vivo is less clear,
even though protective effects of anti-inflammatory compounds
such as minocycline have been reported in models of PD [194].

Neuronal Death Through Apoptosis-Related
Mechanisms

Degeneration of DA neurons is the final consequence of
dysregulated cellular processes, leading to neuronal death
[195]. Neurodegeneration by apoptosis typically proceeds
through one of two signalling cascades, termed the intrinsic
and extrinsic pathways [196, 197].

The intrinsic pathway can be induced by intracellular
stress, leading to MOMP that is controlled through proteins
of the BCL-2 family. As a result, cytochrome c is released
from the mitochondrial intermembrane space, leading to
formation of an apoptosome and subsequent execution of
apoptosis by activation of caspases 3 and 7. Studies in animal
models of PD suggest the BCL-2 family is a key target for
attenuating neurodegeneration of DA neurons [198-202].

Additionally, an important link between PD and the acti-
vation of apoptosis comes from studies investigating the
roles of familial PD genes. It has been shown that disease-
related LRRK2 mutations R1441C, Y1699C and G2019S
promote mitochondria-dependent apoptosis [203]. PINK1
and Parkin, in turn, protect against stress-induced cytochrome
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c release, while their mutations might fail to attenuate basal
neuronal pro-apoptotic activity [204-206]. Importantly, fail-
ure of the protein degradation system could also contribute to
apoptosis via the intrinsic pathway. It has been proposed that
lysosome membrane permeabilization is induced by ROS and
occurs upstream and downstream of MOMP [207, 208].
Finally, DA-mediated activation of the intrinsic pathway
may contribute to selective DA neuron degeneration [209].

The extrinsic apoptosis pathway is activated by extracellular
signalling, and diverges into two sub-pathways: one directly
activating caspase 3 and 7, the other causing MOMP.
Neuroinflammation could be a major factor in this process
[165, 187, 210], promoting neuronal apoptosis either by oxida-
tive insults [211] or by pro-inflammatory cytokines [212, 213].

In summary, both apoptosis pathways appear to be the
convergence point of different pathways dysregulated in PD.
Still, therapeutic interventions may be most efficacious in
maintaining DA neuron functionality if aimed at the up-
stream events of apoptosis. Indeed, as the apoptotic process
is advanced, the intervention may be too late.

Annotation, Enrichment and Analysis of the PD Map

Dysregulated pathways implicated in PD are strongly coupled,
and their interconnections need to be represented in an inte-
grated and comprehensive way to be studied efficiently. Our
PD map allows navigation through information on PD-
associated mechanisms, and constitutes an interface to well-
established tools and methods for updating, enriching, and
analysing its contents (see Fig. 3).

Annotation of the PD Map Using Bioinformatic
Databases

We have enriched the elements of the PD map using a number
of publicly available databases [214-230]. Information on
official gene symbol, synonyms, description and chromosom-
al location; association with biological processes and diseases;
or molecular interacting partners have been embedded within
the map. Annotation of the contents of the PD map facilitates
the knowledge exploration by providing additional informa-
tion about map elements and their interactions, and is easily
accessible online (see Fig. 3b for illustration and Online
resource 1 for details).

Exploration of the Map Using Integrative Expression
Analysis

Recently, a variety of PD-related large-scale datasets have be-
come publicly available, including microarray gene expression
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data for human post mortem samples from different regions of
the brain [231-234], human whole-blood samples [235], and
samples from animal [236] and cell culture models [237]. This
experimental data can be visualized on the PD map or used to
predict new map elements and interactions [238-240].

Visualization of gene deregulation in PD-related microar-
ray datasets [231-234] is possible via a variety of methods for
candidate disease gene or protein prioritizations [241-244].
We have chosen an approach combining significance scores
[245] for differentially expressed genes in multiple studies,
and prepared a colour-coded version of the map highlighting
upregulation in green and downregulation in red (see the
online PD map and Online resource 1). This gives an imme-
diate overview of pathways that are affected by dysregulated
genes.

One of the major advantages of the PD map is the possi-
bility to predict new elements and interactions on the basis of
the map contents and experimental data. To achieve this,
publicly available human molecular interaction data [242]
are obtained for the PD map elements, extending the number
of interactions. Then, an automated, graph-theoretic approach
[243] prioritizes candidate disease proteins that are densely
interconnected in the extended PD map, and whose gene
expression levels are differentially expressed in the microarray
PD samples. We have combined the abovementioned experi-
mental microarray [231-234] and protein-protein interaction
data [242] to demonstrate the usage of this approach. The
extended PD map containing the prioritized new proteins
can be found in Online resource 1.

PD Map as a Network: from Structural Analysis
to Kinetic Models

The PD map is a large, complex network integrating meta-
bolic reactions, gene regulation, and signalling processes.
Exploring how different elements in the network may influ-
ence each other is difficult and non-intuitive. Graph-
theoretical methods aim to bridge the gap between our un-
derstanding of the role of single elements in a cellular net-
work and the properties of this network as whole [246, 247].
These methods aim to identify key network nodes (genes,
proteins), edges (molecular interactions) or modules’
(subnetworks) [246].

Basic properties of individual network elements such as
node centrality® indicate their global role in the whole net-
work. In turn, analysis of inter-modular communication in

> Module — in the PD map by a module (subgraph, subnetwork) we
understand elements and interactions participating in the same pathway
or serve similar biological function. Inter-modular communication
denotes all interactions linking different modules.

® Node centrality — a measure describing how important a given node
is for the connectivity of the entire network.
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Enrichment
- Visualization of experimental data

Outcomes

Hypothesis

[————— .
generation

- Prediction of new map elements and interactions

Experimental data

Analysis
- Network topology
- Kinetic modeling

Text and bioinfomatics

databases Annotation

- Text mining of biomedical publications
- Mining of bioinformatic databases

b) Enrichment Analysis

Gene or protein
==————>> prioritization

———— PD knowledge
exploration

Annotation

Fig. 3 The workflow and an illustration of PD map functionalities. a
The PD map can be automatically enriched with experimental data and
annotated with information from text and bioinformatics databases. The
analysis requires no external data sources. b A simplified representation
of the PD map is given, with circles (nodes) as map elements and /ines
(edges) as interactions (uni- or bi-directional). Enrichment: green and
red nodes represent up- and downregulated genes, respectively, derived
from experimental data; a predicted new map component (square)
shares interaction with existing map components (dashed lines) and
matches their expression profile. Analysis: nodes with high centrality

the network indicates a how given molecule, complex or
interaction can affect communication between modules [248,
249]. More advanced, functional dependencies between ele-
ments in the network can be revealed by methods exploring
the relationships of all possible paths between network ele-
ments and selected molecular dysfunctions [250] (see Fig. 3b
for illustration). Examples of network analysis applied to the
PD map can be found in Online resource 1.

Most of the connections on the PD map depict real physical
interactions between biomolecules. Currently, the PD map
contains no information on kinetics of these interactions;
however, they can be easily assigned and analysed mathemat-
ically [251]. The PD map is compliant with the Systems
Biology Markup Language (SBML) standard [252], used by
commonly available software to build kinetic models and run
simulations [253]. Although assigning kinetic parameters to
all interactions in the PD map is a truly challenging task,
describing kinetics of a certain process representing a module
within the PD map is feasible. In-depth analysis of the dy-
namics of a process can provide insight as to how elements of

EntrezGene

¢ GeneOntology
\ PharmGKB

% UniProt

time

\
PD articles Y

(blue) play a key role in the network topology and indicate molecules
regulating many processes; detection of paths (thick lines) highlights
non-trivial relations between elements of a biological process; kinetic
modelling reveals temporal dependencies between behaviour of differ-
ent molecules. Annotation: text mining of PD-related articles suggests
new interactions in the map (thick dashed line) and facilitates handling
of a huge number of publications; each map element is annotated with
information from various bioinformatics databases giving easy access
to information about interesting elements

the process change quantitatively and over time (see Fig. 3b
for illustration) and assess their influence on the related com-
ponents in the map. This can lead to new hypotheses that are
impossible to discover by visual examination or analysis of
static network topology [254]. There are many successful
examples, where similar bottom—up modelling has been ap-
plied to neurobiology related systems [255-258].

In summary, structural network analysis allows for detec-
tion of elements key to PD pathogenesis represented in the
map. This can serve as a basis for new hypotheses and
prioritization of targets for further investigation.

Conclusions and Perspectives

PD is a neurodegenerative disease involving a complex interplay
of environmental and genetic factors. It becomes increasingly
important to develop new approaches to organize and explore the
exploding knowledge of this field. The PD map is a computer-
based knowledge repository, representing diagrammatically
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molecular mechanisms of PD in a structured and standardized
way. It can be linked to bioinformatics tools facilitating explora-
tion and updating the contents of the map using bioinformatic
annotations.

The main insights into molecular pathology of PD come
from studies on familial PD and GWAS. In the future, massive
use of next-generation sequencing will provide even more data
that might contribute to PD. The PD map facilitates integration
and visualization of large experimental datasets, allowing ana-
lyzing them in the context of disease mechanisms.

Discovering causal factors of PD pathogenesis is difficult
because molecular pathways dysregulated in neurodegeneration
are interconnected and influence each other. Analysis of the
topology and dynamics of molecular interactions within and
across different pathways represented in the PD map may help
to uncover key factors in PD pathology. For instance, the role of
neuroinflammation in the pathological cascade in PD remains
unclear, while the apoptosis, clearly a downstream factor of PD,
involves other mechanisms implicated in PD, like protein deg-
radation or mitochondrial quality control. Consequential steps of
PD pathology can be elucidated by the global, systems level
analysis of all implicated factors.

The map has reached substantial size and complexity.
Keeping it up-to-date and refining it with limited resources
will be a challenge. We foresee the PD map as a crowd-
sourcing project, where an interested and knowledgeable
research community is engaged in solving a problem
[259-262], similar to WikiPathways or Payao [263, 264],
but focused on disease-related mechanisms. Thus, the PD
community will easily explore and curate the PD-related
knowledge in an online manner, ensuring that individual
contributions are recognized.
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