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Abstract
COVID-19 is a syndrome that includes more than just isolated respiratory disease, as severe acute respiratory syndrome–
coronavirus 2 (SARS-CoV2) also interacts with the cardiovascular, nervous, renal, and immune system at multiple levels,
increasing morbidity in patients with underlying cardiometabolic conditions and inducing myocardial injury or dysfunction.
Emerging evidence suggests that patients with the highest rate of morbidity and mortality following SARS-CoV2 infection have
also developed a hyperinflammatory syndrome (also termed cytokine release syndrome). We lay out the potential contribution of
a dysfunction in autonomic tone to the cytokine release syndrome and related multiorgan damage in COVID-19. We hypothesize
that a cholinergic anti-inflammatory pathway could be targeted as a therapeutic avenue.
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Abbreviations
α7nAChR α7 nicotinic ACh receptors
ACE2 Angiotensin converting enzyme 2
ACh Acetylcholine
ARDS Acute respiratory distress syndrome
CRP C-reactive protein
DAMPs Danger associated molecular patterns
FABP4+ Fatty acid binding protein 4
nAChR Nicotinic acetylcholine receptor
SARS-CoV2 Severe acute respiratory

syndrome–coronavirus 2

sHLH Secondary
hemophagocytic lymphohistiocytosis

TNFɑ Tumor necrosis factor ɑ
VNS Vagus nerve stimulation

As the number of confirmed COVID-19 cases surges over 4
million globally and deaths surpass 280,000, the medical com-
munity faces a new challenge expanding at an alarming rate of
killing nearly 10,000 patients in a single day. COVID-19 is a
syndrome that includes more than just isolated respiratory dis-
ease, as severe acute respiratory syndrome–coronavirus 2
(SARS-CoV2) also interacts with the cardiovascular, nervous,
renal, and immune system at multiple levels, increasing mor-
bidity in patients with underlying cardiometabolic conditions
and inducing myocardial injury or dysfunction [1]. As we study
patients with COVID-19, it has become clear that COVID-19-
related mortality is mostly due to their inability to resolve the
infection and inflammatory responses especially in elderly or
patients with previous health conditions. In these patients, an
unregulated inflammatory response to the infection can become
more detrimental than the actual infection causing cellular tox-
icity and alveolar fluid. This inflammatory response and the
activated immune cells and inflammatory cytokines can spread
through the bloodstream to cause multiorgan failure [1].
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Cytokine Release Syndrome

Indeed, emerging evidence suggests that patients with the
highest rate of morbidity and mortality following SARS-
CoV2 infection have also developed a hyperinflammatory syn-
drome (also termed cytokine release syndrome) [2]. The cyto-
kine release syndrome is likely an indirect effect of the virus
and has been associated with rapid clinical deterioration leading
to acute respiratory distress syndrome (ARDS), multiorgan fail-
ure, and mortality [3, 4]. The COVID-19 syndrome results in
the upregulation of inflammasomes, dysregulation of T cells
with associated lymphopenia, and unfettered production of cy-
tokines/chemokines, including IL6, TNFɑ, and CCL2. Lung
fluid sampling from patients with SARS-CoV2 infection shows
that the virus alters the microenvironment of the immune sys-
tem, especially as it pertains to macrophages [5]. Evidence
from a small number of patients indicates that highly inflam-
matory FCN1+ macrophages predominate over fatty acid–
binding protein 4 (FABP4+) macrophages in patients with a
more severe COVID-19 clinical course [5]. In contrast, in
milder cases of COVID-19, the expansion of clonal CD8+ T
cells in the lung microenvironment suggests a robust adaptive
immune response connected to a better control of COVID-19
[5]. The COVID-19-related cytokine release syndrome appears
to be s imi lar to the secondary hemophagocyt ic
lymphohistiocytosis (sHLH) hyperinflammatory syndrome,
which presents with fulminant and nearly always fatal cytokine
release with multiorgan failure. Commonly triggered by viral
infections and sepsis, sHLH is characterized by prolonged fe-
vers, cytopenia, and high serum ferritin, and is frequently asso-
ciated with pulmonary disease [6]. Therefore, diagnosis and
treatment of hyperinflammation have been suggested as a pos-
sible therapeutic approach. Consistent with this hypothesis,
some experimental treatments (e.g., steroids, selective cytokine
blockade with anakinra or tocilizumab) are currently being
evaluated in clinical studies, despite their relative immunosup-
pressive effects [6].

Interplay of the Autonomic Nervous System
and Inflammation in Light of COVID-19

We hypothesize that a dysfunctional autonomic tone can con-
tribute to mortality in COVID-19 patients and could be targeted
as a therapeutic avenue. The pathological changes to various
organ systems may be caused directly by the cytopathic effect
mediated by SARS-CoV2 infecting cells expressing the
angiotensin-converting enzyme 2 (ACE2) receptor. ACE2 is
an enzyme attached to the cell membrane in the lungs, arteries,
heart, kidney, intestines, and other tissues. ACE2 counterbal-
ances the function of ACE, which in return negatively regulates
AngII production and may contribute to hyperinflammation [7,
8]. ACE2 lowers blood pressure by catalyzing the hydrolysis of

angiotensin I or II (vasoconstrictors) into angiotensin 1–9 and
1–7 respectively (vasodilators). Thus, a change in ACE2 func-
tion or level of expression can affect blood pressure and also
neuronal regulation of inflammation [9]. Indeed, in animal ex-
periments, inhibition of the brain ACE2 function decreases the
parasympathetic tone [10]. SARS-CoV infection has been as-
sociated with an impaired ACE2 expression and function. In
mice, SARS-CoV infection considerably downregulates the
ACE2 expression, including in the lungs [11, 12]. The so-
called ACE2 shedding process is tightly coupled with TNFα
production. Notably, as part of a feedback loop, hyperactivation
of the vagus nerve via the nicotinic acetylcholine receptor
(nAChR) downregulates the expression or activity of ACE2
[13–15], which could prevent viral infection. In summary, the
interaction of SARS-CoV with ACE2 could present more than
merely an entry point for the virus into the human body but be a
nidus for a dysregulation of the potent renin angiotensin system,
with detrimental effects on cardiovascular regulation and para-
sympathetic tone.

We previously published that the autonomic nervous sys-
tem and the vagus nerve in particular survey systemic inflam-
mation through a reflex system and can activate a neuronal
anti-inflammatory signal to prevent deleterious inflammation
[16]. Sympathetic hyperactivation is an important component
of the autonomic dysregulation in the setting of infections and
related hyper-inflammatory release syndromes. Sympathetic
hyperactivation might be of particular significance for injury
to the cardiovascular system. For the purposes of this review,
we will focus on the interaction between the parasympathetic
nervous system and the immune system.

Infections and danger-associated molecular patterns
(DAMPs) can activate immune cells to produce inflammatory
cytokines [17]. In turn, these inflammatory cytokines can ac-
tivate the afferent sensory vagus nerve that transmits the in-
formation to the central nervous system where it is processed.
If needed, the central nervous system can activate the efferent
vagus nerve to control inflammation by inhibiting the produc-
tion of inflammatory cytokines in macrophages [18].
Acetylcholine (ACh), the principal neurotransmitter of the
vagus nerve, is well studied as a critical neurotransmitter but
ACh also modulates immune cells. Acetylcholine is well con-
served across evolution and is used by the nervous system to
regulate organ function and physiological homeostasis includ-
ing the immune system and inflammation. Indeed, we report-
ed that the vagus nerve, the longest nerve connecting the brain
with most organs, controls immune cells by producing ACh
[19]. This mechanism is so significant that some regulatory T
lymphocytes replicate the nervous system through ACh syn-
thesis in order to control cytokine production by macrophages.
ACh can signal through either muscarinic or nicotinic recep-
tors. The spleen is the target organ of the nicotinic-cholinergic
system [20]. We reported that ACh inhibits the production of
inflammatory cytokines in macrophages specifically via α7
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nicotinic ACh receptors (α7nAChR) [16]. Specific inhibition
of α7nAChR in human macrophages causes overzealous pro-
duction of inflammatory cytokines and prevents the potential
of either ACh or nicotine to inhibit the production of inflam-
matory cytokines in human macrophages. Likewise, electrical
stimulation of the vagus nerve in rodent models induces the
production of ACh and inhibits systemic inflammation for
wild-type but not α7nAChR-KO mice with experimental sep-
sis induced by either endotoxemia or polymicrobial peritonitis
[21–23]. Acute lung injury and ARDS are often derived from
sepsis-induced pulmonary inflammation [24, 25].
Furthermore, alveolar injury to the lungs as a result of me-
chanical ventilation (ventilator-induced lung injury) is en-
hanced by concomitant inflammation. Conversely, surgical
vagotomy in animals undergoing mechanical ventilation in-
creased alveolar damage that is associated with robust produc-
tion of inflammatory cytokines such as IL-6 [24]. Therefore,
electrical or pharmacological vagal nerve activation attenuates
lung injury by modulating the inflammatory response and
subsequently cellular damage and organ injury and failure.
Finally, vagus nerve stimulation (VNS) also eases the down-
stream effects of cytokine activation on systemic coagulation
in rodent models [26]. This supports the current prevailing
concept that dysregulated endothelial inflammation
upregulates thrombin generation in COVID-19-associated
thrombus formation [27].

Diminished cardiac vagal activity is found in patients with
pulmonary and cardiometabolic disease. This has been found
to predispose patients to develop and die of critical illness
[28]. On the contrary, patients with an increased vagal tone
might be protected from a cytokine release syndrome [29].
The observation of lower rates of symptomatic COVID-19
infections in active smokers [30] potentially suggests that ac-
tive nicotine exposure activates the cholinergic anti-
inflammatory pathway, previously shown to be protective in
various infectious illnesses, despite the deleterious effects of
tobaccos use [31, 32]. Furthermore, a milder COVID-19 dis-
ease course in children, who have a naturally higher vagal tone
[33], even in an infectious setting, could support the signifi-
cance of the cholinergic anti-inflammatory pathway uniquely
in COVID-19 patients.

Targeting the Cholinergic Anti-inflammatory
Pathway via Vagus Nerve Stimulation

Electrical stimulation of the vagus nerve has been previously
studied and applied in clinical scenarios with FDA approval
granted for the treatment of refractory epilepsy in 1997 and for
the treatment of chronic depression in 2005. These treatments
have shown vagal stimulation to be safe and without signifi-
cant side effects. VNS has also been investigated for the con-
trol inflammatory disorders such as rheumatoid arthritis [34]

and Crohn’s disease [35]. Vagal stimulation reduced blood C-
reactive protein (CRP), fecal calprotectin, and abdominal
pain, and improved mood in 5 out of 7 patients with
Crohn’s disease. Vagal stimulation also improved clinical
symptoms of rheumatoid arthritis and significantly lowered
serum levels of inflammatory cytokines such as TNF-α and
IL-6 in 18 patients after 3 months of treatment [34]. In
humans, direct stimulation of vagal fibers reduced inflamma-
tion in patients undergoing coronary artery bypass grafting,
suggesting that VNS is a potentially useful modality for de-
creasing perioperative inflammation [36]. Additional clinical
trials are currently in progress to study nerve stimulation in
polyneuropathies (clinicaltrials.gov #NCT04053127), heart
failure (clinicaltrials.gov #NCT03425422), traumatic brain
injury (clinicaltrials.gov #NCT02974959), and atrial
fibrillation (clinicaltrials.gov #NCT03533140). Clinically,
VNS can be achieved pharmacologically or electrically via
invasive cervical vagal stimulation or non-invasively via the
ear or by electroacupuncture (Table 1). Importantly, nAChR
plays a role in the expression of ACE2 [13–15], which has
been identified as the key target receptor of SARS-CoV2 [37].
Thus, vagal stimulation can potentially prevent SARS-CoV2
propagation by inhibiting ACE2 expression.

Since sensory vagal fibers also innervate the ear, the tragus
and auricular nerves have been targeted for non-invasive VNS.
The so-called “low-level” VNS allows transcutaneous stimula-
tion at voltages substantially below that associated with slowing
of sinoatrial or atrioventricular nodal conduction. Recently,
transcutaneous VNS (via a clip applied to the right tragus)
was shown to significantly decrease systemic inflammation
and atrial fibrillation inducibility in patients with paroxysmal
atrial fibrillation [38]. In a randomized trial comparing low-
level VNS with a control group in postoperative cardiac surgi-
cal patients (for 72-hduration), the development of new-onset
atrial fibrillation was reduced by “low-level” VNS [39].
Specifically, serum TNF-α and IL-6 levels were significantly
lower in the low-level VNS group. In a follow-up Sham-con-
trolled study, a single hour of VNS around the time of atrial
fibrillation ablation decreased systemic levels of TNF-α and
CRP. Of note, levels of these inflammatory biomarkers in the

Table 1 Therapeutic avenues to target the cholinergic anti-
inflammatory pathway. VNS, vagus nerve stimulation; nAChR, nicotinic
acetylcholine receptor

Strategy Agent/technology

Pharmacological -Nicotine
-GTS-21, a nAChR agonist

Neuromodulation -Implantable cuff based VNS
-Transcutaneous non-invasive VNS via neck or ear
-Electroacupuncture
-Splenic nerve stimulation
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coronary sinus did not decrease, suggesting a global and not
just cardiac effect. Attempts to test the cholinergic anti-
inflammatory pathway are underway using pharmacological
nAChR stimulation [40] and electrical VNS (clinicaltrials.gov
#NCT04341415). Some early encouraging results with
electrical VNS have been published [41].

An additional target for neuromodulation is the splenic
nerve, which contains sympathetic and distal vagal parasympa-
thetic nerve fibers to the spleen. In the experimental setting of
sepsis, the anti-inflammatory properties of the vagus nerve de-
pend on the splenic nerve [20, 42] and splenic nerve stimulation
exhibits comparable immunosuppressive effects as VNS [43].
Similarly, splenic nerve stimulation can be attempted percuta-
neously in an invasive and non-invasive fashion (ultrasound
waves) [44]. The potential benefit is a closer proximity to the
spleen, the organ responsible for the immune modulation of the
cholinergic anti-inflammatory pathway, thus allowing to avoid
potential side effects associated with systemic, cervical, or au-
ricular stimulation. The first human study with a novel splenic
nerve cuff electrode in the peri-operative setting is underway
(clinicaltrials.gov #NCT04171011).

Conclusions

Efforts to identify subgroups at highest risk to develop a cytokine
release syndrome are needed. The contribution of the parasym-
pathetic nervous system to the hyperinflammatory in COVID-19

needs to be investigated. Attempts to mitigate the disseminated
multisystem organ dysregulation and failure driven by SARS-
CoV2 cytokine release syndrome are underway. We present the
rationale to target the cholinergic anti-inflammatory pathway as a
treatment for COVID-19 and the associated cytokine release
syndrome. Ongoing and future efforts will determine the poten-
tial utility of autonomic nerve modulation in the prevention and
treatment of COVID-19 (Fig. 1).
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angiotensin aldosterone system; ACE2, angiotensin-converting enzyme 2; SARS-CoV2, severe acute respiratory syndrome–coronavirus
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