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other if AMR is to be achieved—indeed, they are very much
interconnected through the antibiotic to which they are reacting,
and dependent on each other to achieve the AMR goal. After all,
when antibiotic is removed, all these processes are either re-
duced or cease to function. The AMR nanomachine can be
switched on and off by levels of antibiotic present. Together,
these machines facilitate the survival of microorganisms in en-
vironments containing elevated levels of antimicrobial drugs.
Unfortunately, one such environment includes our hospitals
and clinics that utilise antimicrobial agents to combat microbial
infections. Possession of the resistance ‘nanomachinery’ by
pathogenic microorganisms poses a serious threat to our ability
to treat serious microbial infections with current therapies.
Indeed, resistance exhibited by bacterial pathogens to current
antibacterial agents is now recognised to be a major global prob-
lem in the fight against infections. Currently 25,000 people per
annum die in Europe as a result of infections caused by micro-
organisms that are untreatable with antimicrobial agents (EARS-
Net 2014; Public Health England Report 2015) and it is predict-
ed that there will be 10 million deaths every year globally by
2050 unless action is taken to safeguard the effectiveness of our
antibiotics (HM Government (UK) Review 2015). Antibiotic-
resistant infections are also estimated to cost the European
Union €1.5 billion per year with regard to healthcare expenses
and lost productivity; by 2050, costs worldwide are predicted to
soar to £66 trillion (Public Health England Report 2015; HM
Government (UK) Review 2015).

Major causes of the emergence and development of
resistance machines amongst microbial populations are the
intense use and misuse of antibiotics (reviewed in Barbosa
and Levy 2000). The more that antibiotics are used and dis-
tributed in the environment, the greater the generation of
multi-antibiotic resistances (e.g. Mladenovic-Antic et al.
2016; Tammer et al. 2016; Barnes et al. 2017; Mascarello
et al. 2017; Pitiriga et al. 2017; also see CMO Report 2011;
Public Health England and Veterinary Medicines Directorate
Report 2015). After all, resistance can be considered a natural
phenomenon and, as already mentioned above, a means by
which microorganisms protect themselves against exposure
to antibiotics in the environment. In the UK human healthcare
sector, 531 tonnes of active antibiotics were prescribed in
2013 (Public Health England Report 2013). In spite of high
usage, the importance of rational use of antibiotics has been
highlighted previously (Aliabadi and Lees 2000). Dosing reg-
imens and durations of antibiotic treatments should be
optimised so that they are sufficiently high as to maximise
antibacterial effect but as low as possible to reduce the risk
of the emergence of resistance (Baquero and Negri 1997;
Guillemot et al. 1998; Negri et al. 1994). The use of sub-
optimal antibiotic dosages, as well as excessive dosages, in-
crease selection of resistant strains (Odenholt et al. 2003;
Baquero et al. 2008; Gullberg et al. 2011); mathematical
modelling methods are being explored to investigate optimal

doses and durations (e.g. Bonhoeffer et al. 1997; Bergstrom
et al. 2004; D’Agata et al. 2008; Geli et al. 2012; Peña-Miller
et al. 2014; Paterson et al. 2016).

In an era in which fewer new and novel antibiotics (that
might overcome the resistance issue) are being discovered, the
Chief Medical Officer for England has called for antimicrobial
stewardship measures to be put in place, encompassing the
promotion and monitoring of the judicious use of existing
antimicrobials to preserve their future effectiveness (CMO
Report 2011). Two of the most important classes of antibiotics
recognised as critically important to both medicine and agri-
culture are the fluoroquinolones and the glycopeptides (WHO
2011; OiE 2015). These antibiotic classes are considered of
utmost priority with regard to risk management of resistance
generation amongst microbial populations (WHO 2011; OiE
2015). This review will focus on these priority classes, de-
scribing the fluoroquinolone and glycopeptide resistance ma-
chinery found in enterococci and staphylococci (bacteria that
are of significance (and common) to both animal husbandry
and human medicine practices). It is relevant to mention that
most natural variants of resistance determinants arise through
point mutations in target sites as well as resistance enzymes
and efflux systems, affecting antibiotic binding strengths and
catalytic efficiencies (Raquet et al. 1997; Crichlow et al. 1999;
Nukaga et al. 2003; Rubtsova et al. 2010; King and Strynadka
2011; Sarovich et al. 2012; Ramirez et al. 2013; Kaitany et al.
2013; June et al. 2014; Shaheen et al. 2015; Mehta et al.
2015). Changes induced by mutations in the sensory/
regulatory proteins that control the production of resistance
determinants have also been documented (Baptista et al.
1997; DeMarco et al. 2007; Resch et al. 2008; Noguchi
et al. 2004; Schmitz et al. 1998). Therefore, a summary of
the sensitive target sites in bacterial cells as well as the
AMR nanomachinery governing sensing of and resistance to
antibiotics (Table 1) is included in the following review of
fluoroquinolone and glycopeptide nanomachines.

Fluoroquinolones

The sensitive cellular targets

Fluoroquinolones (and the older generation quinolones that are
currently used much less in the clinic) are used to treat infections
caused by both Gram-positive and Gram-negative bacteria
(Andersson and MacGowan 2003; Andriole 2005; Heeb et al.
2011; Aldred et al. 2014) (and references therein). Research in
the early 1990s revealed interactions with either the A subunit of
DNA gyrase or a complex of DNA gyrase and DNA (through
the A subunit) to inhibit enzyme activity (Hooper and Wolfson
1991). It was later shown that another cellular target for quino-
lones occurs in a member of the bacterial type II topoisomerases
(specifically, topoisomerase IV) as well as the gyrase (Hooper
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1999, 2001; Anderson and Osheroff 2001; Drlica et al. 2008,
2009); reviewed in Aldred et al. (2014). The normal roles of
these enzymes are to generate double-stranded breaks in the
chromosome; DNA gyrase then introduces negative supercoils
in DNA in front of the replication fork, whilst topoisomerase IV
controls DNA supercoiling and is involved in the decatenation of
daughter chromosomes following replication (Aldred et al. 2014;
Tomašić and Mašič 2014). Quinolones bind at the interface of
enzyme and DNA in the cleavage-ligation active sites and they
do so non-covalently (Wohlkonig et al. 2010; Laponogov et al.
2009, 2010; Bax et al. 2010; Aldred et al. 2014). In the case of
quinolone-topoisomerase binding, a water-metal ion bridge pro-
vides the link between the antibiotic and the enzyme (Fig. 1).

Resistance determinants

Fluoroquinolones appear to interact with a wide range of cel-
lular components, possibly facilitating and/or enhancing the
generation of a number of mechanisms by which resistance
can be mounted. Kaatz et al. (1991, 1993) first described three
means by which resistance to fluoroquinolones may be gen-
erated in Staphylococcus aureus:

(1) Mutational change in DNA gyrase, evidenced by the
isolation of several point mutations in gyrA that confer
high-level fluoroquinolone resistance (Sreedharan et al.
1990; Goswitz et al. 1992); mutations in the
topoisomerases have similarly subsequently been shown
to provide the bases for bacterial resistance generation
(Wohlkonig et al. 2010; Aldred et al. 2012, 2013); in
general, the more resistant a clinical isolate is, then the
more quinolone resistance-associated mutations it con-
tains (Komp Lindgren et al. 2003; reviewed in Jacoby
2005).

(2) The cfx-ofx locus described by Trucksis et al. (1991),
which confers lower-level resistance than that generated
by gyrA mutations (Table 1); and

(3) Efflux of (fluoro)quinolones from the cell by efflux
pumps. In Gram-positive bacteria, the majority of efflux
membrane proteins which include quinolones in their
substrate profiles belong to the Major Facilitator
Superfamily (MFS) of membrane transporters, e.g.
NorA, NorB, NorC, MdeA, LmrS and SdrM in
S. aureus (Table 1; Fig. 2) (Ubukata et al. 1989; Kaatz
et al. 1991, 1993; Yoshida et al. 1990; Ding et al. 2008;
Truong-Boldoc et al. 2006; Huang et al. 2004; Floyd
et al. 2010 for LmrS efflux of gatifloxacin; Yamada
et al. 2006; and reviewed in Santos Costa et al. 2013
and Correira et al. 2017) and EfmA in Enterococcus
faecium (Nishioka et al. 2009). An efflux protein belong-
ing to the Multiple Antibiotic and Toxin Extrusion fam-
ily (MATE) includes MepA in S. aureus (Kaatz et al.
2005a, 2005b), whilst the ATP-binding cassette familyT
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(ABC) includes EfrAB of Enterococcus faecalis (Lee
et al. 2003) (Table 1; Fig. 2).

Amongst Gram-positive bacteria, a further low-level resis-
tance mechanism has been described that is plasmid-borne,
Qnr E. faecalis. Qnr proteins resemble DNA mimics and de-
crease the binding of gyrase and topoisomerase IV to chromo-
somal DNA. This results in a reduction in the number of
available enzyme targets on the bacterial chromosome. Qnr
proteins also bind to the gyrase and topoisomerase IV them-
selves, thereby denying access for quinolones into the cleav-
age complexes (Fig. 2). These proteins were first discovered
in Gram-negative species (reviewed in Tran and Jacoby 2002,
Jacoby 2005 and Strahilevitz et al. 2009; Rodriguez-Martinez
et al. 2011; and Aldred et al. 2014) but QnrE. faecalis originating
from the Gram-positive bacterium Enterococcus faecalis was
identified and characterised as a Qnr-like protein that confers
intrinsic resistance to fluoroquinolones (Arsene and Leclercq
2007). It is not yet known whether or not Qnr proteins or
indeed the cfx-ofx locus constitute separate independent
AMR nanomachines from efflux proteins and their regulators.

Resistance regulation determinants

Three systems that regulate expression of the S. aureus Nor
MFS multidrug transporters have so far been described
(Table 1). MgrA (formerly known as NorR) possesses a

helix-turn-helix motif within a region resembling the MarR
family of transcriptional regulators (Fig. 2). MgrA positively
regulates norA expression (Truong-Bolduc et al. 2003) and
negatively regulates the transcription of norB, a gene (tet38)
that encodes another more selective transporter Tet38
(Truong-Boldoc et al. 2005) and norC (Truong-Boldoc et al.
2006). Subsequent work established that MgrA is a global
regulator affecting approximately 350 genes (Luong et al.
2006) including those involved in autolytic activities and pro-
duction of alpha-toxin, nuclease and protein A virulence fac-
tors (Ingavale et al. 2003; Luong et al. 2003; Truong-Boldoc
et al. 2005). MgrA exhibited only weak binding to the norB
and tet38 promoter regions and therefore it was proposed that
MgrA acts as an indirect regulator of these genes (Truong-
Boldoc et al. 2005).

NorG was first identified as a transcriptional regulator of
norA (Truong-Boldoc and Hooper 2007). NorG is a member
of the GntR-like family of transcriptional regulators (Fig. 2)
and it was shown to bind to the promoter regions of norB,
norC and abcA as well as norA (Truong-Boldoc and Hooper
2007). It was shown to directly activate norB transcription but
repress abcA (an ATP-dependent transporter of the ABC fam-
ily that confers beta-lactam resistance) (Truong-Boldoc and
Hooper 2007).

The third system identified as a regulator of Nor transporter
expression in S. aureus is the ArlSR two-component signal
transduction system (Fournier et al. 2000; Fournier and
Hooper 2000) (Fig. 2; Table 1). Expression from the norA
promoter was dependent on the ArlS histidine protein kinase.
An arlS mutant which lacks ArlS exhibited increased norA
expression (Fournier et al. 2000). Multiple putative binding
sites upstream of the transcriptional start point were identified
for an 18-kDa DNA-binding protein which could have been
ArlR itself or another unidentified protein under ArlSR regu-
lation; the identity of the 18-kDa protein was later shown to be
MgrA (Truong-Bolduc et al. 2003; Kaatz et al. 2005b).
Finally, the arlS mutant displayed altered growth-phase regu-
lation of NorA confirming the role of the two-component
system in norA expression (Fournier et al. 2000). The arlS
phenotype also displayed changes in the ability to form
biofilms, perform autolysis functions and produce peptidogly-
can hydrolase, indicating the importance of the two-
component system in multiple cellular functions in addition
to quinolone export (Fournier and Hooper 2000).

Amongst the remaining quinolone efflux pumps listed in
Table 1, the only other regulator identified so far in S. aureus is
MepR (Fig. 2) which is a MarR-like transcriptional repressor
of the MepA MATE-type multiple drug resistance pump
(Kaatz et al. 2005a; Kaatz et al. 2006). MepR bound upstream
of both mepA and its own gene mepR demonstrating
autoregulatory activity. Repression of mepA expression by
MepR is relieved in the presence of MepA substrates such
as benzylalkonium chloride, dequalinium, ethidium bromide

Fig. 1 Schematic representation of moxifloxacin binding to
topoisomerase IV via a water-metal ion bridge, adapted and redrawn
from Aldred et al. (2014) for ciprofloxacin. For clarity, the DNA has been
omitted. Moxifloxacin is shown in black; the Mg2+ ion that is chelated by
the C3-C4 ketoacid of the antibiotic is shown in pink; the four water
molecules coordinated by the Mg2+ ion are shown in blue. The side
chains of the conserved acidic Glu88 (Asp in Escherichia coli and
Streptococcus pneumoniae) and Ser84 residues of Acinetobacter
baumanii topoisomerase IV are shown in orange, together with their
hydrogen bonding to the water molecules

Biophys Rev (2018) 10:347–362 351



and pentamidine. Presumably such relief might also possibly
occur using fluoroquinolone substrates, since MepA is an ef-
flux pump with specificity for some fluoroquinolones as well
as a wide range of other drugs (Kaatz et al. 2005a; Fabrega
et al. 2009; Fernandez and Hancock 2012; Correira et al.
2017).

If, then, the term ‘AMR nanomachine’ can indeed be suc-
cessfully applied to the cascade of bacterial signal sensing and
transduction events required to detect fluoroquinolones and to
the subsequent coupling of these detection systems to resis-
tance machinery such as efflux pumps and other protection
systems in bacterial cells, then one of the next questions is
whether the same term can also be legitimately and

appropriately applied to other resistance mechanisms mounted
against other families of antibacterial agents. The following
section addresses this question by considering the different
detection and resistance mechanisms that have evolved for
survival in the presence of another important and distinct fam-
ily of antibacterial agents, the glycopeptides.

Glycopeptides

Glycopeptide antibiotics have been identified as one of the
highest priority classes of antimicrobial agents for risk man-
agement in clinical and agricultural settings (WHO 2011).

Fig. 2 The fluoroquinolone
resistance nanomachine. For full
details, see text
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Glycopeptide antibiotics are relatively large in size—for
example, vancomycin has a molar mass of 1449 Da
(Phillips-Jones et al. 2017a)—and therefore, unlike the
smaller fluoroquinolones, glycopeptide drugs do not
penetrate the membranes of bacterial cells and instead exert
their inhibitory effects through interference with crucial
bacterial processes outside the cell (Courvalin 2006). Yet
bacterial cells must be able to mount resistance to
glycopeptides to secure their survival (see below). But
unlike the nanomachinery of fluoroquinolone resistance, an
arsenal of efflux pumps will of course be redundant against
antibiotics that do not enter bacterial cells. Glycopeptide
resistance must be exerted by a quite different means. The
question is whether the mechanisms for glycopeptide
resistance and resistance regulation described below may
also be considered parts of a nanomachine.

The sensitive cellular targets

Vancomycin and teicoplanin are two important members of
the glycopeptide class which are used to combat serious in-
fections caused by Gram-positive bacteria such as blood-
stream infections, infections of the skin, bones and joints,
endocarditis and meningitis (Rayner and Munckhof 2005;
Kristich et al. 2014; Alvarez et al. 2016). Use of vancomycin
in the clinic increased markedly in the 1970s to combat
methicillin-resistant Staphylococcus aureus. Indeed, vanco-
mycin has become a drug of last resort to combat infections
that are otherwise resistant to other front-line antibiotics. The
main reasons why vancomycin is used so reservedly are as
follows: (1) the toxicity of the antibiotic and (2) the poor
absorption of the drug upon oral administration (Moellering
2006; Levine 2006). Vancomycin administration is carefully
monitored to ensure that the concentrations are sufficiently
high to be effective against Gram-positive bacterial pathogens
(a serum peak level of 25–40 μg/ml and a trough serum con-
centration of 15–20 μg/ml, the former being equivalent to
eight times the minimum inhibitory concentration), but suffi-
ciently low as to minimise the toxic effects of the antibiotic on
the patient (Tobin et al. 2002; Levine 2006; Jones 2006;
Rybak et al. 2009; van Hal et al. 2013; MacDougall et al.
2016). Vancomycin is typically administered intravenously
to adult patients at a starting concentration of 2.5–5.0 mg/ml
(Rybak 2006). Recent biophysical investigations of vancomy-
cin in physiologically relevant buffer conditions at both
starting and therapeutic concentrations have suggested that
the drug adopts two different conformations at these differing
concentrations. Using sedimentation equilibrium techniques
in the analytical ultracentrifuge, the SEDFIT-MSTAR algo-
rithm and other analyses, it was shown that all the glycopep-
tide is dimerized at the point of clinical infusion (5 mg/ml) but
at the trough serum concentration of 19 μg/ml the drug is
mainly monomeric (< 20% dimerized) (Phillips-Jones et al.

2017a). Experiments employing a range of different loading
concentrations were consistent with a monomer-dimer equi-
librium that is completely reversible and dissociation con-
stants indicative of relatively weak association between mono-
mers (Phillips-Jones et al. 2017a). This is of significance be-
cause there is still relatively little understanding about the
conformationally relevant form of the antibiotic during its
inhibitory activity (see below).

Glycopeptides such as vancomycin inhibit bacterial cell
wall biosynthesis by binding to the C-terminal D-Ala-D-Ala
residues of the muramyl pentapeptide of peptidoglycan pre-
cursor Lipid II (Fig. 3). Vancomycin binding results in inhibi-
tion of transpeptidase and transglycosylase activities during
peptidoglycan biosynthesis, affecting crosslinking, formation
of glycan chains and incorporation of peptidoglycan precur-
sors, resulting in osmotic shock and cell lysis (Nieto and
Perkins 1971; Reynolds 1989; Kahne et al. 2005; Jia et al.
2013). It has been established that for many glycopeptides,
ligand binding is accompanied by the presence of asymmetric,
back-to-back homodimers of the antibiotic formed through
sugar-sugar recognition (see Phillips-Jones et al. 2017a for
references therein). Experimental evidence shows that dimer-
ization and binding of D-Ala-D-Ala in vitro are generally
cooperative phenomena leading to the conclusion that dimer-
ization is important for enhancing antibiotic activity (Mackay
et al. 1994). Face-to-face dimers have also been reported
(Mackay et al. 1994; Loll et al. 1998), as have higher order
dimer-to-dimer, trimers of dimer and hexamer conformations
for glycopeptide antibiotics (Loll et al. 2009; Nitanai et al.
2009), though the significance of these higher order confor-
mations regarding inhibitory action and affinity remains to be
established. There are examples of glycopeptides that do not
dimerize at all; for example, lipophilic monomeric teicoplanin
inserts into the membrane through the lipid moiety and it is
thought to do so in such a way as to be positioned optimally
for inhibitory activity (Beauregard et al. 1995; Sharman et al.
1997).

Resistance determinants

High-level resistance to glycopeptide antibiotics was first re-
ported amongst the enterococci in 1988 (Leclercq et al. 1988;
Uttley et al. 1988) and subsequently spread to Staphylococcus
aureus including MRSA strains (Sievert et al. 2002).
Glycopeptide resistant strains of enterococci and staphylococ-
ci have spread across the world at a rapid rate (e.g. Lu et al.
2001; Iverson et al. 2002; Eisner et al. 2005; and reviewed in
Schouten et al. 2000; Werner et al. 2008; Périchon and
Courvalin 2009).

Resistance to vancomycin occurs by two main mecha-
nisms: (1) target modification—production of low-affinity
precursors for peptidoglycan biosynthesis so that instead of
D-Ala-D-Ala being incorporated into peptidoglycan
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monomers, other depsipeptides (D-Ala-D-lactate or D-Ala-D-
serine) are synthesised and incorporated instead (Fig. 3).
Vancomycin exhibits an approximately 1000-fold reduced
binding affinity for D-Ala-D-Lac because of the reduced num-
ber of hydrogen bonding sites available (one crucial hydrogen
bond is lost (bond 2 in Fig. 3)); and (2) removal of the high
affinity precursors usually synthesised in the cell so there are
no vancomycin-binding targets available (reviewed in
Reynolds and Courvalin 2005; Courvalin 2006; Wright
2011). Amongst the enterococci, there are six types of resis-
tances found (VanA-, VanB-, VanC-, VanD-, VanE- and
VanG-type) which execute the above two mechanisms and
these have been comprehensively described in Courvalin
(2006) and Depa rd i eu e t a l . ( 2007 ) . Amongs t
Staphylococcus aureus isolates, only one of these types
(VanA-type) has so far emerged and is thought to have been
transferred from enterococci (Sievert et al. 2002; Sievert et al.
2008; Périchon and Courvalin 2009; McCallum et al. 2010).
Broadly, the glycopeptide resistance nanomachine comprises

(1) enzymes to synthesise the D-Ala-D-Lac or D-Ala-D-Ser
dep s i p ep t i d e s , ( 2 ) enzymes fo r hyd ro l y s i s o f
antibiotic-‘susceptible’ peptidoglycan precursors and (3) a
regulatory system to control production of these resistance
enzymes. In the following sections, discussion is mainly con-
fined to the VanA-type resistance because it is the most com-
mon type amongst clinical enterococci and the first (and, to
date, only) to have disseminated to staphylococci (Table 1).
The reader is referred to the review by Depardieu et al. (2007)
for a detailed comparison of the genes/elements involved in
each of the six vancomycin resistance types. In the VanA-type
resistance, there are nine genes involved in production of
transposition ability (orf1 and orf2) (associated with replica-
tive transposition when in the Tn1546 element), regulation of
resistance gene expression (the vanS and vanR genes encoding
the VanSR two-component regulatory system, described be-
low), vanH and vanA encoding enzymes required for synthe-
sis of D-Ala-D-Lac (dehydrogenase and ligase, respectively),
hydrolysis of peptidoglycan precursors by a D,D-dipeptidase

Fig. 3 Schematic representation of vancomycin (top left) adapted and
redrawn from Phillips-Jones et al. (2017a) showing the vancosamine -
glucose disaccharide (purple) attached to a heptapeptide (green, N-
methyl-D-leucine (residue 1); gold, m-chloro-β-hydroxy-D-tyrosine
(residue 2); red, asparagine (residue 3); blue, D-phenyl glycine (residue
4); green-grey, p-hydroxy-D-phenylglycine (residue 5); pink, m-chloro-
β-hydroxy-D-tyrosine (residue 6) and dark orange, m,m-dihydroxy-L-
phenylglycine (residue 7)). Vancomycin binding to its sensitive target
sequence (D-Ala-D-Ala) in bacterial peptidoglycan via five hydrogen

bonds is shown by the dashed black lines. Hydrogen bond 2 is formed
from residue 4 of vancomycin and the N-H group in D-Ala-D-Ala shown
in red (middle structure). This hydrogen bond is not formed with the
peptidoglycan of vancomycin-resistant bacteria that contain D-Ala-D-
Lactate instead of D-Ala-D-Ala (bottom right) resulting in a total of
only four hydrogen bonds for vancomycin binding which results in a
1000-fold reduced affinity of the glycopeptide for the peptidoglycan—
essentially, resistance to the antibiotic
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(encoded by vanX) and D,D-carboxypeptidase (vanY) and a
ninth gene (vanZ) of unknown function (Fig. 4a; Courvalin
2006; Depardieu et al. 2007). This cluster of genes was orig-
inally associated with the plasmid-borne Tn1546 transposable
element but are also plasmid- and chromosome-borne follow-
ing horizontal gene transfer to the enterococci (Courvalin
2004; Palmer et al. 2010) and S. aureus (Haaber et al. 2017).

S. aureus possesses another mechanism of glycopeptide resis-
tance known as ‘glycopeptide (or vancomycin) intermediate
S. aureus’ (GISA or VISA). This type of resistance was first
reported in 1997 (Hiramatsu et al. 1997) and strains possessing
it characteristically exhibit reduced susceptibility to glycopeptides
(Hiramatsu 2001). GISA strains possess thickened peptidoglycan
in their cell walls or poorly cross-linked peptidoglycan. Such
conditions result in restriction of glycopeptides to the outermost

layers of peptidoglycan where they quickly become sequestered
by the increased numbers of free D-Ala-D-Ala target binding
sites, thereby never reaching the inner layers of peptidoglycan
and the crucial sites of active peptidoglycan biosynthesis (Cui
et al. 2006) or at least diffuse more slowly to them (Pereira
et al. 2007). Alterations and mutations in several genetic loci have
been identified as responsible (Table 1) (Howden et al. 2010;
Hiramatsu et al. 2014; Hu et al. 2016).

Additional resistance to teicoplanin in S. aureus has also
been characterised (Chang et al. 2013, 2014 and refs therein).
The transcriptional regulator known as teicoplanin-associated
locus regulator (TcaR) belongs to the MarR family of multi-
drug efflux regulators (Fig. 2) (Grove 2013), involved in
teicoplanin and methicillin resistance in staphylococci
(Brandenberger et al. 2000).

Fig. 4 The VanA-type
glycopeptide resistance
nanomachine. a The VanS-VanR
two-component signal
transduction system and
organisation of the vanA operon.
Open arrows represent coding
sequences and indicate the
direction of transcription. The
regulatory and resistance genes
are cotranscribed from promoters
PR and PH, respectively; b
synthesis of peptidoglycan
precursors in a VanA-type
resistant strain. Ddl, D-Ala:D-Ala
ligase; penta, L-Ala-γ-D-Glu-L-
Lys-D-Ala-D-Ala; Pentadepsi, L-
Ala-γ-D-Glu-L-Lys-D-Ala-D-
Lac; Tetra, L-Ala-γ-D-Glu-L-
Lys-D-Ala; Tri, L-Ala-γ-D-Glu-
L-Lys
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Resistance regulation determinants

Here we consider the A-type resistance to vancomycin only, as it
is common to both enterococci and staphylococci. For regulators
of other glycopeptide resistances, the reader is referred to Table 1
and Depardieu et al. (2007) and Hong et al. (2008).

The A-type vanHAXYZ resistance genes are regulated by the
VanSR two-component signal transduction system (Arthur et al.
1992). VanS is the membrane-bound sensor kinase component
involved in signal sensing and VanR is the partner response reg-
ulator component responsible for activating resistance gene ex-
pression at the PH promoter (Fig. 4b) (Arthur et al. 1992; Wright
et al. 1993; Holman et al. 1994; Courvalin 2006). Expression of
equivalent genes of other resistance types (Types B-E and G) is
also under VanSR control (Depardieu et al. 2007). Expression of
the vanSR genes themselves is initiated from the distinct PR pro-
moter which is under autoregulatory control (Arthur et al. 1997).
In the presence of glycopeptides, VanR is phosphorylated by
VanS~P. VanR~P binds to the PR and PH promoters, promoting
transcription of the vanHAXYZ genes and its own synthesis
(Arthur et al. 1997). However, in the absence of glycopeptides
(or VanS), VanR~P is still generated due to the activities of low
molecular weight phosphodonors such as acetyl phosphate and/or
cross-talking histidine kinases resulting in constitutive low-level

activation of the PR and PH promoters (Fig. 4b). In the absence of
glycopeptides, it is suggested that VanS serves as a phosphatase,
removing phosphate from VanR through its phosphatase activity
and reducing resistance gene expression in the absence of inducer.
Conversely, when inducer is present, VanS transitions from phos-
phatase to kinase mode, resulting in increased VanR phosphory-
lation and elevated levels of VanR~P for induction of the
vanHAXYZ resistance genes (Arthur et al. 1997, 1999).

The precise nature of the activating ligand for VanS has
been the subject of intense interest for many years (see the
comprehensive review by Hong et al. 2008). Using a variety
of approaches such as reporter genes, VanX activity assays,
measurements of induction of Lac-containing precursors or
through detection of induced vancomycin resistance of
pretreated cultures, all the evidence pointed towards vanco-
mycin or teicoplanin as inducers of VanA-type resistance
(Ulijasz et al. 1996; Arthur et al. 1999; Lai and Kirsch 1996;
Mani et al. 1998; Grissom-Arnold et al. 1997; Baptista et al.
1996; Allen and Hobbs 1995; Handwerger and Kolokathis
1990; reviewed in Hong et al. 2008). However, because the
structurally unrelated antibiotic moenomycin also induces
VanA resistance, it was thought that the molecular effector
for VanS must be a cell wall intermediate such as Lipid II
which would accumulate in cells exposed to both

Fig. 5 a Sedimentation
coefficient concentration
distribution, c(s) vs s20,b, (where
s20,b is the sedimentation
coefficient at 20.0 oC in buffer
b) profile for intact VanS
(5.4 μM) (black line) in HGN
buffer (containing 20% glycerol)
pH ~ 7.9, I = 0.1, at 20.0 °C. The
rotor speed was 40,000 rpm. The
profile for 12.8 μM vancomycin
is shown (grey line). VanS and
vancomycin is shown by the red
line under the same conditions. b
(leftmost): VanS (9 μM)
difference CD spectrum (solid
black line); VanS in the presence
of 5-fold vancomycin (45 μM)
difference spectrum (dashed
black line); (rightmost):
vancomycin (45 μM) difference
spectrum. Reactions contained
10 mM HEPES, 20% (v/v)
glycerol, 100 mM NaCl and
0.05% n-dodecyl-β-D-maltoside,
pH 7.9. Unsmoothed data shown.
Both panels reproduced with
permission from Phillips-Jones
et al. (2017b)
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moenomycin and vancomycin cell wall-active antibiotics (Lai
and Kirsch 1996; Mani et al. 1998; Grissom-Arnold et al.
1997; Baptista et al. 1996; Allen and Hobbs 1995;
Handwerger and Kolokathis 1990).

Two biophysical approaches—hydrodynamic methods in
an analytical ultracentrifuge and circular dichroism spectros-
copy—recently established that the purified intact VanS mem-
brane protein from E. faecium B4147 interacts directly with
vancomycin and teicoplanin (Phillips-Jones et al. 2017a, b)
(Fig. 5). Hydrodynamic experiments in buffers containing
20% glycerol (to maintain VanS solubility) revealed that van-
comycin elicits an increase in VanS sedimentation coefficient,
s, of over 33% with the appearance of additional higher s
components suggesting higher oligomeric forms of the recep-
tor in the presence of the antibiotic (Fig. 5a) (Phillips-Jones
et al. 2017b). These results demonstrate that VanS interacts
with vancomycin. Circular dichroism measurements con-
firmed this finding; difference spectra obtained in the near-
UVregion (which interrogates changes in the tertiary structural
environments of aromatic residues) for VanS alone and for
VanS + 5-fold vancomycin were clearly different especially
in the 280–300-nm region contributed by tyrosine and trypto-
phan residues (Fig. 5b) (Phillips-Jones et al. 2017b). CD-based
titration experiments in the presence of detergent using in-
creasing concentrations of vancomycin and teicoplanin re-
vealed Kd values in the regions of 70 μM, and 30 and
170 μM, respectively (Hughes et al. 2017). Such Kd values
are indicative of relatively weak binding. Weak binding may
be a feasible explanation for signal transduction processes that
are rapid and reversible, though it has not yet been demonstrat-
ed that the weak binding by vancomycin demonstrated in
Phillips-Jones et al. (2017b) is accompanied by increased
levels of VanR phosphorylation by VanS. Alternatively, the
weak binding measured in these studies may reflect the ab-
sence of an essential binding accessory factor in this in vitro
system, or it could reflect the absence of the natural membrane
environment required for full VanS function. The latter possi-
bility seems reasonable as VanS remained monomeric
throughout all experimental conditions tested, in the presence
or absence of detergent, including those associated with ligand
binding which are known to induce dimerization in other sen-
sor kinases (Phillips-Jones et al. 2017a, b). But the demonstra-
tion in these studies of vancomycin binding to VanS, albeit
weakly, provides the first evidence in the clinical enterococci
for the involvement of vancomycin as a molecular effector of
VanA-type VanS activation. Indeed, Hughes et al. (2017) test-
ed components of Lipid II to determine whether they too dem-
onstrated interactions with VanS and no spectral changes were
found (Hughes et al. 2017). Studies of distantly related VanS
sensors in actinomycetes and VanB-type enterococci have pre-
viously provided evidence that the antibiotic itself or the anti-
biotic bound to the D-Ala-D-Ala substrate serves as the induc-
ing effectors (Koteva et al. 2010; Kwun et al. 2013).

Conclusion

Based on the above considerations of two quite different sets
of resistance mechanisms, namely fluoroquinolone and glyco-
peptide resistances, it is clear that the enterococci and staphy-
lococci expend significant levels of energy into ensuring sur-
vival in an antibiotic environment. There are 16 possible pro-
teins and/or distinct complexes that have arisen amongst dif-
ferent strains for resistance to fluoroquinolones—though not
all are likely to be present in any one individual cell (Table 1).
For VanA-type glycopeptide and teicoplanin resistances, there
are up to 19 proteins or complexes involved (Table 1).
Therefore, in the same way that the term ‘antibiotic resistome’
has been used for all antibiotic resistance genes and their pre-
cursors in bacteria (Wright 2007), the term ‘antimicrobial re-
sistance (AMR) nanomachines’ proposed here seems appro-
priate (for both fluoroquinolone and glycopeptide resistances)
to reflect the large number of gene products (encoded by
resistome genes) that are responsible for coordinating the
sensing of these antibiotics, for transferring signal informa-
tion, and for the expression of a wide variety of resistance
options such as efflux pumps and efflux regulatory machinery,
target protection and target modification.

Biophysical investigations have played an important role in
identifying how some of the AMR nanomachines work. In
this review we have focused on the use of hydrodynamic
studies and circular dichroism spectroscopy to investigate
the interactions between glycopeptides and the sensory recep-
tor VanS. Such techniques are likely to prove useful for inves-
tigating the interactions between other nanomachine compo-
nents in the future.
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