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Most of the studies of amyloid-beta (Aβ) have concentrated 
on the pathological effects of high levels of the protein in 
causing cognitive impairment and Alzheimer’s disease (1). 
There is some evidence that the Amyloid Precursor Protein 
(APP) has a physiological trophic function on the central 
nervous system (2). APP knockout mice are viable but have 
smaller brains and alterations in neurogenesis (3). APP plays 
a role in the nervous system, possibly through promotion of 
neurite outgrowth and also long-term potentiation (LTP) by 
modulation of calcium release (4, 5). 

In neuronal cultures, inhibition of Aβ production by 
blocking beta-secretase leads to neuronal cell death, and this 
can be prevented by providing physiological doses of Aβ (in 
the picomolar range) (6). Aβ at physiological levels reduces 
the excitatory activity of potassium channels and reduces 
neuronal apoptosis (7). Soucek et al (8) have suggested that 
a physiological effect of Aβ during aging is neuroprotection, 
secondary to its ability to induce hypoxia inducible factor-1α. 

Other suggested physiological effects of Aβ include 
antimicrobial activity, blocking leaks in the blood-brain-
barrier, enhancing recovery from posttraumatic brain injury and 
possibly suppressing cancer through inhibition of oncogenic 
viruses (9).

Aβ at picomolar concentrations enhances synaptic plasticity 
and learning and memory in animals by promoting LTP in 
the hippocampus. Its action involves increasing the release of 
the neurotransmitter acetylcholine and activation of nicotinic 
acetylcholine receptors (10-12). However, it is important to 
note that prolonged exposure is associated with tolerance 
leading to  reduced effects of Aβ.

Ours and many other studies on neurotransmitter roles in 
memory have demonstrated that while low (physiological) 
doses enhance memory, high (pathological) doses inhibit 
memory (13-15). This phenomenon is known as hormesis 
(16). Specifically, our group had shown that high doses of Aβ 
inhibited memory in mice (17), while low dose (picomolar) 
quantities of Aβ enhanced memory in mice (10). This has been 
consistent with results demonstrated by others (11, 12). We 
further showed that the converse was true, as both antibodies to 
Aβ and antisense to APP mRNA resulted in impaired memory 
in young mice (17).

The physiological role of Aβ explains why when drugs that 
reduce Aβ are used to treat Alzheimer’s disease they fail (18-
20). This is due to these drugs eventually reducing the Aβ to 
values where they interfere with the physiological activities of 
Aβ.

In an attempt to reduce Aβ to normal levels but be able 
to modulate the treatment to prevent lowering levels below 
normal, we have developed a series of antisense to APP (21, 
22). These antisenses reduce Aβ to the normal range, improve 
memory, decrease oxidative damage and improve blood-
brain-barrier function in mouse models of Alzheimer’s disease 
(23-27). These antisenses can be administered intranasally. 
We believe that antisenses such as these may well have a 
therapeutic role in the management of Alzheimer’s disease in 
humans.

In conclusion, this editorial argues that the physiological role 
of Aβ is to improve memory (Figure 1), and it is only when Aβ 
levels are markedly increased that they result in dementia as 
predicted by the “Amyloid Hypothesis.”

Figure 1
The physiological role of amyloid-beta peptide
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