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Abstract Modeling the economic consequences of disas-
ters has reached a high level of maturity and accuracy in 
recent years. Methods for providing reasonably accurate rapid 
estimates of economic losses, however, are still limited. This 
article presents the case for “reduced-form” models for rapid 
economic consequence estimation for disasters, and specifies 
and statistically estimates a regression equation for property 
damage from significant U.S. earthquakes. Explanatory vari-
ables are of two categories: (1) hazard-related variables per-
taining to earthquake characteristics; and (2) exposure-related 
variables pertaining to socioeconomic conditions. Compari-
sons to other available earthquake damage estimates indicate 
that our Reduced-Form Model yields reasonably good results, 
including several statistically significant variables that are 
consistent with a priori hypotheses. The article concludes with 
a discussion of how the research can be enhanced through 
the collection of data on additional variables, and of the poten-
tial for the extension of the reduced-form modeling approach 
to other hazard types.
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1 Introduction and Background

Various sophisticated economic consequence modeling meth-
ods exist, including econometric and computable general 
equilibrium. These models have proved versatile and accurate 
in their estimation of the total economic impacts of a range of 
hazards, including both terrorist attacks and natural disasters. 
Specific applications include the economic consequences 
of 9/11 (Rose and Blomberg 2010), a radiological dispersion 
device (“dirty bomb”) attack (Giesecke et al. 2012), an H1N1 
epidemic (Dixon et al. 2010), a major earthquake (Rose, Wei, 
and Wein 2011), and a severe winter storm and ensuing flood-
ing (Sue Wing, Rose, and Wein 2010). Unfortunately, these 
models are time-consuming to construct and operate, and 

cannot provide quick response results unless a model for a 
specific region or country is already in place. Moreover, their 
accuracy is highly dependent on that of direct loss estimates, 
for which there are few existing models beyond those applied 
to earthquakes.

The potential benefits of reduced-form rapid economic 
estimating models are primarily threefold (see also Chan et al. 
1998; Erdik et al. 2011; Jaiswal and Wald 2011):

(1) Transparency: a single equation (or small number of 
equations) for economic consequence estimation, using a 
minimum of predictor variables and without any complicated 
input parameters (such as building inventories or building 
damage summaries);

(2) Flexibility: applicable to many different hazard situa-
tions, which might occur in a variety of different locations, 
and can easily be updated to incorporate new data as they 
become available; and

(3) Rapidity: fast speed of generating results in the imme-
diate aftermath of a disaster event.

The combination of these factors makes the reduced-form 
approach accessible and attractive to a broad array of users. 
For example, reduced-form models might be used by emer-
gency managers and first responders, government officials, 
academics and researchers, insurance firms, or even members 
of the public. They can be applied ex ante (in risk assessments 
and disaster planning), as well as ex post (for assessing the 
scope of a disaster event soon after it occurs, and for related 
decision support regarding resource allocation and resource 
mobilization).

To help fill this niche, and also to address the various 
limitations of the other models identified below, this article 
presents the development of a reduced-form model for prop-
erty damage in significant U.S. earthquakes. This involves the 
use of an econometric approach that regresses the economic 
consequences (that is, property damage) on a set of explana-
tory variables, such as hazard size/intensity, population of the 
area affected, and health of the local economy.

The remainder of this article is organized as follows. 
Section 2 presents a brief summary of existing rapid loss 
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estimation models for earthquakes. Section 3 identifies 
possible predictor variables for a Reduced-Form Model of 
property damage from U.S. earthquakes. In Section 4, we dis-
cuss the basic data and data refinements used in the analysis. 
We specify our estimating equation in Section 5, and provide 
summary statistics for the data used to estimate it in Section 
6. We present our results in Section 7, and Section 8 presents 
a comparison of the results from our Reduced-Form Model 
with various other damage estimates from the literature for a 
series of out-of-sample test cases. In Section 9, we discuss 
broadening the loss estimation methodology to direct and 
indirect business interruption.

2 Literature Review of Earthquake Rapid 
Damage Estimating Tools

In the literature, various methodologies exist for providing 
quick earthquake loss estimates (see also the review by Erdik 
et al. 2011). Loayza et al. (2012) present regression equations 
modeling the effects of various hazard events on different 
types of economic growth (for example, GDP growth), 
including earthquakes, but do not model the damages from 
the event, per se. Chan et al. (1998) present regression equa-
tions modeling the (log of the) losses for 29 global earth-
quakes (1981–1995) at various Modified Mercalli Intensity 
(MMI) levels of shaking, as a function of the (log of the) GDP 
of the population exposed at each of these intensity levels. 
However, they do not examine other possible predictor 
variables, and U.S. earthquakes constitute a minority of their 
sample (7/29=24%). Schumacher and Strobl (2011) use 
regression analysis to model earthquake losses using the GDP 
per capita, GDP per capita squared, area (spatial), population 
density of the area affected, and the energy released by the 
earthquake (measured in Joules), but specify these exposure-
related predictor variables using only data at the country 
level.

The most comprehensive rapid estimation model to date is 
the Federal Emergency Management Agency’s “Hazards 
United States,” or HAZUS (FEMA 2012). It consists of a 
complex set of damage functions and a voluminous set of data 
on the built environment, with an option of incorporating the 
user’s own primary data. However, HAZUS is not accessible 
to all who would seek to obtain rapid loss estimates, given 
the high set-up costs and steep learning curve for using this 
software correctly. HAZUS was originally developed for 
earthquakes in the mid-1990s, but has been expanded to 
cover floods and hurricane damages in recent years, and the 
development of a tsunami module is currently under way. 
Unlike most of the other rapid estimation tools, HAZUS goes 
beyond property damage estimation to include direct and 
even indirect business interruption (BI). Direct BI estimates 
are derived from property damage by a set of multiplicative 
factors, but the calculations do take into account various types 
of resilience (or tactics that mute BI losses), such as business 
relocation and recapturing lost production at a later date. 

Indirect BI is calculated with the use of a flexible input-output 
modeling approach, which is difficult to use properly for 
those not familiar with this economic tool. It also includes 
resilience tactics such as inventories and increased reliance 
on imports.

The Economic Commission for Latin America and the 
Caribbean (ECLAC 2003) provides an earthquake loss 
assessment methodology, but like HAZUS, requires informa-
tion related to the numbers and types of damaged structures 
as an input. Huyck et al. (2006) use the U. S. Geological 
Survey’s ShakeMaps (USGS 2012b) and simplified HAZUS 
damage functions (converted to SQL queries to reduce 
runtime) to rapidly estimate damages from earthquakes 
occurring in Southern California (including the effects on 
transportation flows). Their model—the Internet-based 
Loss Estimation Tool (INLET)—is available as a web-based 
tool. Unfortunately, like HAZUS, the damage functions are 
internal to the software, and one of their model inputs is an 
assessment of the building inventory affected by the event.

One of the more elaborate rapid estimating tools for earth-
quakes is the USGS (2012a) Prompt Assessment of Global 
Earthquakes for Response (PAGER) system. PAGER also 
provides these estimates automatically, using data from the 
USGS (2012b) ShakeMaps, which are generated in the 
minutes after an earthquake occurs. PAGER uses a loss ratio 
to model damages—defined as the economic damage divided 
by the economic exposure of the area affected, where the 
latter is GDP of the area affected with a subsequent correction 
to account for the difference between wealth (stock) and 
GDP (flow). This loss ratio is assumed to be log-normally 
distributed—with parameters that are a function of the MMI 
shaking level / damage outcome, and which are chosen based 
on empirical damage data.

When applied to U.S. earthquakes, however, PAGER is 
limited by its use of one set of coefficients for California 
earthquakes, and another set of coefficients for earthquakes 
occurring in all of the 49 other states (and the use of a single 
GDP value for the entire United States). As such, PAGER 
does not capture the subnational economic delineation of 
all U.S. earthquakes. By contrast, our Reduced-Form Model 
calculates the exposure data at the census tract level. PAGER 
also requires as an input the population exposed to each MMI 
level of shaking (for each of the MMI levels V and above, 
with all of the levels IX and above collapsed into level IX), 
whereas our model uses only the total population exposed to 
MMI level VI or above. Furthermore, we offer statistical 
goodness-of-fit measures to help gauge the accuracy/reliabil-
ity of our estimates. Our Reduced-Form Model is also the 
product of “examining” (through the use of stepwise regres-
sion analysis) myriad different model forms, rather than 
assuming, as PAGER does, that losses are related only to 
GDP (corrected to account for wealth effects) and population. 

Overall, we do not view our model as a competitor to 
PAGER, but rather as complementary to it. Both methods can 
be accessed rapidly to obtain either a ready estimate (in the 
case of PAGER), or to quickly calculate one (in the case of 
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our Reduced-Form Model). The process of actually calculat-
ing the damage and the understanding of the underlying 
explanatory factors associated with our approach offer 
another valuable perspective on the important matter of earth-
quake loss estimation. Finally, we intend our model as a tem-
plate for application to other hazard types, and to countries 
other than the United States, and we believe it would be 
easier for others to emulate for these purposes than PAGER.

Like PAGER, the OpenQuake method of the GEM Foun-
dation (GEM 2011) suggests the use of a loss ratio to model 
earthquake damages (or the damage scaled by the value of the 
exposed assets). This loss ratio is assumed to be log-normally 
distributed (although other distributions—such as the beta 
distribution—are suggested as also potentially useful). The 
coefficients of this distribution (which might be determined 
from empirical data, analytical models, and/or expert judg-
ment) are a function of the MMI shaking level. The current 
version of the OpenQuake model, however, does not include 
this loss estimation component, which is expected to be 
several years away from full development.

3 Basic Modeling Approach

Property damage from earthquakes is a function of hazard-
related variables pertaining to earthquake characteristics, 
and exposure-related variables pertaining to socioeconomic 
considerations (see also the references in Section 2). There 
are a large number of potentially influential variables, so we 
took a pragmatic approach of identifying major ones that 
were available in existing databases, or that could be obtained 
in other statistical compilations (and for which values would 
be known soon after a disaster event occurs).

3.1 Exposure-Related Predictors

The various exposure-related predictor variables that we 
examine are:

POP – population of the area affected,i in the year in 
which the earthquake occurred, using data from the 
U.S. Census Bureau. Superficially, population would 
seem to be irrelevant for our purposes, as we are 
modeling damage to property, and not damage to peo-
ple. It is reasonable to assume, however, that popula-
tion correlates with the value of property that is at risk 
of damage (that is, exposure). 

 INCOME – total income (annual) of the area affected, 
in the year in which the event occurred. This is speci-
fied using data from the U.S. Bureau of Economic 
Analysis (BEA 2012), and adjusted to 2011$ using 
the Consumer Price Index (CPI). While population 
contains no direct monetary information, income does. 
At the same time, income is an imperfect measure of 
exposure to property damage. For example, an area 
with a large percentage of affluent retirees may have a 
relatively low income, yet also contain much valuable 
property at risk of being damaged by earthquakes.

 AREA – area of the region affected, obtained from the 
U.S. Census Bureau. Both population and income 
(above) assess exposure, but these metrics are limited 
by their lack of spatial (or density) information. 
For example, a given population may be spread 
out over a large area, thereby presumably reducing the 
(aggregate) exposure.

 PRE-1985 – binary variable for events occurring 
before the year 1985. The purpose of this variable is to 
control for temporal changes in exposure, most notably 
those associated with changes in building codes and 
building materials. A dividing year of 1985 was chosen 
because it corresponds to an approximation of building 
code revisions; coincidentally, it divides our dataset 
into roughly two equal groups. There is, however, 
potentially enormous temporal variation in the expo-
sure, and a binary indicator is only a crude assessment 
of this.

 CA – binary variable for events occurring in the state 
of California. The purpose of this variable is twofold: 
(1) more of the events in our dataset occurred in 
California than in any other state (see Section 4.1); and 
(2) California’s seismic-related building code provi-
sions are considerably more rigorous than those of 
other states. The variable implicitly assumes, however, 
that all events in California can be treated as equiva-
lent. Yet because California is such a large and 
geologically diverse state, sizeable intrastate variation 
in exposure may exist.

Using the various predictor variables above, we define 
three additional exposure-related interaction terms:

 PCI – per capita income, or total income (INCOME) 
divided by population (POP). While income and popu-
lation both independently reflect economic exposure, 
the ratio of the two quantities might capture any 
combined effects.

 POP DEN – population density, or total population 
(POP) divided by land area (AREA). This variable 
accounts for the fact that the population affected by the 
event is not clustered all at a single point, but rather 
spread over a region.

 INC DEN – ratio of total income (INCOME) to land 
area (AREA), or the income “density” of the area 
affected. Similar to population density (above), this 
variable considers the fact that the income is distribute d 
spatially.

3.2 Hazard-Related Predictors

The various hazard-related predictors examined are:

 MAG – earthquake magnitude, or the energy released 
by the fault rupture, obtained from the National Geo-
physical Data Center (NGDC 2011). The earthquake’s 
magnitude, while informative, also has limitations. For 
example, the magnitude number provides only limited 
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information about the duration of the shaking. More-
over, the translation from the magnitude to the 
forces exerted on (that is, damage to) structures at the 
surface is nontrivial, and depends on numerous factors 
(including soil type). 

 DEPTH – distance (into the ground) of the earthquake 
hypocenter (that is, the location where the fault 
rupture begins), also obtained from NGDC. This is the 
separation between the earthquake hypocenter and its 
counterpart at the surface, the epicenter. The depth 
conceivably influences property damages, in that 
deeper earthquakes may be less capable of inflicting 
damage to structures (which are located at the surface). 
At the same time, the straight line depth into the ground 
may be of limited explanatory power, as the damages 
are also greatly influenced by the particular character-
istics of the medium (that is, soil) through which the 
seismic waves travel.

 DX – latitude and longitude data for the earthquake 
epicenter are available from NGDC, and the latitude 
and longitude of the population centroids for all U.S. 
census tracts were obtained from the U.S. Census 
Bureau (2012a). The epicentral distance between these 
two points (DX) was then computed using a spread-
sheet formula.ii The greater the value of DX, presum-
ably the less the exposure. The centroid of population, 
however, is a summary statistic (that is, an average), 
and much information is necessarily lost in the process 
of that summation. For example, few people (property) 
may be present in the vicinity of the population 
centroid.

And using the various hazard-related predictors above, we 
define two hazard-related interaction terms:

 X – hypocentral distance, or the distance from the 
hypocenter to the population centroid of the affected 
area, as determined using the Pythagorean Theorem. 
The farther the population centroid from the hypocen-
ter, presumably the less the potential for damage. How-
ever, this variable is limited by its dependence on the 
quantities DEPTH and DX, each of which singularly 
has limitations (see above).

 (MAG/X) – magnitude scaled (divided) by the hypo-
center-population centroid separation (X). The quantity 
X is placed in the denominator on the basis that the 
property damage is a decreasing function of X. In 
essence, this variable assumes that the earthquake 
(which is of intensity MAG) “acts” through a distance 
X to impact the (population center of the) area affected. 
While the MAG and X variables might each individu-
ally relate to exposure, their combination (interaction) 
may allow for an even more complete assessment.iii

All of the variables used in the analysis are summarized in 
Table 1.

4 Regression Model Data 

We begin this estimation using data on property damage from 
earthquakes from the Spatial Hazard Events and Losses 
Database for the United States (SHELDUS). SHELDUS was 
developed by Susan Cutter and Dennis Mileti—two leading 

Table 1. Summary of all variables used in the analysis

Variable Description Units Data Source(s)

Type Notation

Dependent PDlow Lower bound of property damage 2011$ various (see Section 4.2)
PDaverage Average property damage 2011$ various
PDhigh Upper bound of property damage 2011$ various

Exposure-Related 
Predictors

POP Population affected persons BEA (2012)
INCOME Total income of population affected 2011$ BEA (2012)
AREA Land area affected km2 U.S. Census Bureau (2012b)
PCI Ratio of total income to population; per capita income 2011$ calculated†

POP DEN Ratio of population to land area; spatial density of population persons/km2 calculated†

INC DEN Ratio of total income to land area; spatial “density” of income 2011$/km2 calculated†

CA Indicates if event occurred in the state of California binary SHELDUS (2011)
PRE-1985 Indicates if event occurred prior to the year 1985 binary SHELDUS (2011)

Hazard-Related 
Predictors

MAG Earthquake magnitude Richter NGDC (2011)
DEPTH Separation (into ground) between epicenter to hypocenter km NGDC (2011)
DX Separation (along ground) between epicenter and population 

centroid of area affected
km NGDC (2011)

U.S. Census Bureau (2012a)
X Separation (through ground) between hypocenter and population 

centroid of area affected
km calculated†

(MAG/X) Earthquake magnitude scaled by the separation between the 
hypocenter and the population centroid of area affected

Richter/km calculated†

Note: †Calculated using other quantities in the table.
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hazard researchers—and although SHELDUS is limited to 
natural disasters, it is very extensive, covering all 50 U.S. 
states and going back decades. Our analysis uses data from 
SHELDUS version 9.0 (SHELDUS 2011). We then identified 
some limitations of the SHELDUS database and refined it for 
use in our statistical analysis, and the preliminary results for 
this individual hazard area are promising.

From the SHELDUS database, various data are available, 
including the date of the event, counties affected, and prop-
erty damage that resulted (in both nominal and inflation-
adjusted terms).iv SHELDUS also lists other data related to 
each event (such as estimated crop damage), but these other 
data are not relevant to our purposes. Note also that the 
damages in SHELDUS are conservative, in that it reports the 
lowest estimated damage that is believed to be associated 
with the event (although as we discovered, the SHELDUS 
estimates are not always the lowest available estimate—see 
Section 6).

4.1 Earthquake Events in SHELDUS

We reviewed the SHELDUS database for all earthquake 
events:

which resulted in at least PD=$50,000 in total property 
damage (2011$, sum over all counties affected);

which were not the result of a volcanic eruption (as in 
the case of the Mt. St. Helens eruption in May 1980). 
However, we do include events where a volcanic 
eruption occurred as a result of an earthquake; and

for which hazard intensity data (for example, magni-
tude) and exposure data (for example, population of 
area affected) can be obtained (SHELDUS does not 
provide these data).

Determining which rows in SHELDUS were associated 
with each earthquake event was straightforward, as all of the 
events were “clustered” by date and by county. We did not 
encounter any cases in SHELDUS where earthquake property 
damages are listed for two or more non-adjacent counties on 
the same date, nor did we encounter instances of the same 
earthquake event causing damage in more than one state.

The final dataset consisted of n=40 earthquake observa-
tions, which took place in eight states: California (26 events); 
Hawaii (five events); Alaska, Oregon, and Idaho (two events 
each); and Washington, Nevada, and Kentucky (one event 
each). As such, our dataset is somewhat California-centric 
(65% of the events). Our approach to damage estimation is 
highly empirical, and California experiences many earth-
quakes, resulting in a high proportion of the available damage 
data coming from California. In less than 20 percent of the 
earthquake events in our dataset (7/40) did the damages affect 
more than a single county. For virtually all of the earthquake 
events in SHELDUS, county-specific property damage data 
seem not to be available, in that it appears SHELDUS merely 
portioned the total damage equally among all of the counties 
affected—something which, for the purposes of our analysis, 
is seemingly unnecessary.

4.2 Earthquake Property Damage Estimates from the 
Literature

The property damage data in SHELDUS are limited by the 
facts that: (1) SHELDUS is county-oriented, yet the damages 
from earthquakes tend to be much more localized than the 
area of an entire U.S. county; and (2) SHELDUS reports only 
a point estimate of the damage. To address these limitations, 
we went directly to the primary sources on which SHELDUS 
relied, as well as other literature sources, and collected 
all available property damage estimates for each of the 40 
earthquake events in our sample.

We utilized all credible observations, and located a total of 
118 property damage estimates (average of 3.1 observations 
per event). More than half of these data (54%) came from one 
of two sources: the USGS publication Seismicity of the United 
States, 1568–1989 (Stover and Coffman 1993), and the 
Significant Earthquake Database of the NGDC (2011). 
Most of the remaining sources were either state and federal 
government agencies, or articles in academic or professional 
journals.

For each earthquake event, the minimum, average, and 
maximum estimated property damages are denoted PDlow, 
PDaverage, and PDhigh, respectively. In cases where only a single 
damage estimate was located, all three of the PD variables are 
equal. And if for a particular event two or more of the damage 
estimates were equivalent (but came from different sources), 
all of these were considered a single damage estimate for the 
computation of PDaverage.

In instances where a source specifies a range of damage 
estimates, we assumed that the distribution of damages was 
log-normal (see also Section 2). The parameters (that is, mean 
and standard deviation) of this log-normal distribution were 
then set such that the 2.5th and 97.5th percentiles of the 
distribution are equal to the lower and upper extremities of 
the damage range, respectively (in essence, assuming that 
the range represents the 95 percent confidence interval of 
damage). The average damage value (PDaverage) in this case is 
then the expected value of the log-normal distribution. In 
the event that the lower end of the damage range was zero, 
we recoded this as PD=$50,000 (see inclusion criteria in 
Section 4.1).

4.3 Specification of the Exposure-Related Predictor 
Variables

Rather than basing the estimation of the exposure-related 
variables (for example, population, income) on data from 
the county level (as might be suggested by the way that 
SHELDUS is structured), we collected these data at a finer 
geographic resolution, at the census tract (rather than the 
county) level. 

The area affected by each event was determined using 
the USGS (2012b) ShakeMaps, which contain color-coded 
spatial estimates of shaking intensity, according to the levels 
of the MMI. For each of the 40 earthquake events in our 
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dataset, polygons were drawn on the ShakeMaps: (1) so as to 
reasonably cover the area that experienced a shaking intensity 
of MMI VI (indicating “strong” shaking and “light” damage 
potential) or greater; and (2) so that the latitude and longitude 
coordinates of each edge of the polygon were at even 0.25 
degree increments. The coordinates of these polygons were 
then entered into the ArcGIS software program (ESRI 2010), 
which selected all census tracts any portion of which was 
contained in a given polygon. This collection of census tracts 
was then defined as the area affected by the earthquake. 

The exposure-related data in ArcGIS (for example, 
income, population) derive from the American Community 
Survey of the U.S. Census Bureau (2010). Accordingly, these 
values were adjusted to the year of the earthquake. This was 
done by considering the percentage change in each quantity 
at the county level between the year that the earthquake 
occurred and the year 2010, as reported by the BEA, and with 
consideration of the number of people affected in each county 
(sum over all census tracts). Similarly, the DX variable in this 
case was computed for each census tract affected, and then 
combined using a population-weighted average by census 
tract.

So while our model was formulated using exposure-
related variables specified at the census tract-level, exposure 
data need not be available at this high a level of spatial resolu-
tion to use it. This is because the Reduced-Form Model is 
intended to be a preliminary rapid estimating tool (see also 
the modest model fits in Section 7), and not to provide 
definitive loss estimates. Accordingly, data at the county 
level (or county-level data that has been apportioned down 
to the census tract level) should suffice in many application 
areas for the Reduced-Form Model.

5 Regression Model Form

It is customary to first consider an ordinary linear regression 
model of the form

 PD k k X k X k Xc c= + ◊ + ◊ + + ◊ +0 1 21 2 � e  Eq. 1

where the k-values are the regression coefficients, c denotes 
the number of predictor variables, and the error term, ε, is 
normally independent and identically distributed with zero 
mean and standard deviation σε.

In a regression model, while the predictor variables need 
not be normally distributed, ideally the dependent variable 
should be reasonably so, especially if the number of predictor 
variables is large (per the central limit theorem). In our case, 
however, the dependent variable (property damage) is highly 
skewed (note the large difference between the average and 
median values in Table 2), so we transform it by taking the 
natural log, which considerably improves the normality.

The use of a logged dependent variable, however, compli-
cates the interpretation of the regression coefficients (relative 
to the case of non-logged dependent variables). For this 
reason, we also transform all of the predictor quantities (both 
hazard- and exposure-related, but not the binary variables) by 
taking their natural logs, thereby yielding a regression model 
of the form

ln( ) ln( ) ln( ) ln( )PD k k X k X k Xc c= + ◊ + ◊ + + ◊ +0 1 21 2 � e
 Eq. 2

or more concisely as

 ln( ) ln( )PD k Xi i
i

c

= ◊È
Î
Í

˘
˚
˙ +

=
Â

0

e  Eq. 3

Table 2. Descriptive statistics related to property damage in significant U.S. earthquakes (n=40)

Variable Average Median Standard Deviation Minimum Maximum

Type Notation

Dependent-Related PDlow $890 M $18 M $3.5 B $50,000 $20 B
PDaverage $1.7 B $23 M $7.8 B $440,000 $50 B
PDhigh $2.5 B $25 M $11 B $1.7 M $67 B
No. PD Observations 3.1 3 1.3 1 8
SPREAD† 55% 30% 75% 0% 380%

Exposure-Related 
Predictor

POP 1.1 M 98,000 2.7 M 11,000 13 M
INCOME $27 B $1.7 B $62 B $79 M $310 B
AREA 21,000 km2 11,000 km2 35,000 km2 560 km2 200,000 km2

PCI $22,000 $22,000 $7200 $6900 $39,000
POP DEN 130/km2 11/km2 300/km2 0.055/km2 1600/km2

INC DEN $2.9 M/km2 $240,000/km2 $6.5 M/km2 $1300/km2 $35 M/km2

No. Census Tracts 310 30.5 710 3 3300

Hazard-Related 
Predictor

MAG 6.2 6.1 0.68 5.0 7.9
DEPTH 14 km 10 km 12 km 1.0 km 52 km
DX 30 km 25 km 25 km 3.8 km 130 km
X 35 km 27 km 25 km 11 km 135 km
(MAG/X) 0.25/km 0.24/km 0.12/km 0.045/km 0.54/km

Note: †Difference between PDlow and PDhigh, multiplied by 100%, and then divided by PDaverage.
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Figure 1. Plot of property damage (average value) from significant U.S. earthquakes over time (n=40), indicating no marked 
temporal variation

Accordingly, our model is fundamentally non-linear, in 
that logged variables are present on both sides of the equals 
sign. And with log-log regression models of the form of equa-
tions 2 and 3, the elasticities of property damage with respect 
to the variable Xi (when controlling for the effects of all of 
the other predictors) is simply the value of the regression 
coefficient associated with Xi, or ki.

6 Descriptive Statistics and Scatter Plots

Various descriptive statistics related to the quantities listed in 
Table 1 are given in Table 2. Interestingly, although SHEL-
DUS purportedly reports the lower-bound estimate of the 
damage, across the n=40 events, the lowest property damage 
estimate from the literature is, on average, 27 percent less 
than the value of damage reported in SHELDUS.

A scatter plot of the average property damage estimate 
(PDaverage) as a function of the chronological order of the earth-
quake is given in Figure 1 (note that the Y-axis is a log scale). 
Figure 1 indicates no marked temporal variation, although the 
variance may be increasing somewhat. 

A plot of PDaverage as a function of the earthquake magni-
tude is given in Figure 2, where the two single most damaging 
events (Northridge/1994 and Loma Prieta/1989—both in 
California) are labeled for reference. While indicating a 
slightly upward trend in the data, Figure 2 also shows the 
limitations of using the magnitude number to predict property 
damage (see Section 3.2). For example, there are cases of 
roughly the same level of property damage being sustained at 
both relatively low magnitude values, and also at relatively 
high magnitudes values. Similarly, there are instances of both 
relatively low and relatively high property damage values 
occurring around the same small range of magnitude numbers. 

Figure 2. Plot of property damage (average value) from significant U.S. earthquakes, as a function of the earthquake mag-
nitude (n=40), with the two single most damaging events (Northridge/1994 and Loma Prieta/1989—both in California) noted 
for reference
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Figure 3. Plot of property damage (average value) from significant U.S. earthquakes (n=40), as a function of the population 
affected by the event

Figure 4. Plot of property damage (average value) from significant U.S. earthquakes (n=40), as a function of the total income 
of the area affected

Plots of PDaverage as a function of the population and 
income of the area affected are given in Figures 3 and 4, 
respectively. All of the axes in Figures 3 and 4 are log scales, 
and the data in each case follow a generally upwards trend, 
suggesting a power function relationship between the Y- and 
X-variables in each case.

7 Results of the Regression Analyses

At each level of property damage (PDlow, PDaverage, and PDhigh), 
a stepwise regression analysis was undertaken using the 
Matlab software program (MathWorks 2011). Stepwise 
regression is an iterative, heuristic-based procedure for 
selecting the particular regression equation (that is, combina-
tion of predictor variables) that maximizes the model’s 
adjusted R-squared value. We used forwards stepwise regres-
sion, with the p-values for inclusion to and exclusion from the 
model set to 0.05 and 0.10, respectively (the default values in 

Matlab). Backwards stepwise regression is outside the scope 
of this article but, based on the reviewer’s comments, will be 
one of our first priorities in upcoming research.

Stepwise regression, however, has various limitations. For 
example, because stepwise regression is heuristic-based, the 
routine is not guaranteed to select the model with literally the 
highest adjusted R-squared value (although it will generally 
do quite well). Stepwise regression has also been criticized 
for being overly utilitarian, by selecting variables only to 
improve the model fit, potentially leading to data over-fitting 
and regression models that appear very ad hoc. Accordingly, 
the output from any stepwise regression procedure should 
be carefully reviewed, being mindful that various other (and 
potentially more meaningful or intuitive) combinations of the 
predictor variables may exist that will yield nearly as good a 
fit to the data.

The “raw” (or unchanged) stepwise regression output is 
given in Table 3. For PDlow and PDaverage, the stepwise proce-
dure selected the POP and MAG variables for inclusion in the 
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model. For PDhigh, the variables selected are slightly different, 
with INCOME being chosen instead of POP. So for com-
pleteness, we also regressed all of the property damage 
estimates (low, average, and high) on MAG and INCOME 
(Table 4), and also on MAG and POP (Table 5). The results 
of these regressions (given in Tables 4 and 5) are generally 
similar to the raw stepwise regression results (Table 3).

Across all of the regression models, the adjusted R-squared 
values are reasonably good for cross-sectional analysis, at 
0.58–0.61, and all of the coefficients (excluding some of 
the intercepts) are highly significant. In all cases, the largest 
coefficient values (in absolute value; excluding the intercepts) 
are those for MAG, with elasticities of 8.0–9.2 percent. This 
indicates that every 1 percent increase in the magnitude causes 
an 8.0–9.2 percent increase in PD. The exposure-related coef-
ficient values (for the POP and INCOME variables) range 
from 0.84–0.93 percent, indicating that property damage 
increases slower-than-linearly in each of these quantities. 
Collectively, these results suggest that earthquake property 
damages depend much more on the physical (hazard) vari-
ables than on the economic (exposure) variables. Establishing 
causality here, however, is difficult, as our property damage 
model is highly empirical, that is, it only allows us to assess 
if the predictions of our model are consistent with various a 
priori hypotheses.

We also performed a stepwise regression on the SHEL-
DUS earthquake damage estimates, this time with the predic-
tor variables defined at the county level rather than the census 
tract level (since SHELDUS is county-based). In this case 
(results not shown), the stepwise procedure selected the 
INCOME, MAG, and DX variables, with all of these coeffi-
cients highly significant. However, the model fit in this 
case is not quite as good as for the models based on literature 
damage estimates (adjusted R-squared of 0.53).

In the remainder of our analysis, we use the regression 
equations in Table 4, which use MAG and INCOME as predic-
tors. We use INCOME in place of POP because income is an 
economic variable, whereas population is not (see Section 3). 
However, the regression models in Table 5 can be used in 

cases where only population (and not income) data are avail-
able. Note that the predictions of these various regression 
equations can be non-monotonic, in that there are certain 
combinations of the predictor variables that can result in 
PDlow>PDaverage, PDaverage>PDhigh, or even PDlow>PDhigh. The 
particular combinations of values for the predictor variables 
that would bring about these outcomes, however, are gener-
ally unlikely to occur in actuality. For example, if an earth-
quake affects an area that has an income of $10 billion, for 
PDlow to exceed PDaverage, the earthquake’s magnitude must 
be less than about 3.2—a value which is outside the range 
of magnitude for our 40 sample earthquake dataset (see 
Table 2).

Table 6 summarizes the results of various analyses related 
to the regression fits and regression residuals for the Reduced-
Form Models chosen for use in the remainder of our analysis. 
In essence, Table 6 summarizes the information that would be 
contained in many different residual plots. Table 6 indicates 
that for all of the property damage variables, the best-fit lines 
for the plots of the predicted versus actual (that is, observed) 

Table 3. Raw (unmodified) stepwise regression results 
(n=40)

Dependent 
Variable

Predictor Variable Coefficient p-value Adjusted 
R2

Type Notation

ln(PDlow) Intercept — −8.7 p=0.07 0.58
(σε=1.6)Exposure ln(POP) 0.93 p<0.001

Hazard ln(MAG) 8.0 p=0.002

ln(PDaverage) Intercept — −8.9 p=0.06 0.60
(σε=1.5)Exposure ln(POP) 0.90 p<0.001

Hazard ln(MAG) 8.4 p<0.001

ln(PDhigh) Intercept — −18 p=0.001 0.61
(σε=1.5)Exposure ln(INCOME) 0.84 p<0.001

Hazard ln(MAG) 9.2 p<0.001

Note: Coefficient values in bold are significant at the 0.05 level.

Table 4. Regression results when using the earthquake 
magnitude and the income of the area affected as predictor 
variables (n=40)

Dependent 
Variable

Predictor Variable Coefficient p-value Adjusted 
R2

Type Notation

ln(PDlow) Intercept — −18 p=0.002 0.59
(σε=1.6)Exposure ln(INCOME) 0.87 p<0.001

Hazard ln(MAG) 8.5 p=0.001

ln(PDaverage) Intercept — −18 p=0.001 0.61
(σε=1.5)Exposure ln(INCOME) 0.85 p<0.001

Hazard ln(MAG) 8.9 p<0.001

ln(PDhigh) Intercept — −18 p=0.001 0.61
(σε=1.5)Exposure ln(INCOME) 0.84 p<0.001

Hazard ln(MAG) 9.2 p<0.001

Note: Coefficient values in bold are significant at the 0.05 level.

Table 5. Regression results when using the earthquake 
magnitude and the population of the area affected as predic-
tor variables (n=40)

Dependent 
Variable

Predictor Variable Coefficient p-value Adjusted 
R2

Type Notation

ln(PDlow) Intercept — −8.7 p=0.07 0.58
(σε=1.6)Exposure ln(POP) 0.93 p<0.001

Hazard ln(MAG) 8.0 p=0.002

ln(PDaverage) Intercept — −8.9 p=0.06 0.60
(σε=1.5)Exposure ln(POP) 0.90 p<0.001

Hazard ln(MAG) 8.4 p<0.001

ln(PDhigh) Intercept — −8.9 p=0.06 0.60
(σε=1.5)Exposure ln(POP) 0.88 p<0.001

Hazard ln(MAG) 8.7 p<0.001

Note: Coefficient values in bold are significant at the 0.05 level.
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values have intercepts that are statistically different from 
zero, and slopes that are statistically different from one (at the 
0.05 level). Similarly, the slopes of the best-fit lines for the 
plots of the residuals versus the actual values are statistically 
different from one (at the 0.05 level). These results suggest 
that key explanatory variables (Section 3) have not been 
examined as part of the regressions. Additional predictor vari-
ables include those related to soil characteristics and other 
geologic features of the area, as well as attributes describing 
the building inventory and its ability to resist earthquake 
damages. Data on these variables, however, would be much 
more difficult to locate than data for the various predictor 
variables examined in this analysis (Table 2). This fact 
also has important implications for the potential users of 
our method, who would need to input these data into our 
estimating equation.

8 Testing the Predictions of the 
Regression Models

We tested the predictions from the Reduced-Form Models by 
applying them to a series of out-of-sample test cases. This 
involved comparing the damage predictions of the models 
with independent damage estimates from the literature, as 
well as for PAGER for four recent significant U.S. earth-
quakes. These four events (described in Table 7) took place in 
different geographic areas of the country during the years 
2010 and 2011 (our dataset of 40 earthquakes extends only 
into the year 2008).

While the range of earthquake magnitude numbers across 
these four test events would appear to be narrow (magnitude 
values of 5.4 to 6.5), we note three things about this: (1) the 
magnitude is a logarithmic (not linear) scale; (2) earthquakes 
below magnitude 4.5 tend to cause relatively little property 

damage (unless they take place directly under a city or major 
infrastructure site); and (3) in most (24/40=60%) of the 
earthquake events on which the Reduced-Form Models are 
based, the earthquake magnitude was between 5.4 and 6.5 
(inclusive).

The low, average, and high estimated property damages 
for these out-of-sample test cases are presented in Table 7. 
For Test Case #1, the range of estimated damages overlaps 
with, but also extends above the range of damage estimates 
from NGDC, but generally below the PAGER damage esti-
mates (although the range of values is entirely contained 
within the 90th percentile range from PAGER). For Test Case 
#2, the Reduced-Form Model estimate is below (but adjoins) 
the NGDC damage range, and is considerably above the 
(extremely low) damages predicted by PAGER. In the case of 
Test Case #3, the Reduced-Form Model estimates are above 
all of the literature estimates, and the range of PAGER esti-
mates either completely covers or at the minimum overlaps 
with all of the other damage estimates. And finally, for Test 
Case #4, PAGER’s estimates are the largest (and its range 
of estimates the broadest), with the damage range from the 
Reduced-Form Model being generally in line with the other 
(non-PAGER) damages estimates. 

Overall, the out-of-sample test results are promising, with 
the predictions of the Reduced-Form Models being in the 
general vicinity of the various other estimates from the litera-
ture. It appears that the Reduced-Form Model generates 
reasonable ballpark estimates, at least as evidenced by the 
reasonably good model fits (that is, adjusted R-squared 
values) and the results of the four out-of-sample test cases. 
Moreover, the damage estimates from the Reduced-Form 
Model can be produced nearly instantaneously after an earth-
quake event, as only two explanatory variables are required: 
income (readily available from U.S. Census data), and earth-
quake magnitude (estimates for which are available soon after 
an event occurs).

9 Toward a Comprehensive Rapid 
Estimation Model 

The estimation of property damage is only a first step toward 
a thorough estimation of losses from natural disasters. 
Advances in hazard loss estimation were dominated by engi-
neers through the mid-1990s, so it was natural that the focus 
would be on damage to the built environment, in addition to 
death and injury. However, there has been a growing aware-
ness of the importance of what economists term the “flow” 
counterpart to the “stock” effects of property damage. These 
flows relate to changes in key economic indicators over time, 
including employment, Gross Domestic Product (GDP), and 
personal income, and are often characterized as “business 
interruption” (BI). In the last decade there have been several 
instances in which BI exceeded property damage, such as in 
the aftermath of 9/11 and the case of Hurricane Katrina, where 
flow losses are still accumulating since many for the areas hit 
have still not recovered.

Table 6. Summary of the analysis of the regression fit and 
residuals (error term)

Dependent Variable ln(PDlow) ln(PDaverage) ln(PDhigh)

Mean of Residuals −(8.9×10−16) −(1.9×10−15) (1.5×10−15)
Normality of Residuals† p=0.90 p=0.59 p=0.37

Predicted vs. 
Actual 
Best-Fit Line

Intercept 6.6
[3.8, 9.3]

6.3
[3.6, 9.1]

6.4
[3.6, 9.2]

Slope 0.61
[0.45, 0.77]

0.63
[0.48, 0.79]

0.63
[0.48, 0.79]

Residuals vs. 
Predicted 
Best-Fit Line

Intercept <0.001
[−4.5, 4.5]

<0.001
[−4.3, 4.3]

<0.001
[−4.4, 4.4]

Slope <0.001
[−0.26, 0.26]

<0.001
[−0.25, 0.25]

<0.001
[−0.25, 0.25]

Residuals vs. 
Actual 
Best-Fit Line

Intercept −6.6
[−9.3, −3.8]

−6.3
[−9.1, −3.6]

−6.4
[−9.2, −3.6]

Slope 0.39
[0.23, 0.55]

0.37
[0.21, 0.52]

0.37
[0.21, 0.52]

Note: †p-value of chi-squared test for normal distribution fit (larger values 
preferred). Values in brackets represent 95% confidence interval points.



30 Int. J. Disaster Risk Sci. Vol. 4, No. 1, 2013

At one point it was standard to refer to property damage as 
“direct economic impacts” and everything else as “indirect.” 
However, even going back as far as the development of 
HAZUS in the mid-1990s, there was an awareness that both 
stock and flow losses had direct and indirect counterparts. 
Indirect property damage effects are exemplified by fires 
or toxic releases after earthquakes, for example. Indirect 
flow effects are the ripple, or multiplier, impacts on output, 
employment, and income stemming from direct BI. This 
framework is now commonplace in published literature 
(see, for example, Rose 2004) and major assessments of 
earthquake science and policy (NRC 2009).

Several approaches are used to estimate direct and indirect 
BI. The most straightforward and amendable to rapid estima-
tion are to use factors that convert stock to flow losses, such 
as loss of function combined with down-time, which is at the 
core of HAZUS. Such factors can be readily programmed into 
models presented here. Even more basic, but not as accurate, 
would be the use of “output-capital” ratios for an economy as 
a whole or for various types of businesses/buildings. Indirect 
BI could be estimated by a full model, as in the case of the 
input-output module in HAZUS and the plan for GEM, or 
the use of simpler multipliers. There is some criticism of 
the use of I-O multipliers, as opposed to those that would be 
generated by the state of the art, but all too complex, model-
ing approach in this field—computable general equilibrium 
(CGE) analysis. CGE allows for non-linearities, such as those 
associated with input and import substitution, and hence 
typically generates lower multipliers.

However, the major factors affecting consequences from 
disaster are not these standard indirect BI multipliers but have 

more recently been identified by Rose (2009) and others as 
“resilience” in the case of natural hazards, and behavioral 
manifestations of fear associated with terrorist attacks or 
technological accidents. These have been shown to reduce 
losses by more than 50 percent in the case of resilience and to 
increase losses by an order of magnitude in the case of behav-
ioral effects. Rose (2013) has identified factors that influence 
resilience and the fear factor, and can thus be used to adjust 
estimates by a set of appropriate scalars for rapid estimation.

10 Conclusion

This article has presented a further exploration into the poten-
tial of reduced-form models to estimate the economic impacts 
of earthquakes. Since earthquake events are complex phe-
nomena—from both a natural science and human settlement 
system perspective—each major event ideally deserves 
extensive research attention. However, there is also a need for 
a practical tool that can generate immediate loss estimates for 
the purpose of dispatching short-run response assistance and 
marshaling resources for a longer-run recovery. 

Our regression equation for property damage in significant 
U.S. earthquakes has shed additional light on this area of 
inquiry, demonstrating, in a transparent manner, which of 
several crude physical and economic predictor variables are 
best able to explain more than half of the variation in the 
property damages across a sample of 40 earthquakes. Our 
analysis also provides a basis for formulating analogous pre-
diction equations for other hazard types, and reduced-form 
models may be especially beneficial in those hazard areas 
where generally less is known than for earthquakes.

Table 7. Summary of four recent out-of-sample earthquake test cases applied to the Reduced-Form Model, with independent 
property damage estimates from the literature also given for comparison

Test 
Case

Date/
State/
Earthquake 
Magnitude

Exposure
(Population/ 
Income/ 
Census Tracts)

Independent (Literature)
Property Damage Estimates

Property Damage Estimates 
from Reduced-Form Model

Description/Source Value or Range† PDlow
PDaverage PDhigh

#1 11/6/2011
Oklahoma
5.7

140,000
$2.8 B
35

NGDC damage categories / NGDC (2011) $1.7–$8.6 M $6.7 M $8.7 M $12 M
PAGER / USGS (2012a) and Jaiswal and Wald (2011) $18 M

($1.8–$180 M)

#2 8/23/2011
Colorado
5.4

23,000
$520 M
8

PAGER / USGS (2012a) and Jaiswal and Wald (2011) $2400
($230–$24,000)

$0.98 M $1.3 M $1.7 M

NGDC damage categories / NGDC (2011) $1.7–$8.6 M

#3 8/23/2011
Virginia
5.8

5.0 M
$200 B
1214

NGDC damage categories / NGDC (2011) $1.7–$8.6 M $310 M $380 M $490 M
Governor of Virginia / Knittle (2011) $22 M
PAGER / USGS (2012a) and Jaiswal and Wald (2011) $60 M

($6.0–$610 M)
EQECAT / Morello and Wiggins (2011) $200–$300 M

#4 1/10/2010
California
6.5

135,000
$3.2 B
30

NGDC damage categories / NGDC (2011) $8.6–$41 M $23 M $32 M $44 M
Governor of California / Stover (2010) >$44 M
PAGER / USGS (2012a) and Jaiswal and Wald (2011) $200 M

($4.7 M–$8.1 B)

Note: †For PAGER, the point estimates are the averages, and the ranges represent the 5th and 95th percentile points. All values are in 2011$.
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Improved earthquake estimation results can likely be 
obtained by identifying and quantifying additional variables 
to examine as part of the analysis. For example, additional 
physical (hazard-related) predictor variables might include 
peak ground acceleration and velocity, duration of the 
shaking, fault type, and length of the fault rupture. Additional 
exposure-related variables might include building type and 
age. Data for these variables exist, but would require time 
to collect, check, and refine, and our preliminary analysis 
indicates that these additional efforts would be justified. 
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Notes

i This pertains to Modified Mercalli Intensity (MMI) level VI or above 
(see discussion in Section 4.3).

ii To ensure accuracy, the results from applying this formula were 
checked against the latitude-longitude calculator available from the 
U.S. National Hurricane Center (NHC 2010).

iii This variable represents a simple interaction term. It is related to the 
more powerful concept of a ground motion prediction equation. Our 
approach is an alternative to these more complex types of equations, 
so as to make our approach more accessible to a broad set of users.

iv Both the SHELDUS property damage estimates and those gleaned 
from primary sources in our references are not always consistent in 
terms of coverage, as, for example, not always including content 
losses in addition to structural damage.
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