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Abstract
Economic analysis is an important tool in evaluating the performances of microgrid (MG) operations and sizing. Optimiza-
tion techniques are required for operating and sizing an MG as economically as possible. Various optimization approaches 
are applied to MGs, which include classic and artificial intelligence techniques. Particle swarm optimization (PSO) is one 
of the most frequently used methods for cost optimization due to its high performance and flexibility. PSO has various ver-
sions and can be combined with other intelligent methods to realize improved performance optimization. This paper reviews 
the cost minimization performances of various economic models that are based on PSO with regard to MG operations and 
sizing. First, PSO is described, and its performance is analyzed. Second, various objective functions, constraints and cost 
functions that are used in MG optimizations are presented. Then, various applications of PSO for MG sizing and operations 
are reviewed. Additionally, optimal operation costs that are related to the energy management strategy, unit commitment, 
economic dispatch and optimal power flow are investigated.

Keywords Cost minimization · Particle swarm optimization · Operations · Sizing · Microgrid · Renewable energy

Introduction

Microgrid description

Microgrids (MGs) have provided substantial motivation for 
the development of a smarter, more resilient and cost-effec-
tive approach for producing energy. MGs are mainly con-
structed from renewable energy sources (RESs) by focusing 
on the independence of local energy supplies, as illustrated 
in Fig. 1. Distributed energy resources (DERs), which are 
also known as distributed generation (DG), can be combi-
nations of conventional energy sources, such as diesel units 
(DUs) and combustion gas turbines, and RESs, such as wind 
turbines (WTs) and photovoltaics (PVs). The integration of 
groups of DERs and energy storage systems (ESSs) such as 

batteries, capacitors, hydrogen, and flywheels, with loads 
that are interconnected by a local electric power distribution 
system, is called an MG [The main economic issue for MGs is the efficient utili-

zation of renewable and conventional energy sources. The 
energy cost is minimized by tuning the size and opera-
tions of MGs [1, 10–12]. The authors in [10] provide an 
approach for realizing an optimal operation and sizing 
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of an MG that guarantees the minimum energy cost. In 
[11], the authors demonstrate the influence of the size on 
the operational cost. Small sources and storage may not 
provide economic benefits, flexibility or reliability in an 
MG. However, large sources and storage require higher 
investment and incur higher maintenance costs [12]. 
Thus, it is highly important to know how the MG oper-
ates when sizing the system. The optimal size is found 
when the energy cost is minimized and may be subject to 
technical and environmental constraints. Furthermore, the 
minimum energy cost is made possible by energy manage-
ment strategy (EMS), unit commitment (UC), economic 
dispatch (ED) and optimal power flow (OPF), which are 
parts of an optimal operation strategy. The uncertainties of 
renewable energy sources may affect the cost–benefits of 
MGs. Thus, it is difficult for grid operators to control and 
manage these energy sources. Renewable power forecast-
ing is an important task for the grid operator for enhanc-
ing the effectiveness of the grid operation. Furthermore, 
renewable power forecasting has attracted attention from 
academic research communities [13] since it can play an 
important role in identifying the optimal operation [14].

Optimization techniques

Without optimization techniques, the cost–benefit of an 
MG may not be justified. Optimization aims at identify-
ing the best alternative from a set of specified solutions 
that are the most cost-effective or have the highest realiz-
able performance under the specified constraints. Many 
approaches are available for addressing optimization prob-
lems when classic optimization techniques are unable to 
find an optimal solution. Artificial intelligence (AI) is a 
promising method for cost optimization. The main advan-
tage of AI is the ability to combine more than one method: 
first, in finding the best primary solution and subsequently, 
finding a better solution.

Table 2 lists various optimization techniques that are 
used to identify the most feasible solution to the problem 
of cost minimization in MGs [15–17].

Fig. 1  MG architecture

Table 1  MG scale classification
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Various optimization techniques, such as PSO for MG 
sizing, are applied in [18]. The authors discuss the conver-
gence speeds of and the quality of the solutions that are 
derived by various methods. Another application of opti-
mization techniques is presented in [19], namely, finding 
the optimal parameters of the Weillbul distribution for wind 
turbine projects in Brazil. In this study, the authors compare 
the performances of heuristic algorithms with deterministic 
numerical methods.

A review of various optimization techniques and sizing 
methods of MG systems is presented in [20]. This paper 
presents a comprehensive study on finding the best com-
promise between the MG cost and the system reliability. In 
another review [6], the authors discuss sizing methodologies 
for both isolated and grid-connected MGs. Sizing criteria 
that are related to the operating costs, reliability and loads 
are investigated. Reference [21] reviews sizing strategies 
that are based on optimization techniques. It also presents 
a cost analysis and a reliability index that are used in MG 
sizing. In [22], the authors focus on optimization techniques 
for optimal MG sizing. In addition, optimization techniques 
and computer tools for MG sizing are analyzed. The authors 
in [23] present an overview of the optimization techniques 
for MG sizing, placement and design, in which they high-
light the successful application of PSO, whereas the authors 
in [24] focus on optimization techniques and tools that are 
used for optimal operation and deployment of MGs. In this 
review, many objective functions are presented for vari-
ous types of operations and renewable energy sources. The 
authors in [25] discuss the application of optimization tech-
niques for finding the optimal sizes and operation schedules 
of MGs. This review focuses on the ED problem for inves-
tigating operation scheduling.

Various reviews have been conducted on optimization 
techniques for MG sizing in the aforementioned studies; only 
a few reviews examine the optimization techniques for MG 
sizing, including the optimal operation of MGs. In addition, 
the optimization techniques are discussed with little detail. 
No analysis of the efficiency, robustness, or flexibility of the 
algorithms is provided. However, an optimization technique 
is required for MG sizing and operations and for enhanc-
ing the reliability, environmental effects, and component 
lifetime.

In this paper, we consider the PSO algorithm and its 
application to MG optimization. Additionally, we explain 
how the performance analysis and the selection of param-
eters and stopping criteria of the PSO algorithm are con-
ducted. To the best of the authors’ knowledge, this is the 
first attempt to identify both the optimal operation and size 
of an MG via the PSO algorithm. We investigate various 
types of operations, such as EMS, UC, ED, and OPF. In 
addition, the cost optimization of the operations and size 

are outlined. We summarized various objective functions 
and constraints equations for MG optimization. We clas-
sify the cost function type, and linear, quadratic and cubic 
models, along with smooth and nonsmooth models, are dis-
cussed. The comprehensiveness of these models leads to as 
high of a performance in PSO implementation as any other 
algorithms.

The remainder of the paper is organized as follows: in 
Sect. 2, MG cost optimization is presented. Additionally, 
the versions and combination methods of PSO that are used 
for MG optimization are described. Section 3 describes the 
mathematical model for the cost analysis of the MG. Sec-
tion 4 presents the cost–benefit that is related to the size 
of the MG. Finally, the cost–benefits that are related to the 
operations are presented in Sect. 5.

MG cost optimization

Optimization is the procedure of finding the minimum or 
maximum value of a function by choosing variables, subject 
to constraints. The optimization function is called the fit-
ness or objective function and is typically calculated using 
simulation tools.

An optimization method is not always guaranteed to find 
an optimal solution. Sometimes, this can be unrealized due 
to the characteristics of the problem. The choice of an opti-
mization technique depends on the type of the cost function 
to be solved. According to the authors in [26, 27], some 
techniques are unable to deal with nonsmooth and noncon-
vex optimization. These techniques have difficulty handling 
inequality constraints.

PSO is a robust optimization technique and is applied in 
various applications of MGs. It can solve continuous and 
discrete optimization problems. In addition, it is simple to 
implement, flexible and computes quickly. PSO is the most 
frequently used method for MG optimization problems [23]; 
consequently, approximately 70 research papers that are 
based on PSO have been studied in this work.

• Classic version of PSO
  PSO is based on a swarm (population) of N particles. 

These particles are randomly placed in the search space 
D. Each particle i of the swarm is defined by its position 
Xij = (Xi1, Xi2,…, XiD) and its velocity Vij = (Vi1, Vi2,…, 
ViD) in the search space D. Index i varies from 1 to N, 
and index j varies from 1 to D.

  The particles move at each iteration by considering 
their best position and the best position of their neighbor-
hood. The velocity and position equations are presented 
as follows:
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where w is the inertia weight, c1 and c2 are the accelera-
tion coefficients, and r1 and r2 are random numbers 
between 0 and 1. Xk

ij
 is the position of the ith particle in 

the jth dimension in the kth iteration. Vk
ij
 is the velocity 

of the ith particle in the jth dimension in the kth iteration. 
Pbest is the personal best position, and Gbest is the global 
best position. V can be limited to [− Vmax, Vmax], where 
Vmax is the maximum velocity limit. X is limited to [Xmin, 
Xmax], where Xmin and Xmax are the minimum and maxi-
mum particle position limits, respectively. k varies from 
1 to Maxite, where Maxite is the total number of itera-
tions. The procedure of PSO is illustrated in Fig. 2.

  The choice of parameters and stopping criteria influ-
ences the performance of the PSO algorithm. If suitable 
parameters and stopping criteria are selected, the algo-
rithm can provide a better result.

• Parameter selection

(1)

Velocity Vk+1
ij

= w ⋅ Vk
ij
+ c

1
⋅ r

1
⋅

(

P
best

− Xk
ij

)

+ c
2
⋅ r

2
⋅

(

G
best

− Xk
ij

)

,

(2)Position Xk+1
ij

= Xk
ij
+ Vk+1

ij
,

  The optimization parameters determine the perfor-
mance of the algorithm in searching for the global opti-
mum of a problem. The selection of these parameters is 
a crucial step in the optimization process. The analysis 
of each parameter selection is described as follows:

– Number of particles (N): if the number of parti-
cles is small, it can influence the performance of 
PSO. If we increase the number of particles, we 
can decrease the number of iterations. Thus, the 
algorithm can still find an optimal solution.

– Acceleration coefficients (c1 and c2): the accel-
eration coefficients c1 and c2 guide the particles 
to move toward Pbest and Gbest, respectively. Small 
values may limit the particle movements toward a 
satisfactory solution. However, a large value may 
lead the particles to move away from the solution.

– Maximum velocity (Vmax): the particle velocity 
is typically restricted within a specified range to 
prevent the particles from moving away from the 
search space. If Vmax is too small, the particles may 
only explore the local best, whereas if Vmax is too 
large, then the particles may pass over a satisfac-
tory solution.

– Inertia weight (w): the inertia weight balances 
the local and global explorations. A large inertia 
weight provides a strong global search, whereas a 
small inertia weight provides a strong local search. 
The value of the inertia weight can change during 
the optimization process. Therefore, self-adaptive 
approaches that modify the value of inertia weight 
during the search procedure are recommended in 
the literature.

• Stopping criterion
  The stopping criterion is fundamental in PSO opti-

mization because the algorithm must not terminate 
prior to reaching the global optimum. However, the 
algorithm must automatically terminate when the opti-
mal solution is found to avoid wasting computational 
resources during the execution. Therefore, the choice 
of stopping criterion has a large influence on the dura-
tion of the optimization processes. Many stopping cri-
teria are presented in the literature, such as a tolerance, 
the number of function evaluations, and the maximum 
number of iterations.

• Binary version of PSO (BPSO)
  In the binary version of PSO, a particle represents the 

position in binary space and the particle’s position vec-
tors can take on a binary value 0 or 1. The same equation 
as that for the classic version of PSO is used to update the 
velocity. The equation for updating a particle position is:

Fig. 2  Flowchart of PSO
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where uk
ij
 is a random number between 0 and 1, and sk

ij
 is 

the sigmoid function.

The velocity Vk
ij
 is limited within the range [− Vmax, 

Vmax]. These bounds correspond to the probabilities for 
the particle position xk

ij
 to change to 0 and 1. The maxi-

mum velocity Vmax = 5 corresponds to a maximum prob-
ability for a particle to be 1. The minimum velocity 
Vmin = − 5 corresponds to a minimum probability for a 
particle to be 0.

• Many versions of PSO have been introduced in [28, 29] 
and are summarized as follows:

– Modifications of PSO: quantum-behaved PSO, bare-
bones PSO, chaotic PSO, fuzzy PSO, PSO time-
varying acceleration coefficient, opposition-based 
PSO, topology, improved PSO, adaptive PSO, and 
mutation PSO, among others.

– Combinations of PSO with other metaheuristic meth-
ods (hybrid PSO): GA, evolutionary programming, 
artificial immune system (AIS), tabu search (TS), 
ACO, simulated annealing (SA), artificial bee col-
ony (ABC), DE, biogeography-based optimization 
(BBO), harmonic search (HS), Lagrange relaxation 
(LR), and guaranteed convergence PSO with Gauss-
ian mutation (GPSO-GM), among others.

– Extensions of PSO: multi-objective, constrained, 
combinatorial, and discrete (binary and integer) 
optimization, among others.

  The evaluation of the performance of the algorithm is 
typically recommended for all optimization problems. 
We should be able to demonstrate that the selected algo-
rithm provides a superior solution faster than other algo-
rithms. Here, we provide insight into the performance 
analysis:

• Effectiveness
  The effectiveness consists of the computational effort 

and the quality of the solution.

– Computational effort: the computational effort is the 
required time for the algorithm to converge to an 
optimal solution. The parameters that significantly 
influence the computational effort of PSO are the 
swarm size and the number of iterations. The compu-
tational effort can also refer to various terms such as 

(3)xk
ij
=

⎧

⎪

⎨

⎪

⎩

1 if uk
ij
< sk

ij

0 if uk
ij
≥ sk

ij

,

(4)Sigmoid function sk
ij
=

1

1 + e
−vk

ij

.

the time for reaching the optimal solution, the time 
for computing each iteration, and the total running 
time (or the time for computing all iterations).

– Quality of the solution: the quality of the solution 
refers to the closeness of the solution to the optimal 
solution. If the optimal solution is unknown, it is 
difficult to evaluate the quality of the solution. This 
is a common issue when dealing with optimization 
techniques. In this regard, comparison with a pub-
lished solution or with a solution that was obtained 
via another technique is typically required.

• Robustness
  Robustness is an important criterion for evaluating the 

performance of an algorithm. It refers to the ability of an 
algorithm to reach an optimal solution for any instance 
of various test problems. A robust algorithm must also be 
relatively insensitive to the parameter values. When the 
parameters are selected, the measurement of the sensitiv-
ity to the small changes in the parameter values is useful 
for investigating the robustness.

• Flexibility
  PSO is a flexible method that can solve all complex 

optimization problems. Many definitions are used to 
define flexibility. In our work, we define flexibility as 
the adaptiveness of the algorithm, as it can automati-
cally adjust and adapt to consider the uncertainties and 
to generate the best possible solutions.

  Implementation issues can influence the computational 
effort of the algorithm. Thus, the choices of program-
ming language, libraries, and compiler play a significant 
role in enhancing the optimization performance, espe-
cially in terms of the computational effort. Moreover, 
the computer characteristics (such as the processor and 
RAM) and the operating system are important for per-
forming a variety of tasks with high computational per-
formance. The engineers must weigh various choices and 
identify the solutions that best satisfy the requirements. 
Furthermore, the engineers must identify the available 
resources to solve an optimization problem efficiently.

Offline and online optimizations

Offline and online optimizations are required for enhancing 
MG operations in terms of the power demand, renewable 
energy resources, and economic aspects.

• Offline optimization: power management is typically 
formulated as an offline optimization problem. This 
approach is based on a priori knowledge of the weather 
conditions and a pre-established load profile. This strat-
egy is also used to evaluate the quality of real-time EMS 
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since it determines the theoretical minimum realizable 
energy cost.

• Online optimization (real-time optimization): the load 
profile, weather conditions, and fuel costs change over 
time. Real-time optimization is needed to identify the 
optimal solution regardless of the variation of these 
parameters. However, the implementation of online 
algorithms requires a performance computation tool for 
evaluating the problem in each time interval, especially 
when the time step is short.

Objective functions

Single‑objective function

In single-objective-function optimization, a single-objective 
function is minimized or maximized. The following parts 
summarize the objective functions that are typically imple-
mented in MG optimization:

• Minimize

– Life cycle costs [30]
– Gas emissions  (CO2,  NOx,  SO2,  PM2.5, and  PM2.5–10) 

[31–33]
– Power losses (active and reactive losses) [34–36]
– Lifetime degradation [37–39]

• Maximize

– Benefits or profits [40–42]
– Reliability: by minimizing the loss of power supply 

probability (LPSP), loss of load probability (LLP/
LOLP), unmet load (UL), system performance level 
(SPL), loss of load hours (LLH), loss of load risk 
(LOLR), or level of autonomy (LA) [33, 43, 44]

– Power generation [45, 46]
– Loadability [47]
– Net present value [33]

Multi‑objective function

When there is only one criterion to be optimized, an opti-
mization problem is described as a single-objective-func-
tion optimization problem. In other cases, there are several 
criteria to be optimized simultaneously; such an optimiza-
tion problem is described as a multi-objective optimization 
problem.

Multi-objective optimization (MOO) problems consist 
of several objectives that must be realized simultaneously. 
MOO is the process of finding a compromise among con-
flicting objective functions. Reference [24] summarizes vari-
ous multi-objective optimizations that are applied in MG, 
which are listed in Table 3.

Optimization constraints

Equality constraint

• Power balance: the total power that is generated should 
match the load demand.

where Pload is the load power, N is the total number of 
generating units, Pi is the power output of the ith generat-
ing unit and t is the time.

(5)P
load,t

=

N
∑

i

P
i,t
,

Table 3  Multi-objective 
optimizations

First objective function Second objective function References

Maximization of revenue Minimization of emissions
Maximization of reliability

[48]
[49]

Minimization of operating costs Maximization of reliability [50–55]
Minimization of emissions [56–62]
Maximization of components lifetimes or 

minimization of lifetime degradation
[63, 64]

Maximization of power availability [65]
Maximization of profit [66, 67]

Minimization of investment costs Maximization of reliability [52, 53, 68, 69]
Minimization of emissions [58, 60, 70]
Minimization of fuel consumption [30]
Minimization of operating cost [71]
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Inequality constraints

• Rate power unit: the power output of each generating unit must 
be within its minimum (Pmin) and maximum limits (Pmax).

• Ramp rate power limit: these constraints determine the 
maximum variation of the power output for each unit 
[72].

where RUi is the ramp-up limit and RDi is the ramp-down 
limit of the ith unit.

• Minimum uptime/maximum downtime: these con-
straints specify a minimum time for each unit to be 
maintained before it can change its status [72, 73].

If the unit is turned on, there will be a minimum run-
ning time before it can be shut down:

where Ton
t

 is the duration for which the unit is continuously 
ON, and MUT is the minimum uptime.

Once a unit has been shut down, it may not be turned 
back on immediately:

where Toff
t

 is the duration for which the unit is continuously 
OFF, and MDT is the minimum downtime.

• Maximum start/stop limits: the maximum number of 
starts/stops should be included in the optimization 
process. This depends on the generation unit and the 
operator [74].

where S
start/stop

 is the number of starts/stops during the 
simulation time, and N

max
 is the maximum number of 

start/stop sequences.

Cost functions that are related to MG 
operations and sizing

In this section, cost functions that are related to opera-
tions and sizing are presented. Various cost definitions 
and equations were reported in a previous research paper 

(6)P
i,min

≤ P
i,t
≤ P

i,max
.

(7)P
i,t
− P

i,t−1
≤ RU

i

(8)P
i,t−1

− P
i,t
≤ RD

i
,

(9)Ton
t

−MUT ≥ 0,

(10)Toff
t

−MDT ≥ 0,

(11)S
start/stop

≤ N
max

,

[75]. Here, we summarize those that are most frequently 
used in the literature.

(a) Initial investment cost (IC): this consists of the initial 
costs for unit installation [76].

where Cinv,i is the investment cost of the ith unit ($/
kW), and Pi is the output power of the ith unit.

(b) Replacement cost (RC): this cost is incurred since the 
lifespans of the units differ from the project duration 
[77, 78].

SFFi is the sinking factor:

where Crep,i is the replacement cost of the ith unit, r is 
the interest rate of the ith unit, and t is the lifetime of 
the ith unit.

(c) Capital cost (CC): the capital cost for MG power gen-
eration and energy storage includes the cost of the 
equipment and the costs that are associated with its 
installation [78].

CRFi is the capital recovery factor of the ith unit, which 
is expressed as follows:

where r is the interest rate and y is the lifetime of the 
system.

(d) Levelized cost of electricity (LCOE): the LCOE is the 
total cost of the installation, replacement, fueling, and 
maintenance of an MG. It represents the price of elec-
tricity per kWh over the system’s life. A low LCOE 
corresponds to a low electricity cost [44, 77, 79, 80].

where E is the annual energy output of the system, MC 
is the maintenance cost, IC is the investment cost, RC 
is the replacement cost, and FC is the fuel cost.

(e) Maintenance cost (MC): the MC is typically related 
directly to the power output. It is assumed to have a 
proportional relationship with the power that is pro-
duced [77, 78].

(12)IC =
∑

Cinv,i ⋅ Pi,

(13)RC =
∑

Crep,i ⋅ SFFi,

(14)SFFi =
r

(1 + r)t − 1
,

(15)CC =
∑

(Cinv,i ⋅ Pi) ⋅ CRFi,

(16)CRFi =
r ⋅ (1 + r)y

(1 + r)y − 1
,

(17)LCOE =

(

MC + IC + RC + FC

E

)

,
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• Nonsmooth model

In Fig. 4, a cost function with the valve point effect is 
plotted. In practical operations, steam turbines have many 
steam valves that control the power that is generated. The 
opening of these valves causes losses in the generation 
unit, thereby resulting in ripple effects on the input–output 
characteristic cost function. This feature makes the cost 
model nonsmooth. A sinusoidal function that represents 
the valve point effect is added to the quadratic cost func-
tion and is modeled as [84, 85]:

where ei and fi are coefficients that are related to valve points 
of the ith generation unit, and Pmin

i
 is the minimum power 

limit of the ith generation unit.

• Nonconvex model

Optimization problems can be divided into two types 
according to the fuel cost function: convex and nonconvex 
problems. In a convex problem, the fuel cost function does 
not consider the valve point effect and is expressed as a quad-
ratic function. The fuel cost function in a nonconvex problem 
considers the following elements: prohibited operating zones, 
valve-point loading effects, and combined valve-point loading 
effects and multi-fuel options [86–92].

The prohibited operating zones represent the limitations 
on the power output of the unit that are caused by vibrations 
in a shaft bearing or steam valve operation. Thus, operation is 
not allowed in such regions to avoid damage to the unit and to 
realize the most economical operation [91]. A cost function 
with prohibited operating zones is plotted in Fig. 5.
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where j represents the number of prohibited operating zones 
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zones of the ith generating unit, Pu
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 is the upper limit of 

the (j − 1)th prohibited operating zone of the ith unit, and 
Pl
i,j

 is the lower limit of the jth prohibited operating zone of 
the ith unit [88].

For a power plant with many generators and fuel types 
for each unit, the fuel cost function for fuel type j of the ith 
unit is plotted in Fig. 6 and is expressed as:

Implementation of PSO for cost 
minimization in MG sizing

Among the various factors that influence the behavior of an 
MG, optimal sizing is of particular interest in MG optimiza-
tion for determining the minimum cost of the system. In an 
isolated MG, sizing is more difficult than in a grid-connected 
MG since it must operate continuously without any support 
from the main grid. Economic analysis methods for optimal 
sizing are proposed in [93, 94]. Economic indices include 
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the generation and installation costs and the cost benefits 
during the lifetime and the payback period. The costs of MG 
sizing are summarized in Table 4.

Implementation of PSO for cost 
minimization in MG operations

Many challenges are encountered in operating an MG with 
high economic benefits. However, many research studies 
are being conducted to overcome these issues. Thus, it is 
necessary to have an overview of the MG operations. In 
this section, energy management optimization problems, 
including ED, UC, and OPF, are outlined.

Energy management

Depending on the study objectives, energy management 
problems can cover the MG’s supply (energy generation) 
or demand (energy consumption) side, or the whole sys-
tem. Various optimization strategies for energy manage-
ment have been proposed in the literature. These optimiza-
tion strategies are mostly focused on cost minimization, 
including maintenance, operating and fuel costs and 
energy purchases.

The authors in [103] implement a PSO for real-time EMS 
in an MG. The simulation is updated every 3 min. The objec-
tive is to minimize the total energy cost of the system. The 

Table 4  Costs that are related to MG sizing

Cost Details

Levelized cost In [79], PSO seeks to determine the optimal size of an HRES that is composed of a WT, PV 
arrays and battery energy storage. The objectives are to minimize the system cost based on the 
levelized cost and to ensure the reliability of the system while satisfying technical constraints

Net present value The objective of [95] is to optimize the size of the MG component to maximize the economic 
benefits, such as the net present value. The MG is composed of a WT, a PV and battery energy 
storage

Systems costs: annualized cost of invest-
ments, replacement, and maintenance, and 
loss of load costs

PSO is used to design a hybrid wind/PV/fuel cell system in [96]. The objectives are to find the 
lowest cost and to ensure the reliability of the system for a period of 20 years. The simulation is 
conducted over a year with a 1-h time step

Net present costs (NPCs): capital, replace-
ment and OM costs

The authors in [82] apply PSO to find a suitable size that minimizes the net present costs of the 
system. The objective function includes all NPCs from fuel cells, WT, electrolyzers, reformers, 
anaerobic reactors, hydrogen tanks, and converters

Cost of energy and total net present cost In [97], PSO is used to find the optimal size of a PV/diesel/biogas generator/biomass generator/
micro hydro generator/battery for 25 years of operation. The cost of energy is the key param-
eter to be minimized under specified reliability criteria (expected energy not supplied) and 
economic criteria (net present costs), renewable factor and emission of  CO2. The objective is to 
find a suitable combination of a hybrid system that ensures the lowest cost of energy

Maintenance costs, operating costs, invest-
ment costs, cost of purchasing power from 
the DG owner and cost of buying power 
from the substation

In [76], the authors propose MOPSO for determining the optimal location, size, and electricity 
generation price of DG. The optimization objective is to maximize the benefit of DG while 
minimizing the cost to the distribution company

Present value of the total profit, present value 
of the maintenance costs, capital costs.

In [98], the objective of the PSO is to identify optimal parameter values for PV module installa-
tion, including the number of PV modules, their tilt angles, the placement of the PV modules 
and the distribution of the PV modules among the DC/AC converters. The optimization aims at 
maximizing the net profit over the total operation lifetime

System costs: investment, maintenance, fuel, 
and replacement costs

Reference [99] introduces PSO for sizing the HRES. The strategy is to solve an MOO via the 
ɛ-constraint approach. The total system costs are represented as an objective function, and 
LOLP and  CO2 emissions are regarded as constraints. The objective is to minimize the system 
costs while minimizing the emissions and LOLP

Benefit: cost of electricity and heat sales and 
cost benefit of load reduction

The authors in [100] seek to determine the optimal types, sizes, and placement of DERs with the 
objective of maximizing the benefit-to-cost ratio of MG via the PSO technique. The MG system 
includes microturbines, DUs, and heat combustion turbines

The costs include capital, replacement, 
operation, maintenance, and production 
costs for MG and DG.

The authors in [101] employ PSO to design an MG that includes various numbers of PVs, WTs, 
and batteries. The objective was to find the lowest cost of MG construction based on the pool 
and bilateral–hybrid electricity markets

Depreciation cost of the battery Reference [102] presents an improved hybrid GA-PSO for the multi-objective optimization of the 
siting and sizing of an MG in consideration of an EV. The objective is to minimize the power 
losses, voltage fluctuation, EV charging demand, and battery depreciation cost
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authors have compared the performance of PSO with that of 
the sequential quadratic programming method.

The MOPSO is applied in [104] to determine the optimal 
configuration and sizes of the MG components for ensur-
ing the reliability and cost effectiveness of the system. The 
study seeks to minimize the cost of electricity and the loss 
of power supply probability.

Reference [105] employs PSO to minimize the total oper-
ating costs of an MG. The optimization considers the bids 
and market prices of power exchanges between the MG and 
the main grid.

PSO is developed for real-time multi-objective optimiza-
tion in [106]. The process is updated every 30 s over a period 
of 24 h. The objective is to reduce the gas emissions and 
energy costs. The results demonstrate that the two objectives 
are in conflict (if the cost is low, the emissions are high, 
and vice versa). The simulation was conducted under two 
optimization techniques, namely, PSO and GA, using the 
MATLAB tool. The results demonstrate that PSO outper-
forms GA in terms of computation time.

In [107], the EMS is based on regrouping PSO (RegPSO) 
with the scheduling of the day ahead. The study is conducted 
under two scenarios of MG operation: isolated grid and grid-
connected. The objective is to minimize the fuel and OM 
costs and the purchase cost from the utility while maximiz-
ing the profits from selling energy to the utility. The result 
demonstrates that RegPSO yields a better and faster solution 
than the GA-based approach.

A multi-objective PSO approach is presented for the sys-
tem configuration and sizing of each location in [54]. The 
EMS defines the optimal operation of an MG with three 
conflicting objectives, such as reliability, operating cost and 
environmental impact.

The authors in [61] propose fuzzy self-adaptive PSO for 
minimizing the total operating cost and pollutant emissions. 
To evaluate the performance of the proposed method, they 
compare the results with those of classic PSO and GA under 
various scenarios of MG operation.

A real-time EMS that is based on binary PSO is proposed 
for both energy suppliers and users in [108]. The binary 
PSO defines the ON/OFF operation of home appliances to 
identify the lowest electricity tariff and to avoid a peak load.

Reference [109] develops an improved PSO (IPSO) algo-
rithm for home energy management systems in a smart grid. 
The proposed algorithm minimizes electricity payments and 
peak loads.

In [110], PSO is applied to an HRES for electricity and 
water supply in a small village in Nigeria. The optimization 
aims at minimizing the energy cost of the system by sav-
ing on fuel costs. The study is conducted in two operating 
modes: using RES with diesel engines and using only RES.

EMS-based self-adaptive modified theta PSO is intro-
duced in [111] for the minimization of the operating costs, 

including the fuel and start-up costs and the power exchange 
between the MG and the main grid. This study also exam-
ined a probabilistic framework that is based on the 2 m point 
estimate method, which depends on the uncertainty of the 
RES, the load forecast and the market characteristics.

The authors in [112] describe an EMS-based PSO with 
three objective functions: to minimize ESS operating costs; 
to maximize ESS efficiency; and to minimize the lifetime 
degradation of the ESS. The simulation was conducted for 
three cases according to each objective function. The simula-
tions are compared by focusing on three criteria: operating 
costs, efficiency, and lifetime degradation.

Hybrid PSO and pattern search are applied to optimize 
the design and operation of an MG in [1]. To evaluate the 
performance of this method, four parameters are consid-
ered as key performance indicators (KPIs): cost, reliability, 
quality, and environmental impact. Each parameter is scaled 
from 1 to 10 based on the KPI grading. The cost function is 
comprised of capital, OM and generation costs. The objec-
tive is to find the minimum generation cost with the lowest 
total sum of the overall KPIs.

In [113], the authors use PSO to overcome a master–slave 
objective function, with the objective of determining the 
optimal type, size and operation of a smart MG. The mas-
ter–slave function is based on net present value.

The combination of guaranteed-convergence PSO with 
Gaussian mutation (GPSO-GM) is reported in [114] for 
identifying the optimal size and operation of MG systems. 
The objective is to minimize the capital investment and gen-
eration costs. The role of Gaussian mutation and guaranteed 
convergence is to ensure the accuracy of the results.

Economic dispatch

ED determines the power output of each unit and uses it to 
find the lowest operating cost while satisfying equality and 
inequality constraints. ED problems are typically nonlin-
ear. Since classical optimization techniques have difficultly 
addressing this problem, the application of the AI technique 
is inevitable. PSO is the most popular approach for solving 
ED problems due to its fast convergence.

The authors investigate the use of PSO to solve an ED for 
an MG in [115–117]. The optimization objective is to mini-
mize the cost function while considering the fuel, operation 
and maintenance costs. The optimization problem is defined 
by a nonlinear function that includes equality and nonequal-
ity constraints.

The ED within an MG is solved in [118] using PSO to 
find the lowest operating cost and emission levels. The 
operating cost involves both the energy that is sold and the 
energy that is purchased from the utility.
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The authors in [119] study the cost minimization of mul-
tiple MGs, including RESs. The modified ED is fixed by 
PSO. The combination of two or more MGs limits the use 
of conventional generation and offers substantial economic 
benefits from RESs. The optimization objective is to find the 
lowest operating cost using the optimal schedule of a genera-
tion unit. The simulation is conducted under two scenarios, 
namely, with and without multiple MGs, for comparison in 
terms of the cost effectiveness.

A PSO is reported in [120] for minimizing the cost of 
the power that is produced by multiple MGs in the interac-
tions with the main grid. The objective function considers 
the power generation, operation and maintenance costs and 
the purchase and sale of energy. The study considers a sto-
chastic and probabilistic model of RES and load data in the 
optimization process.

Reference [121] proposes a stochastic ED model that 
incorporates wind and pumped storage generators, in addi-
tion to the thermal generators. The objective of this paper 
is to address the proposed stochastic ED problem via the 
modified PSO method.

Unit commitment

The unit commitment (UC) determines the ON/OFF sched-
ule of generating units in a time frame over a scheduling 
period. It is formulated as a nonlinear optimization problem 
with 0/1 variables that represent ON/OFF status. UC plays 
an important role in MG planning for cost minimization. 
Frequent start-ups and shut-downs have a negative influ-
ence on the lifetimes of components, thereby resulting in 
an increase of the MG operating costs. The committed units 
should satisfy the production and demand forecasts.

The authors in [122] focus on a probabilistic UC model 
for MG operation, which includes the uncertainties of RESs 
and electric vehicles. The PSO is used to maximize the 
profit of UC in an MG. The results demonstrate the effects 
of plug-in electric vehicles on MG operating costs, and the 
performances of the probabilistic and deterministic UCs are 
compared.

Reference [123] combines binary PSO with the Lagrange 
multiplier method to minimize the energy costs in UC with 
consideration of electric vehicles and vehicle-to-grid (V2G). 
The constraint of UC with V2G is considered in the opti-
mization problem. A comparison is conducted between two 
cases of UC: with and without V2G.

A combination method of weighted improved crazy PSO 
with pseudo code is presented in [124] for solving a UC 
problem. The objective is to find a compromise between 
energy costs and gas emissions. Using a weighted sum 
method, the MOO is converted to a single-objective opti-
mization to minimize the operating costs. The performance 
result of this proposed approach is compared with those 

of other PSO forms, such as classic PSO and weighted 
improved PSO. The use of this approach guarantees the 
optimal solution and fast convergence speed.

In [125], the UC is solved via quantum-inspired BPSO 
(QBPSO), and the primal–dual interior point method is used 
to solve ED problems. The objective is to find a trade-off 
between the operation costs and emissions. Satisfactory 
accuracy of the solution and satisfactory calculation speed 
have been realized using the proposed method. It is con-
cluded that this method is suitable for solving large-scale 
wind energy generation problems.

Reference [126] analyzes the UC and ED problems of 
thermal generation units with RES. The unit start/stop selec-
tion is performed using a priority list (PL), and PSO deter-
mines the optimal power flow, which is used to minimize 
the fuel costs of thermal units. PL–PSO is compared with 
PL–GA and DP. PL–PSO is guaranteed to find the optimal 
solution in minimal computation time.

In [72], the UC of thermal-unit-integrated wind and solar 
power is solved via GA-operated PSO. The combination of 
GA with PSO ensures the speedy convergence of the optimi-
zation solution. The solution to the cost minimization prob-
lem is guaranteed with the proposed method, in contrast to 
GA, the integer coded genetic algorithm (ICGA), and the 
Lagrangian relaxation and genetic algorithm (LRGA).

The authors in [127] formulate the optimization problem 
in two stages: the first stage consists of UC and the second 
of OPF. The BPSO is applied to select an ON/OFF schedule 
for thermal units. The proposed technique aims at minimiz-
ing the energy cost and identifying a secure optimal UC 
schedule for thermal units with a solar power plant in grid-
connected mode.

In [128], the hybrid differential evolution/evolutionary 
programming/PSO algorithm is proposed for solving the 
UC problem of wind and thermal generation to obtain the 
minimum energy cost. The study analyzes the day-ahead 
UC scheduling of thermal units via a stochastic approach 
for wind power generation. The results demonstrate that this 
approach is more robust than a deterministic approach.

Optimal power flow

The OPF determines the optimal operation of MG, espe-
cially for minimizing the operating cost. The optimization 
constraints may include voltage or power, or other variables 
that do not exceed the production capacity limits.

The OPF is typically a nonlinear and nonconvex opti-
mization problem. The nonconvexity is due to the power 
flow and the quadratic equality constraints [129]. Thus, it 
is not easy to solve this problem. A nonlinear optimization 
technique is needed for solving a nonlinear problem. For a 
nonconvex problem, the relaxation method can be used to 
convert it to a convex problem. However, in some cases, the 
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convex relaxation is not exact. The solution to the relaxed 
problem could differ from the solution to the original prob-
lem [130].

The authors in [131] introduce a discrete PSO, namely, 
jumping frog PSO (JFPSO), and OPF for overcoming the 
sitting and sizing problem of DG units. The study aims at 
minimizing the operating cost by considering various tech-
nical constraints, such as voltage limits, thermal limits on 
lines and transformers, operational and planning limits and 
a maximum level of penetration of DG. JFPSO is used to 
determine the locations of the DG units and OPF is used to 
optimize the capacity of the DG units.

In [132], PSO with a time-varying acceleration coefficient 
(PSO-TVAC) and backward forward sweep (BFS) is used to 
solve an online OPF by considering EV charging/discharg-
ing, load curtailment and grid exchange. The objective of the 
first strategy is to minimize the operating cost, and that of 
the second strategy is to maximize profits. These two strate-
gies are compared in terms of the total cost benefit, which is 
calculated as the difference between revenue and expense.

PSO is applied in [133] to solve the OPF problem in mul-
tiple MGs. The study focuses on cost minimization by com-
paring the performance results between PSO and GA. The 
results demonstrate that PSO realizes the best convergence 
performance. Hence, PSO is more efficient for cost optimi-
zation in ED problems than GA.

Reference [134] uses PSO to solve the OPF problem of 
two MGs, which are each comprised of a controllable load, 
PV, WT, and BESS. The objectives are to reduce the costs 
and to shave peak loads of MG systems.

Conclusion

The MG is one of the fastest growing energy sectors, 
although the cost of the electricity that is generated by it 
remains high. Therefore, it is important to identify efficient 
sizing and operation methods to reduce the cost of the elec-
tricity. Additionally, due to environmental problems, we are 
forced to search for strategies that use combustible sources 
more efficiently. Furthermore, MGs have been demonstrated 
to be a powerful technology that makes cities and communi-
ties more sustainable and resilient.

This paper summarizes research developments and the 
implementation of PSO algorithms in renewable energy 
systems. Since a general introduction to MGs has been pro-
vided, economic analysis is considered a key factor in this 
paper. This survey of an economic tool for MG operations 
and sizing can be useful for research on MGs and other 
power systems.

Throughout this review, comments provide a deeper 
understanding of cost analysis in MG optimization. Various 
types of cost functions that are used in MG optimization are 

presented. Cost minimization approaches have been outlined 
according to the supply or demand side, such as EMS, ED, 
UC, and ED. Thus, the features of sizing and operations for 
cost minimization are analyzed, and they include planning 
and scheduling problems, with the objective of minimizing 
the cost.
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