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attribute’s levels, and to compute determinant respondent-specific latent variable

scores applicable to attributes, can more effectively model and distinguish between

rational (i.e., optimizing) decisions and pragmatic (i.e., heuristic) ones, when

parameter estimations for attributes as a whole are crucial to understanding choice

decisions.

Keywords Discrete choice modeling � Experiments � Structural equation

modeling � Partial least squares � Path modeling

1 Introduction

Understanding why individuals make certain decisions that entail a discrete

choice—such as purchasing from a particular retailer, while not purchasing from an

alternative retailer; buying one brand rather than another; or accepting one

employment offer but not another—is crucially important in business (Hensher et al.

2015; Louviere et al. 2008). Irrespective of whether an individual engages in

rational, optimizing decision-making or in pragmatic, heuristic decision-making, the

ensuing intention concerning, or choice that pertains to, a particular alternative is

based on an assessment of the attributes of each alternative and the individuals’

preferences for such attributes. A variety of analytical approaches have been

applied; aimed at trying to specify the relative impact of these attributes empirically

so that to understand and predict choices based on these attributes. For example,

discrete choice modeling (DCM; Louviere et al. 2000) has been applied to

understand the impact of revenue management and loyalty program attributes on

travelers’ purchasing choices (Mathies et al. 2013), of value creation and value

appropriation attributes on managers’ outsourcing choices (Lin et al. 2016) and of

location attributes on foreign direct investment choices (Buckley et al. 2007). Then,

as one of the alternative approaches, partial least squares structural equation

modeling (PLS-SEM; Lohmöller 1989; Sarstedt et al. 2017a; Wold 1982) has been

employed to explain and predict the impact of attributes such as expected return and

asset familiarity on choice of investment portfolio (Seetharaman et al. 2017), ease of

use and trustworthiness on intentions to use consumer-generated media for travel

planning (Ayeh et al. 2013) and price and convenience on, ultimately, intentions to

purchase travel online (Amaro and Duarte 2015). Notwithstanding other analytical

approaches, DCM, however, remains the commonly referred to analytical approach

to explain discrete choices.

Early work involving DCM rested on the assumption that decision-making is a

rational and optimizing (i.e., utility maximizing) process (McFadden 1974), but

more recently DCM has been applied to assess pragmatic, heuristic decision-making

(Bateman et al. 2017). The approach draws on different types of data such as

revealed preference data to explain choices pertaining to actual alternatives, stated

preference data to explain choices related to hypothetical alternatives, or both

(Louviere et al. 2000, Chapter 1). But analyzing any data to empirically determine

the importance weights that individuals place on different attributes, which in turn

shape their preference for a particular alternative, remains challenging
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(Kamargianni et al. 2014). More specifically, the estimated parameters in traditional

DCM analyses are the marginal utility associated with a change in the attribute level

in moving from one alternative to another (e.g., changes in payment terms from 30

to 60 days). But directly estimating the importance weights of the attribute as a

whole (e.g., payment terms relative to opening hours), rather than of distinct

attribute levels, is less straightforward and requires additional calculations, since

commonly used DCM analyses draw on the estimation of importance weights that

apply to different attribute levels (for example, see Louviere et al. 2000, Chapters 11

and 12). Traditional DCM estimations apply commonly used multivariate analysis

methods (e.g., probit, logit and multinomial logit models) when analyzing stated

preference data generated through discrete choice experiments (DCE), but focus on

the attribute level rather than the attribute itself (Louviere et al. 2000, Chapter 1).

Indeed, ‘‘despite common practice, relative attribute impacts in DCEs cannot be

inferred directly from parameter estimates’’ (Lancsar et al. 2007, p. 1752).

While Lancsar et al. (2007) suggest that partial log-likelihood analysis,

consideration of the marginal rate of substitution for non-linear models, incorpo-

ration of Hicksian welfare measures, probability analysis, and best–worst attribute

scaling can assist in overcoming the limitations of traditional DCM approaches, the

objective of this article is to explore an alternative, until now overlooked, approach

and, specifically, to substantiate the usefulness of PLS-SEM for the analysis of

stated preference data generated through DCE in DCM to directly estimate the

importance weight of the attribute as a whole. PLS-SEM is capable of estimating

path models with latent variables, and can combine the information for each level of

an attribute, which then represents the attribute as a whole in the path model (i.e.,

with the attribute levels as indicators of the parent latent variable). Similar to linear

multiple regressions models, the PLS-SEM algorithm requires metric data or quasi-

metric data for the indicators used in the constructs’ measurement model (Hair et al.

2017b, Chapter 1). However, the method also works well with binary coded data.

The use of binary coded data is often a means of including categorical control

variables or moderators in PLS-SEM models. Recent work has also started

exploring the use of non-metric (i.e., ordinal and categorical) data as indicators in

the measurement models of latent variables for the estimation of PLS path models

(Bodoff and Ho 2016; Cantaluppi and Boari 2016; Jakobowicz and Derquenne

2007; Russolillo 2012; Schuberth et al. 2018). These works, however, do not

sufficiently account for the early works of Bertholet and Wold (1984) and

Lohmöller (1989, Chapter 4). About three decades ago, these authors proposed

comprehensive solutions for using the basic PLS-SEM algorithm in a way that it is

applicable to categorical variables using binary coding. Bertholet and Wold (1984)

and Lohmöller (1989, Chapter 4) also point out how the use of PLS-SEM with

binary data rests on meeting selected data requirements, which, as we show, DCE

data thoroughly meets.

When a binary dependent single-item construct is specified in a PLS path model,

the algorithm solution is equivalent to a binary linear regression (Lohmöller 1989,

Chapter 4), and using DCE data yields estimates of linear probability models

(LPMs). Results of this type of PLS-SEM application, therefore, produce estimates

of importance weights for each attribute as a whole (i.e., in the structural model) as
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well as for the specific attribute levels (i.e., in the measurement model of the latent

variables). While PLS-SEM has the ability to produce binary choice model

estimates, neither the academic nor practitioner communities have taken advantage

of this feature of PLS-SEM (for notable exceptions, see Bertholet and Wold 1984;

Lohmöller 1989; Streukens et al. 2010). Therefore, applying PLS-SEM, as

suggested in this research, expands the analytical scope for analyzing DCE data.

Moreover, this type of PLS-SEM application facilitates empirical determination of

the importance weights of attributes as a whole for individuals, and provides a

foundation to empirically assess and advance our understanding of the decision

making that characterizes individuals when their attribute preferences are

considered.

The ability of PLS-SEM to directly estimate the importance weights for attributes

as a whole, rather than merely for the attributes’ levels, and to compute fixed point

(i.e., determinant) respondent-specific latent variable scores applicable to attributes

has important implications. We outline in this article how PLS-SEM can be used to

estimate DCMs pertaining to rational, optimizing (i.e., utility maximizing) decision-

making. We argue, however, that PLS-SEM can also serve to estimate DCMs

relating to pragmatic, heuristic decision-making. That is, whereas traditional DCM

methods have been applied to assess such decision-making (Bateman et al. 2017)

but without explicitly considering the fact that relative attribute impacts cannot be

inferred directly from ensuing parameter estimates (Lancsar et al. 2007), PLS-SEM

is an analytical approach for doing so but with the advantage of inferring directly

the attributes’ relative impacts. Furthermore, the advances in PLS-SEM (e.g.,

analysis of observable and unobservable heterogeneity, mediator, moderator and

nonlinear effects analyses) also enable identification and assessment of decision-

making to distinguish rational, optimizing decisions from heuristic, pragmatic ones,

when parameter estimations for attributes as a whole are crucial. Therefore,

combining the quality of DCE data with the analysis features of PLS-SEM

represents a useful approach to assess discrete choices and specifically, when the

underlying decision making—irrespective of whether rational, optimizing or

pragmatic, heuristic—requires understanding of relative attribute impacts rather

than attribute level effects. Moreover, although not explored in this article, DCM,

which that employs PLS-SEM to DCE data, provides a basis when, for example,

incorporating latent class analyses methods to reveal differences in decision-making

as it applies to managers themselves (Lin et al. 2016) and a variety of their

stakeholders such as alliance partners (e.g., Gudergan et al. 2016) or customers (e.g.,

Mathies et al. 2013).

The remainder of the article is organized as follows: In Sect. 2, we describe

DCM and LPMs in general as a backdrop for illustrating our application of PLS-

SEM to DCE data. Next, we introduce the variance-based PLS-SEM method and its

features to estimate models by indicator data alone. Drawing on these foundations,

we specify four steps to estimate PLS path models with binary indicator data

obtained from a DCE. In Sect. 3, we illustrate the application of PLS-SEM to

estimate importance weights using DCE data that capture stated preferences for

selected retailers. We then compare the PLS-SEM estimations from this illustrative

application with the DCM’s traditional linear probability model estimations. We
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find that both approaches provide almost identical parameter estimates, which

further substantiates the suitability of PLS-SEM for DCM analysis when drawing on

DCE data. In Sect. 4, we discuss the implications of this use, and then offer overall

conclusions in Sect. 5, where we also outline avenues for further research.

2 Using PLS-SEM on DCE data

2.1 Discrete choice modeling and linear probability model estimation

The fundamental DCM is based on Luce’s axioms of random utility theory (RUT),

which was later formalized by McFadden (1974). Accordingly, DCM is commonly

considered to rely on the assumptions of economic rationality and utility

maximization (Hall et al. 2004). Based on these principles, DCM can be specified

as follows: For a decision maker k, the utility of the alternative i is a latent variable

consisting of a systematic component vik and a stochastic component eik (Train

2009), where Uik ¼ vik þ eik. The objective of the decision maker is to maximize the

utility: max Uikðvik; eikÞ. Thereby, the systematic component consists of a vector zik,

which contains the attributes of the alternative, and a vector sk which contains the

attributes of the decision maker, where vik ¼ vikðzik; skÞ. The stochastic component

contains factors, which influence the utility of an alternative but are not part of the

vectors zik and sk. The factors are, for example, unobservable characteristics of the

decision maker, and the alternative or measurement errors (Ben-Akiva and Lerman

1985). These factors comprise the stochastic component eik ¼ eik z�ik; s
�
k ; dik

� �
, with

zik* = unobservable characteristics of the alternative; sk* = unobservable charac-

teristics of the decision maker, and dik = measurement error. The choice of an

alternative is assumed to reflect the latent utility of the alternative (Samuelson

1948), and is the probability Pik for decision maker k, of choosing an alternative i

from the set equal to the probability that Uik from the alternative i, is larger than the

utility of alternatives Ujk in set Ak:

Pik ¼ Pðiji 2 AkÞ ¼ PðUik [Ujk; 8j 2 Ak; i 6¼ jÞ: ð1Þ
Accordingly:

Pik ¼ Pðvik þ eik [ vjk þ ejk; 8j 2 Ak; i 6¼ jÞ; ð2Þ
¼ Pðvik � vjk [ ejk � eik; 8j 2 Ak; i 6¼ jÞ: ð3Þ

It is further assumed that the stochastic components are independent and

identically Gumbel distributed, as a result of integrating over the error term the

choice probability of the logit and probit model (Ben-Akiva and Lerman 1985;

Train 2009):

Pik ¼
evik

P
j2Ak

evjk
: ð4Þ

Different distributional assumptions regarding the error component are premised

on the utility characteristics of the alternative, where the decision maker’s
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preferences may lead to the adaptation of specific models such as probit or logit

(Albers et al. 2007; Gensler 2003). Kahneman and Tversky (1979), Adamowicz

et al. (2008), and others, show that customer choices are not necessarily consistent

with RUT. Cognitive processes play an important role in customer choice

(McFadden 2001), but they are difficult to integrate into classical choice models.

As a result, the combination of data sources (Train 2009), the identification of

heterogeneity, the use of segmentation criteria (Gensler 2003), and the development

of suitable experimental designs (Huber and Zwerina 1996), are often identified as

potentially problematic aspects when deciding on model selection.

While researchers widely apply logit, probit and multinomial logit (MNL)

models for the estimation of DCMs, LPMs may represent a viable alternative (e.g.,

Goldfarb and Tucker 2011a; b). LPMs draw on simple ordinary least squares (OLS)

regressions to determine the impact of independent variables x on the probability

(Pr) of an outcome y. More specifically, let y be a dichotomous variable taking on

the value 1 if an event occurred (product was chosen, performance was deemed

satisfactory, etc.) and 0 if it did not occur. The LPM then uses OLS to estimate

y ¼ xbþ e; ð5Þ

with the usual assumptions about the error term e. Since

Pr y ¼ 1jxð Þ ¼ E yjx; bð Þ ¼ xb; ð6Þ

LPMs calculate the probability that an event occurs and also estimate regression

coefficients that represent the chance of choosing the choice alternative, given a unit

change in the independent variable (Louviere et al. 2000, Chapter 3, Appendix B3).

The major advantage of LPMs is their relatively straightforward estimation and

commonsense interpretation of results.

In binary choice situations, however, it is important to consider certain caveats

(Louviere et al. 2000, Chapter 3, Appendix B3). First, LPMs can predict

probabilities at less than 0 or greater than 1. Second, the residuals of LPMs applied

to binary choice data are by definition heteroscedastic and non-normally distributed,

implying that robust standard errors must be used, and when small samples are

involved inference cannot be based on the t test, which assumes normality. As an

alternative, bias-corrected and accelerated (BCa) bootstrapped confidence intervals

for significance testing may be used (Davison and Hinkley 1997; Efron and

Tibshirani 1993). MNL models overcome the issues of LPMs by assuming

Pr y ¼ 1jxð Þ ¼ G xbð Þ; ð7Þ

with G(*) being the cumulative distribution function (CDF) of the logistic or normal

density function, respectively. The parameters of the MNL models are usually

estimated using maximum likelihood (ML) techniques. As a result, one obtains the

DCM estimates for every attribute level. The sign and size of the coefficients

indicate the positive or negative utility and the magnitude of each attribute level

(Louviere et al. 2000, Chapter 3). The utility differences of an attribute’s levels (i.e.,

the range between the maximum and minimum level) indicate the relative prefer-

ence and importance of an attribute (Zhang et al. 2015). In contrast, the linear

probability model is widely used in empirical research as a simple to compute but
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ad-hoc approximation to what is widely regarded as more theoretically appropriate

nonlinear discrete choice models (Heckman and Snyder 1996). The specific char-

acteristics of LPMs and the relative ease by which nonlinear ML models, such as

logit and probit models, can be estimated have largely contributed to the notion that

the linear logit method is inferior, particularly when explanatory variables are

continuous (Louviere et al. 2000; Appendix B3).

While consistent estimation of the LPM may be difficult, it does not immediately

imply that either a probit, logit or MNL model is the correct specification of the

probability model, since it may be reasonable to assume that probabilities are

generated from bounded linear decision rules. Theoretical rationalizations for the

LPM are evidenced in Rosenthal (1989), Heckman and Snyder (1997), and Horrace

and Oaxaca (2006). Moreover, Heckman and Snyder (1996) show that, by relaxing

the artificial convention in RUT, the shocks to preferences are identically

distributed, and LPMs can indeed be rationalized as random utility models (i.e.,

models where rational decision makers maximize the random utilities they derive

from various outcomes).

Over the last decade, researchers have begun reconsidering the use of LPMs. For

instance, Goldfarb and Tucker (2011a) and Goldfarb and Tucker (2011b) use LPMs

to estimate models with over ten thousand fixed effects, noting that computational

limitations prevented the estimation of a logit model on the full data set. More

specifically, they noted that ‘‘the mass point of [the] dependent variable is far from 0

or 1 and […] [the] covariates are almost all binary variables’’ (Goldfarb and Tucker

2011a, p. 394). As a result, LPMs have advantages for capturing partial effects on

the response probability and for predictive purposes.

2.2 The use of categorical and DCE data in PLS-SEM

The PLS-SEM method facilitates the estimation of path models with latent variables

and linear equations (Wold 1982). The model estimation uses indicator data and an

alternating least squares algorithm, which is subject to predictor specification (Apel

and Wold 1982). The objective of the algorithm is to maximize the explained

variance of the dependent latent variables in the PLS path model. As a result, the

method calculates fixed point (i.e., determinant) scores for the latent variables,

which represent a linear combination of the responses for indicators of each

construct’s measurement model. Using the indicator data, it is possible to estimate

the partial ordinary least squares (OLS) regressions in the PLS path model.

To further introduce the PLS-SEM method, we introduce a stylized simple PLS

path model (Fig. 1). The indicators (i.e., x1 to x9), which are also referred to as

manifest variables, are assigned to the measurement models of the latent variables

(i.e., Y1 to Y3), which are also referred to as constructs. The estimated relationships

in the measurement models (i.e., between the indicators and the constructs) are

known as outer weights (i.e., w1 to w9). In the inner model, which is also referred to

as the structural model, the weights (i.e., p1 to p3), represent estimated path

relationships between the constructs. The error term (i.e., z2 and z3), denotes the

amount of unexplained variance of the dependent variables for each partial

regression model. More specifically, the PLS path model example, as shown in
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Fig. 1, consists of two partial regression models in the inner model (i.e., Y2

regressed on Y1 and Y3 regressed on Y1 and Y2).

Authors such as Dijkstra (2010), Esposito Vinzi and Russolillo (2013),

Lohmöller (1989), Wold (1982) provide a technical introduction to PLS-SEM;

and Chin (2010), Mateos-Aparicio (2011), Rigdon (2013), Sarstedt et al. (2017a)

offer non-technical introductions to PLS-SEM. Review studies on the use of PLS-

SEM in various business research disciplines such as accounting (Lee et al. 2011;

Nitzl 2016), family business (Sarstedt et al. 2014), group and organization

management (Sosik et al. 2009), hospitality management (Ali et al. 2018), human

resource management (Ringle et al. 2018), information systems (Hair et al. 2017a;

Ringle et al. 2012), international marketing research (Henseler et al. 2009; Richter

et al. 2016), marketing (Hair et al. 2012b), operations management (Peng and Lai

2012), psychology (Willaby et al. 2015), strategic management (Hair et al. 2012a),

supply chain management (Kaufmann and Gaeckler 2015), and tourism (do Valle

and Assaker 2016) provide a good orientation into the application of PLS-SEM.

PLS-SEM builds on OLS regression and its linear equations are applicable to

metric and/or quasi-metric (i.e., interval-scaled) variables, which permit linear

transformations (Hair et al. 2017b). Business research, however, often includes

categorical and ordinal-scaled variables in empirical studies and experimental

designs (e.g., Lu et al. 2017). For these type of data, researchers cannot apply the

standard procedures of linear model estimation and results interpretation. While

recent work has started exploring how to use PLS-SEM when drawing on ordinal

and categorical data (Bodoff and Ho 2016; Cantaluppi and Boari 2016; Jakobowicz

and Derquenne 2007; Russolillo 2012; Schuberth et al. 2018), that work provides

only a limited solution and, importantly, does not suitably account for the early

works of Bertholet and Wold (1984) and Lohmöller (1989, Chapter 4). These

authors had already proposed an extension of the PLS-SEM approach that makes it

applicable to categorical variables. In the discussion that follows, we refer to the

Fig. 1 PLS path model
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extended PLS-SEM approach of these authors, since DCE data characteristics

correspond to their data requirements.

One particular type of categorical variable encompasses the Boolean variable,

which only has values of zero or one. A block of Boolean variables replaces a

categorical variable (e.g., a block of five Boolean variables represents the five types

of a categorical variable). In other words, across all types of a categorical variables,

only one of the respective Boolean block variables has the value one and all others

zero. The Boolean variables become the indicators of a categorical construct (i.e.,

the Boolean block) and the categorical constructs can be included in the partial

regressions of the PLS path model. When using categorical scales in PLS-SEM’s

partial linear regression models, in keeping with Pearson’s tradition, the analyses

follow the assumption of an underlying continuum (i.e., without distributional

assumptions).1 As a result, for the PLS path model, we obtain a super contingency

table (Lohmöller 1989, Chapter 4). When considering, for example, a PLS path

model that consists of two categorical constructs (i.e., two Boolean blocks), we

obtain a super matrix, which includes the bivariate relative frequency (i.e., the

contingency table or the super contingency table, as it can contain the pairwise

contingencies of even more than two categorical variables).

The PLS-SEM approach to super-contingency tables has been outlined by

Bertholet and Wold (1984), who along with Lohmöller (1989, Chapter 4), show that

the basic properties of PLS-SEM carry over to contingency tables (also see

Tenenhaus 2004). Moreover, when applying the categorical scaling procedure in

PLS-SEM, only the correlations between the latent variables are taken into account.

The objective of the model estimation is to maximize the weighted sum of all

correlations and the least squares approach generates a solution that meets this

maximization criterion. In PLS-SEM, the correlations between the latent variables

are modeled, estimated, and explained by a system of linear relations (i.e., by the

PLS path model).

When explaining categorical scaling in PLS-SEM, Lohmöller (1989, Chapter 4)

refers to other approaches such as raw scaling and optimal scaling as part of the

PLS-SEM algorithm. A key question connected with these scaling alternatives is the

use of Mode A and Mode B model estimations in PLS-SEM relating to orthogonal

indicator data (Wold 1982). While a Mode A block uses single regressions for the

weights estimations between the latent variable and its indicators, a Mode B block

uses a multiple regression model to regress the latent variables on their indicators.

But the Boolean variables of a categorical construct’s Boolean block always sum to

unity, and therefore, introduce singularities into the analysis. Thus, the singularity

issues of Boolean blocks prohibit the application of Mode B. Whenever the

indicator data are not orthogonal, and we are left with choosing between Mode A

and Mode B in relation to the contingency table analysis, Lohmöller (1989,

Chapter 4) recommends Mode A to be chosen in most instances. As such, the loss

1 For the adaption of categorical variables to PLS-SEM, one can build on either linear (i.e., adaptive) or

loglinear (i.e., multiplicative) models. While loglinear models usually view the categories of a cross-

classification as fixed in Yule’s tradition (i.e., the cross-product ratio of a, for instance, 2 9 2 table is not

a substitute for an estimate of the true correlation coefficient of an underlying continuum), Pearson

assumes an underlying continuum for a dichotomy (or a polychotomy) and multinormality.
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function minimization of the PLS-SEM algorithm includes the indicator variables’

variance of a Mode A block in a redundancy model (i.e., the PLS path model

transforms into a principal predictor model, which extracts the solution of the

categorical scaling method). But when a PLS-SEM analysis is run, model

estimations using Mode A and Mode B provide identical results for a block of

orthonormal variables (Lohmöller 1984). The term orthonormal denotes that the

indicators are uncorrelated (i.e., orthogonal) and standardized to unit variance (i.e.,

normal). Otherwise, when the data is not orthonormal, the distinction between Mode

A and Mode B estimation can be placed outside the estimation procedure. Thus,

while all Mode B blocks are orthonormalized prior to the iteration phase and

transformed back following the iterations phase, all Mode A blocks are transformed

by an identity, so that within the iteration no distinction between Mode A and Mode

B blocks needs to be made.

Under these considerations, as Lohmöller (1989, Chapter 4) shows, PLS path

models using categorical indicator data and multiple latent variables can be

estimated with the standard PLS-SEM algorithm. The results of outer weights/

loadings and inner weights must be transformed, however, to the metric of the

Boolean variables (i.e., the metric of interpretation). Moreover, when the

categorical data matrix is used as an input, which the PLS-SEM method

standardizes, the solution of the dummy variables must be rescaled to the correct

metric. When using standardized data, the rescaling of the outer weights wk uses

the outer weights estimation ~wk and divides them by the square root of the original

indicator data’s mean value mk, whereby k represents the indicator number per

Boolean block:

wk ¼ ~wk=
ffiffiffiffiffiffi
mk

p
: ð8Þ

Similarly, one obtains the rescaled results of the structural relationships pk by

multiplying the estimated values ~pk by the square root of the original indicator

data’s mean value mk:

pk ¼ ~pk �
ffiffiffiffiffiffi
mk

p
: ð9Þ

In summary, the PLS path model estimation of categorical variables requires that

the following steps be followed:

1. [Model] When creating the PLS path model, use Boolean blocks for each

categorical variable, whereby a Boolean variable represents each category.

2. [Data] Use orthonormal data, that have no correlations between the Boolean

indicators and that are standardized to unit variance.

3. [Estimation] When data is orthonormal, Mode A and Mode B model

estimations include the same results; thus, the standard PLS-SEM algorithm

allows the estimation of PLS path models using categorical indicator data and

multiple latent variables.

4. [Rescaling] A last step involves the transformation of the estimated inner and

outer weights and outer loadings into the metric of the Boolean variables (i.e.,

the metric of interpretation).
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The characteristics of DCE data match entirely the use of categorical data in

PLS-SEM. In PLS-SEM, besides the single-item Boolean choice construct (i.e., the

endogenous latent variable in the structural model), the other constructs represent

the attributes (i.e., the exogenous latent variables). The attribute level data, which

usually are Boolean variables in DCM, become the indicators of the attribute

constructs (i.e., the attribute constructs represent a Boolean block), as shown in

Fig. 2. The experimental design of DCEs usually ensures that the attribute level data

are orthogonal. Hence, when using DCE data in PLS-SEM, the Boolean blocks of

(categorical) attributes build on orthogonal indicator data (i.e., the attribute levels).

Note that when the PLS path model estimation uses orthogonal indicator data, the

distinction between Mode A and Mode B measurement of constructs (see Wold

1982) becomes obsolete since results are identical in this kind of situation.

Lohmöller (1989, Chapter 4) uses the approach to estimate a PLS path model where

the manifest variables are partly considered as categorical and partly as interval-

scaled to explain a binary single-item target construct.

The use of DCE data to estimate a PLS path model meets the four steps and

requirements of Bertholet and Wold’s (1984) and Lohmöller’s (1989, Chapter 4)

categorical variables approach to PLS-SEM. The requirements are: (1) while the

choice variable represents a Boolean single-item construct, the attribute level data

allow establishing Boolean blocks; (2) the experimental design of DCE data ensures

that the attribute level data is orthogonal; after standardization, the data is

orthonormal; (3) the orthonormal DCE data permits the use of the PLS-SEM

algorithm to estimate the model, whereby Mode A and Mode B provide (almost)

identical results; and (4) the mean value of the Boolean variables allows rescaling of

the estimated coefficients of the Boolean blocks in the outer and inner PLS path

model (Eqs. 8 and 9). With regard to step (4), the experimental design of the DCE

data usually ensures that the analysis includes an equal number of each attribute

Fig. 2 PLS path model using DCE data
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level (e.g., Figure 2, where the four attribute levels of Attribute 1 each have a mean

value of 0.25).

Figure 3 summarizes the process of using DCE data in PLS-SEM. We adapt this

approach to estimate PLS path models with DCE data. Thereby, the latent variables

in the PLS path models summarize attributes across their blocks of indicators, which

represent the specific attribute levels. The relationship of the attribute levels on the

construct (e.g., attr11 in Fig. 2) depicts its relevance for the attribute. If ordinal or

interval attribute levels have been used for a certain attribute (i.e., each indicator

represents a certain data point on the ordinal or interval scale), the experimental

design of the DCE data ensures that the model estimation results (i.e., the outer

weights) build on the appropriate distance between the attribute levels, which

usually are not equidistant. Another advantage of using PLS-SEM on DCE data

concerns the estimations for the attribute as a whole (e.g., ATTR1 in Fig. 2) on the

target constructs (i.e., the choice variable). Thereby, the attribute, which plays a

particularly important role for the choice decision, becomes evident. Moreover,

PLS-SEM provides latent variables scores for the attributes (e.g., ATTR1 in Fig. 2).

These data can be used for complementary PLS-SEM analyses such as prediction-

oriented results assessment (Shmueli et al. 2016) or latent class segmentation using

FIMIX-PLS (Sarstedt et al. 2017b).

3 Illustration

3.1 DCE data

The illustration in this article serves to demonstrate that PLS-SEM can be used for

the analysis of DCE data in DCM. In the following, we briefly describe the

experimental design and the DCE data, on which this illustration draws. We then

outline the PLS-SEM analysis and present ensuing results, and conclude with

comparing these results with those estimated using traditional DCM analysis.

The illustrative example is a typical DCM application. The management of a

major retailer in rural Australia was interested to reveal those characteristics of their

operations that were more or less important to their customers. For this purpose,

they specified ten key attributes such as product range, staff product knowledge, and

opening hours (Table 4 in the Appendix). Each of these attributes was further

defined by specific attribute levels. The DCM analysis allows revealing which

attribute level has the highest effect and, thus, the highest impact on the customers’

choice concerning rural retailer. Based on these findings (i.e., the rank-order impact

Fig. 3 DCE data use in PLS-SEM
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of attribute levels), the management of the rural retailer can optimize their

operations to effectively run their business in accordance with the choice behavior

of their customers and, thereby, improve their competitiveness.

The data were collected as part of a larger study that focused on the identification

of the importance of attributes that retailers in rural Australia could operationally

influence. In this illustrative use of PLS-SEM for DCM in this article, we draw on

DCE data relating to the choice of whether or not to buy dog food from a certain

retailer, out of a set of two alternative retailers. The data is comprised of 4288 valid

observations from 268 respondents. The experimental design to obtain DCE data

involved identification of those attributes that mattered to respondents and

specification of realistic and meaningful attribute levels. The next stage was the

generation of hypothetical alternatives and combinations of the attributes with

certain levels to create choice sets. Focus group research, involving customers of

dog food from rural retailers, served to identify an initial set of relevant attributes.

To further prioritize which attributes mattered most from the rather large list that

had been identified from the focus group research, we carried out best–worst scaling

(BWS; Louviere et al. 2013, 2015) research. Based on the outputs from the BWS

research and discussions with the management of a retailer, we identified a

hierarchy (i.e., a ranking) of attributes that allowed selecting those that appeared to

be important to customers and that retailers could operationally influence. Further

focus group research and also discussions with the management of that same retailer

then served to assign attribute levels. This illustrative study considers 14 attributes

of which six have four levels and eight have two levels (Table 4 in the Appendix).

The creation of choice sets for the elicitation of the DCE data was based on a

fractional factorial main effects experimental design, followed by a partitioning into

48 blocks. This resulted in each survey respondent receiving two choice task sets.

The first choice task set comprised eight choice sets with each choice set containing

two alternatives from which to choose. Each of the alternatives provided retailer

descriptions that varied based on the extreme levels of each attribute, meaning that

in a two-level attribute, the respondent was shown level 1 or level 2; and in a four-

level attribute, the respondent was shown level 1 or level 4, whereas levels 2 and 3

were not shown, hence referred to as an end-point design. For each of the eight

choice sets, the survey respondents were asked to choose either RetailerA or

RetailerB, based on which appealed most to them. The second choice task set was

comprised of eight choice sets with each choice set containing two alternatives from

which to choose. Each of the alternatives provided retailer descriptions that varied

based on any of the attribute levels, hence referred to as a multi-level design. For

each of the eight choice sets, the survey respondents were asked to choose RetailerA

or RetailerB, based on which was most appealing to them.

3.2 Using PLS-SEM to analyze DCE data in DCM

To use the DCE data with PLS-SEM, in Step 1 [Model], we need to develop a PLS

path model as shown in Fig. 2. The choice variable becomes the single-item target

construct (i.e., CHOICE) in this model. The outer weights relationship (specified as

1) between the single choice indicator and the CHOICE construct indicates that
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their scores are identical. The well-known notion of caution for using a single item

construct in SEM (Diamantopoulos et al. 2012; Sarstedt et al. 2016a) does not apply

in the case of the binary choice variable obtained from discrete choice experiments.

The main reasons are the nature of the target construct, which represents a clear-cut

binary decision (i.e., chose or did not choose), and the experimental design for the

data collection, which reduces potential reliability issues.

The independent constructs (i.e., ATTR1 and ATTR2) in this model represent main

attributes that explain the dependent CHOICE construct. The indicators of each

attribute stem from the attribute level variables of the discrete choice experiment

data. In other words, each attribute (e.g., ATTR1) is formed by its attribute level data

(e.g., attr11, attr12, attr13, and attr14). In the inner model, the size of the standardized

OLS regression coefficients p1 and p2 indicate the importance of each main attribute

for the CHOICE explanation. Similarly, the standardized OLS regression coeffi-

cients of the outer weights (e.g., w11, w12, w13) indicate the relative importance of

each attribute level in forming the attribute. Both the inner model and outer model

coefficients can have positive or negative signs. The multiplication of the outer and

inner coefficients provides the total effect of each attribute level on CHOICE.

When using PLS-SEM to estimate the composite indicator models of the

attributes, one selects between correlation weights (Mode A) and regression weights

(Mode B) for the model estimation (Sarstedt et al. 2016b). Each method of model

estimation has advantages and disadvantages (Becker et al. 2013a). Since the

attribute level data of a specific attribute are orthogonal in discrete choice

experiments, the PLS-SEM model estimations are identical when using correlation

weights or regression weights. In this application, we use correlation weights for the

PLS-SEM estimation (i.e., Mode A), as Lohmöller (1989, Chapter 4) recommends.

The DCE data for this illustration allows us to establish a PLS path model like the

one shown in Fig. 2, except that is considerably more complex. In total, the retailer

choice example includes 14 attributes and each attribute has two or four attribute

levels. Table 4 (in the Appendix) shows the names of the attributes and depicts their

attribute levels. The experimental design of this example provides orthonormal data,

which have no correlations between the Boolean indicators. An inspection of the

correlation matrix, in Step 2 [Data], confirms this expectation. In Step 3

[Estimation], we standardize the data to unit variance and use the PLS-SEM

algorithm (Mode A). We estimate the PLS path model using the SmartPLS 3

software (Ringle et al. 2015). Table 1 shows the results.

In the inner model, ATTR10 (i.e., stock availability) and ATTR2 (i.e., staff product

knowledge) have the strongest effect on CHOICE, followed by ATTR4 (i.e.,

independence of advice) and ATTR9 (i.e., product range). The outer weights indicate

the importance of an attribute level for the attribute. For instance, the lowest and

highest staff product knowledge levels (i.e., attr2.1 and attr2.4) have the strongest

negative and positive effects on ATTR2.

To obtain the impact of each attribute level on CHOICE, one multiplies the outer

weights by the inner model coefficients (e.g., att11 -[CHOICE = w11 9 p1;

Fig. 2). Then, in Step 4 [Re-scaling], we conduct the adjustment of PLS-SEM

coefficients for PLS path models with Boolean, categorical, and interval-scaled

manifest variables as proposed by Lohmöller (1989, Chapter 4). Table 2 shows the
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corresponding results. We find that attribute levels attr10.1 versus attr10.4 (often

stock has to be ordered in versus stock nearly always available), attr2.1 versus attr2.4

(no real product knowledge versus extensive product knowledge of the personnel),

attr4.1 versus attr4.2 (unsure whether advice may be biased versus trusted to provide

unbiased advice), and attr9.1 versus attr9.2 (limited versus wide range of brands)

have the highest effect on choice. These findings on the attribute levels mirror the

relevance of the main attributes as depicted by the inner model relationships

(Table 1).

3.3 Results Comparison and Discussion

To assess the PLS-SEM estimations, we draw on the conditional logit estimation of

the DCM (Louviere et al. 2000) using the STATA software (StataCorp 2015). The

estimations include the positive and negative effects of each attribute level on

CHOICE (Table 2). As a typical DCM result, we find that some attribute levels have

a particularly strong effect on CHOICE (e.g., attr2.1 and attr2.4, which are related to

low and high product knowledge of the staff) while others have almost no impact

(e.g., attr8.1 and attr8.2, which are related to the retailer’s branding).

Table 1 PLS-SEM results

Measurement models Structural model

Indicators Outer weights Indicators Outer weights Relationships Inner weights

attr1.1 - 0.849 attr7.1 1.000 ATTR1 ? CHOICE - 0.063

attr1.2 - 0.213 attr8.1 1.000 ATTR2 ? CHOICE 0.134

attr1.3 0.493 attr9.1 1.000 ATTR3 ? CHOICE - 0.037

attr1.4 0.569 attr10.1 1.000 ATTR4 ? CHOICE - 0.086

attr2.1 - 0.710 attr11.1 1.000 ATTR5 ? CHOICE - 0.032

attr2.2 - 0.365 attr12.1 - 0.763 ATTR6 ? CHOICE - 0.013

attr2.3 0.297 attr12.2 0.003 ATTR7 ? CHOICE - 0.025

attr2.4 0.779 attr12.3 - 0.100 ATTR8 ? CHOICE - 0.006

attr3.1 1.000 attr12.4 0.861 ATTR9 ? CHOICE - 0.075

attr4.1 1.000 attr13.1 0.454 ATTR10 ? CHOICE - 0.148

attr5.1 1.000 attr13.2 - 0.899 ATTR11 ? CHOICE - 0.056

attr5.2 - 0.342 attr13.3 - 0.110 ATTR12 ? CHOICE 0.065

attr5.3 - 0.331 attr13.4 0.555 ATTR13 ? CHOICE 0.032

attr5.4 - 0.326 attr14.1 1.000 ATTR14 ? CHOICE - 0.017

attr6.1 - 0.470 choice 1.000

attr6.2 - 0.510

attr6.3 0.059

attr6.4 0.921

attr attribute level, ATTR attribute as a whole; for the description of attributes and attribute levels, see

Table 4 in the Appendix
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Table 2 Cross-validation of results

Attribute Attribute

level

Conditional

logit model

PLS-SEM rescaled

total effects

Delta*

ATTR1 Retailer attr1.1 0.135 0.124 0.011

attr1.2 0.038 0.031 0.007

attr1.3 - 0.092 - 0.072 - 0.020

attr1.4 - 0.082 - 0.083 0.002

ATTR2 Staff product knowledge attr2.1 - 0.279 - 0.219 - 0.059

attr2.2 - 0.124 - 0.113 - 0.011

attr2.3 0.094 0.092 0.002

attr2.4 0.310 0.240 0.069

ATTR3 Staff professionalism attr3.1 - 0.081 - 0.074 - 0.008

attr3.2 0.081 0.074 0.008

ATTR4 Independence of advice attr4.1 - 0.161 - 0.173 0.012

attr4.2 0.161 0.173 - 0.012

ATTR5 Opening days attr5.1 - 0.108 - 0.073 - 0.035

attr5.2 0.039 0.025 0.014

attr5.3 0.013 0.024 - 0.011

attr5.4 0.055 0.024 0.031

ATTR6 Opening hours attr6.1 - 0.004 0.015 - 0.019

attr6.2 0.027 0.016 0.012

attr6.3 - 0.016 - 0.002 - 0.015

attr6.4 - 0.006 - 0.029 0.022

ATTR7 Store presentation attr7.1 - 0.055 - 0.049 - 0.006

attr7.2 0.055 0.049 0.006

ATTR8 Store branding attr8.1 - 0.025 - 0.013 - 0.012

attr8.2 0.025 0.013 0.012

ATTR9 Product range attr9.1 - 0.141 - 0.150 0.009

attr9.2 0.141 0.150 - 0.009

ATTR10 Stock availability attr10.1 - 0.257 - 0.297 0.039

attr10.2 0.257 0.297 - 0.039

ATTR11 On farm delivery attr11.1 - 0.105 - 0.112 0.007

attr11.2 0.105 0.112 - 0.007

ATTR12 Professional advisory service attr12.1 - 0.155 - 0.114 - 0.041

attr12.2 0.009 0.000 0.008

attr12.3 - 0.031 - 0.015 - 0.016

attr12.4 0.177 0.129 0.048

ATTR13 Payment terms attr13.1 0.027 0.034 - 0.007

attr13.2 - 0.077 - 0.067 - 0.010

attr13.3 - 0.016 - 0.008 - 0.008

attr13.4 0.067 0.042 0.026

ATTR14 Late payment fee attr14.1 - 0.042 - 0.034 - 0.009

attr14.2 0.042 0.034 0.009

Absolute average delta 0.019

*Delta is the difference between conditional logit model estimations and rescaled PLS-SEM total effects of the

attribute levels on the choice indicator
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We compare the conditional logit estimations of the DCM with the rescaled PLS-

SEM estimations of the total effect (i.e., the outer model coefficients multiplied with

the inner model coefficient; see Fig. 2 and Table 1). The PLS-SEM estimations and

the conditional logit estimations then have the same (i.e., expected) signs. Also, the

estimations for the effects of the attribute levels on choice differ only slightly in

their values. The mean absolute difference of the conditional logit estimation and

the PLS-SEM estimation of the DCM has a value of 0.019. The differences can be

explained based on the different estimators (i.e., ML-based conditional logit model

estimation versus OLS-based PLS-SEM estimation), the slightly imperfect orthog-

onal data, and different rounding, especially in combination with the multiplication

of outer and inner model coefficients in PLS-SEM. However, the signs, rank-order

of estimated coefficients, and their final values, lead to the same outcome and

interpretation.

An often used approach to interpret results from estimations of DCMs from DCE

data are the importance weights (Louviere and Islam 2008; Schlereth and Schulz

2014). The idea is to depict the relative importance of the attribute as a whole based

on the strength of the estimated coefficients for the attribute levels. More

specifically, for each attribute, one computes the span of the attribute level results.

The importance weight of an attribute is a percentage value that results from the

span of its attribute levels divided by the sum of all attributes’ spans (Zhang et al.

2015). Table 3 shows the importance weights based on the attribute level results

when using the conditional logit model and PLS-SEM rescaled total effects (as

shown in Table 2). For this kind of analysis, we also find that the results obtained by

the conditional logit and PLS-SEM estimations differ only marginally.

In an additional analysis, we investigate if the inner model PLS-SEM estimations

(e.g., for p1 and p2 in Fig. 2) are comparable with the obtained importance weights,

and thus can be directly used to assess the relevance and importance of the whole

attribute to explain the choice. For this purpose, we compute the importance weights

of the inner model in the same way as we did for the attribute levels, which is in line

with the importance weights computation in PLS-SEM that Becker et al. (2012)

proposed. We also find that the results only differ marginally (Table 3). Hence, to

analyze the importance of an entire attribute for the choice decisions, one could

directly interpret the inner model PLS-SEM coefficients as shown in Table 1. When

focusing on the attributes instead of the attribute levels, both results (i.e., the

importance weights and the inner model PLS-SEM coefficients) substantiate that

ATTR2 (i.e., the staff product knowledge) and ATTR10 (i.e., stock availability) have

the highest importance weight and inner model effect on CHOICE, followed by,

ATTR4 (i.e., independence of advice) and ATTR12 (i.e., professional advisory

service).

This example shows how the use of DCE data in PLS-SEM allows to directly

derive values of relative attribute impacts that capture the attribute as a whole

(rather than attribute levels). While generating these values has theoretical

implications, revealing the specific decision-making rules (i.e., based on attributes

as a whole), which various stakeholders deploy, allows managers to better deal with

them and to tail activities towards them. For instance, if payment terms do not

matter, then such attribute can be disregarded when determining suitable business
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models that can be valuable in certain markets. On the other hand, knowing that

other attributes have a significant impact on how stakeholders react implies that

business models can be conceived in a way that they may incorporate novel, but

superior, ways of enhancing value to stakeholders. This is a noteworthy advantage

that comes with an interpretation of attributes as a whole for managerial decision

making rather than reverting to design-specific attribute levels. Moreover, analyzing

the results of a multitude of attribute levels (40 in this example) imposes a

complexity when comparing their relatively small results across different attribute

dimensions. Instead, the managers can now focus on a considerably smaller number

of attributes as a whole (14 in this example), which entail more pronounced

differences in their impact on choice. Hence, not only does an analysis that

considers the attribute as a whole, rather than one that is based on attribute levels,

provide less constraints and greater flexibility in considering novel ways of

increasing value in regard to certain attributes, it also comes with less complexity

simplifying managerial decision making. Finally, advanced PLS-SEM methods

Table 3 Importance Weights

Attribute Description Importance weights Delta

1*

Delta

2**
Conditional

logit model

(%)

PLS-SEM

rescaled total

effects (%)

PLS-SEM

inner model

(%)

ATTR1 Retailer 7.02 6.40 7.98 0.62 - 0.96

ATTR2 Staff product

knowledge

18.22 14.20 16.98 4.02 1.24

ATTR3 Staff

professionalism

5.01 4.58 4.69 0.43 0.32

ATTR4 Independence of

advice

9.96 10.71 10.90 - 0.74 - 0.94

ATTR5 Opening days 5.04 3.03 4.06 2.01 0.98

ATTR6 Opening hours 1.33 1.39 1.65 - 0.06 - 0.32

ATTR7 Store presentation 3.40 3.03 3.17 0.37 0.23

ATTR8 Store branding 1.55 0.80 0.76 0.74 0.79

ATTR9 Product range 8.73 9.28 9.51 - 0.56 - 0.78

ATTR10 Stock availability 15.90 18.38 18.76 - 2.48 - 2.86

ATTR11 On farm delivery 6.50 6.93 7.10 - 0.43 - 0.60

ATTR12 Professional

advisory

service

10.27 7.52 8.24 2.75 2.03

ATTR13 Payment terms 4.46 3.37 4.06 1.08 0.40

ATTR14 Late payment fee 2.60 2.10 2.15 0.50 0.45

*Delta 1 is the difference in percentage points between importance weights obtained by the conditional

logit model estimations and rescaled PLS-SEM total effects of the attribute levels on the choice indicator

**Delta 2 is the difference in percentage points between importance weights obtained by the conditional

logit model estimations and the PLS-SEM inner model (total) weights of the attributes as a whole on the

choice construct
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(e.g., segmentation analyses) allow generating group-specific insights through

accounting for a priori known differences between stakeholder groups based on

observable characteristics or through uncovering stakeholder groups that differ in

the relative attribute impact pertaining to them. In turn, managers can develop

group-specific programs to have greatest impact.

4 Summary and implications

DCM can draw on revealed preference data to explain choices pertaining to actual

alternatives, stated preference data to explain choices related to hypothetical

alternatives, or both. When drawing on stated preference data (i.e., on DCE data),

experimental designs for the elicitation of attribute level preferences allow for the

formation of binary indicators that are orthogonal. These DCE data characteristics

are advantageous when applying multivariate analysis methods.

While the PLS-SEM method has become popular to estimate complex models

with latent variables, its goal to explain and predict a target construct of interest

makes it particularly useful for estimating DCMs. For this purpose, a block of

indicators per measurement model establishes a latent variable. Consequently, DCE

data represent a suitable foundation for the estimation of PLS path models, which

this paper illustrates. We outline that PLS-SEM offers features to estimate PLS path

models when employing binary indicator data only. For this purpose, the researcher

must create a PLS path model that only uses Boolean blocks for each categorical

variable, whereby a Boolean indicator variable represents each category (Step 1,

Model). The PLS path model estimation uses orthonormal data, which have no

correlations between the Boolean indicators and that are standardized to unit

variance (Step 2, Data). Then, the standard PLS-SEM algorithm estimates PLS path

models using categorical indicator data and multiple latent variables. More

specifically, when the data is orthonormal, Mode A and Mode B model estimations

produce the same results (Step 3, Estimation). Lastly (Step 4, Rescaling), the

estimated inner and outer weights and outer loadings require transformation into the

metric of the Boolean variables (i.e., the metric of interpretation).

Following these four steps, PLS-SEM estimations yield results that are similar to

those obtained for the attribute levels when using conditional logit model

estimations. Also, the importance weights for the relevance of attributes as a

whole, as typically determined in DCM through subsequent calculations, match the

inner PLS path model estimations. We illustrate these notions by drawing on an

empirical example that uses DCE data concerning retailer choice. Specifically, we

leverage this illustrative example to compare estimates of a conditional logit model

employing STATA with those of PLS-SEM employing SmartPLS 3. The results of

the traditional DCM estimation using conditional logit models and the PLS-SEM

method reveal negligible differences (i.e., of a mean absolute results difference

value of 0.019) for this illustrative example. These differences are likely

attributable to rounding errors and negligible design and error term distribution

problems. Therefore, based on the analytical arguments we have outlined above,
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and the findings from the illustrative example using PLS-SEM, we conclude that

DCMs can be estimated using PLS-SEM when drawing on DCE data.

Demonstrating the capacity of PLS-SEM to estimate models using DCE data has

several advantages. First, besides the analyses on the numerous and relative specific

attribute levels, it is often beneficial to reduce the complexity for decision-making

and to focus conclusions on attributes as a whole rather than the attributes’ levels.

The PLS-SEM results directly reveal the relative importance weights for attributes

as a whole for the choice by the inner model relationships, rather than calculating

them from importance weights estimated for attribute levels. Further, the outer

weights relationships in the PLS path model represent the relative importance per

attribute level (i.e., the indicators). Moreover, the total effects of the attribute levels

on the choice constructs (i.e., the product of the outer and inner relationships)

facilitate comparing their relative importance across all attributes. Thereby, the

PLS-SEM results provide a comprehensive picture of the relevant attributes for

advancing understanding about the decision-making that characterizes individuals,

while considering their preferences for attributes.

Second, when drawing choice behavior related conclusions for the whole

attribute, PLS-SEM is advantageous since the method computes latent variable

scores, which entail a fixed point (i.e., determinant) estimate for every respondent.

Using these latent variables scores, the researcher can conduct respondent-specific

analyses for the explanation and prediction of the decision maker’s choice behavior,

not only on the attribute level but also for the attribute as a whole (for prediction-

oriented PLS-SEM analyses see, for instance, Shmueli et al. 2016). Also, the latent

variable scores can be used to run complementary statistical and PLS-SEM

analyses. For example, the structural model relationships can be examined for the

presence of unobserved heterogeneity characterized by the attributes as a whole and

their effects on the choice behavior, rather than at the individual attribute level.

PLS-SEM segmentation approaches such as finite mixture partial least square

(FIMIX-PLS; Hahn et al. 2002) and partial least square prediction oriented

segmentation (PLS-POS; Becker et al. 2013b) support this kind of analysis.

Alternatively, the use of permutation-based multigroup analysis (Chin and Dibbern

2010) or moderator analysis (Becker et al. 2018) makes it possible to examine

differences among decision makers based on observed grouping variables such as

socio-demographic variables. Another possible complementary analysis, which

often is of interest in applications, allows obtaining results for non-linear (i.e.,

quadratic) effects between the attribute constructs and the choice behavior in the

structural model when using PLS-SEM (Hair et al. 2018). These capacities of the

OLS-based PLS-SEM method extend the established use of LPM estimations in

DCM.

5 Conclusions and future research

The objective of this article was to demonstrate the usefulness of PLS-SEM for the

analysis of DCE data in DCM to estimate directly the importance weight of the

attribute as a whole. Analytical arguments were provided that substantiate why and
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how PLS-SEM is applicable for DCM and the direct estimation of important

weights of attributes as a whole. We then showed that DCMs can be estimated using

PLS-SEM when drawing on DCE data, and that the estimations are largely

consistent with those that are based on traditional DCM analyses drawing on LPMs.

Therefore, we argue PLS-SEM can be used to estimate DCMs pertaining to rational,

optimizing decision-making, as we assumed in the illustrative application described

in this article, but also those relating to pragmatic, heuristic decision-making. The

advances in PLS-SEM (e.g., analysis of observable and unobservable heterogeneity,

mediator and moderator analysis, analysis of nonlinear effects) enable identification

and assessment of decision-making to distinguish rational and optimizing (i.e.,

utility maximizing) decisions from heuristic and pragmatic ones, when parameter

estimations for attributes as a whole are crucial. In addition to these implications for

theory, the application of PLS-SEM for DCM also offers managerial ones. An

analysis that considers the attribute as a whole, rather than one that is based on

attribute levels, provides less constraints and greater flexibility in considering novel

ways of increasing value in regards to certain attributes; and it also comes with less

complexity simplifying managerial decision-making as it applies to all business

contexts such as sourcing, investments, business models, and stakeholder programs,

including customer-related ones.

This research is not without limitations, however. In fact, it represents a

foundational article that demonstrates the use of DCE data in PLS-SEM, as well

as PLS-SEM for DCM. Building on this foundation, we anticipate future research

will further explore and exploit the advantages and opportunities of PLS-SEM in

DCM. For example, a particularly fruitful area of future research is respondent-

specific analysis, in combination with research on uncovering heterogeneity and

multigroup analyses, when using DCE data in PLS-SEM. Data obtained from

DCE usually involves multiple responses per individual. So far, PLS-SEM does

not offer capabilities to account for multiple responses per individual in the

analyses and model estimations. Such capabilities would be very useful to obtain

individual level PLS-SEM results. This kind of extension is also appropriate for

all complementary PLS-SEM analyses when using DCE data (e.g., mediation,

moderation, FIMIX-PLS, PLS-POS, non-linear effects; Hair et al. 2018). For

instance, accounting for multiple responses per individual is particularly important

when carrying out PLS-SEM segmentation approaches to uncover unobserved

heterogeneity on the individual level (i.e., an assignment to a segment involves all

responses of a certain individual). Moreover, prediction-oriented analyses of PLS-

SEM results (e.g., Shmueli et al. 2016) when using DCE data represents a

promising avenue of future research. For this purpose, the point estimates

provided by PLS-SEM (i.e., the latent variables scores) are particularly

advantageous.

Finally, accounting for decision maker characteristics when using PLS-SEM in

DCM to explain choice decisions is another fruitful area for further research.

Consideration of socio-demographic data for this purpose is not necessarily

sufficient and modeling the impact of characteristics such as the decision maker’s

attitudes or values may be required (Temme et al. 2008). Attempts to account for

such decision maker characteristics, so far, have been based on the covariance-
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based SEM approach by including latent variables as additional predictors (e.g.,

Ben-Akiva et al. 2002; Daly et al. 2012; Kamargianni et al. 2014; Prato et al.

2012; Rungie et al. 2012). Temme et al. (2008) further explored this by not only

including latent variables as additional predictors but also by estimating a

multinomial choice model and hierarchical relationships between the constructs

(also see Hildebrandt et al. 2012). However, the question remains as to why past

research has focused on covariance-based SEM to account for latent variables in

DCM instead of drawing on variance-based PLS-SEM (Rigdon et al. 2017). The

PLS-SEM approach appears to better meet the composite character of latent

variables in such models (Sarstedt et al. 2016b), and may more effectively match

the explanation and prediction-oriented goals of DCM, given its prediction-

oriented advantages (Evermann and Tate 2016). Hence, future research can extend

the use of PLS-SEM as proposed in this article when DCM estimation draws on

DCE data by incorporating latent variables to model the impact of, for example,

attitudes and values. This, in turn, will allow researchers to empirically determine

whether the importance values, which individuals place on different attributes and

which shape their preference for certain options, are conditioned by the context or

customer characteristics.
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Table 4 Discrete choice experiment

Attribute Attribute level

ATTR1 Retailer attr1.1 Retailer Brand 1**

attr1.2 Retailer Brand 2**

attr1.3 Retailer Brand 3**

attr1.4* Other retailer*

ATTR2 Staff product knowledge attr2.1 No real product knowledge

attr2.2 Limited product knowledge

attr2.3 Moderate product knowledge

attr2.4* Extensive product knowledge*

ATTR3 Staff professionalism attr3.1 Not consistently professional in appearance and

manner

attr3.2 Consistently professional in appearance and manner

ATTR4 Independence of advice attr4.1 Unsure whether advice may be biased

attr4.2* Trusted to provide unbiased advice*

ATTR5 Opening days attr5.1 5 days only

attr5.2 5.5 days (close at midday Sat)

attr5.3 6 (closed Sun)

attr5.4* 7 days*

ATTR6 Opening hours attr6.1 8 am to 5 pm

attr6.2 7 am to 5 pm

attr6.3 7 am to 7 pm

attr6.4* 7 am to 9 pm*

ATTR7 Store presentation attr7.1 No investment in store presentation

attr7.2 Significant investment in store presentation

ATTR8 Store branding attr8.1 No external store branding

attr8.2* Easily recognized external store branding*

ATTR9 Product range attr9.1 Limited range of brands

attr9.2* Wide range of brands*

ATTR10 Stock availability attr10.1 Often stock has to be ordered in

attr10.2* Stock nearly always available*

ATTR11 On farm delivery attr11.1 No free delivery

attr11.2* Free delivery*

ATTR12 Professional advisory

service

attr12.1 No on-farm professional advisory service

attr12.2 On farm advice paid for in product margin

attr12.3 On farm advice paid for as separate fee

attr12.4* Free on-farm professional advisory service*

ATTR13 Payment terms attr13.1 1.2% discount for\ 30 days

attr13.2 30 days

attr13.3 60 days

attr13.4* 90 days*
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