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Abstract
Purpose of Review Three-dimensional (3D) data on forest structure have transformed the level of detail and accuracy of forest
information. While these 3D data have primarily been derived from airborne laser scanning (ALS), there has been growing
interest in the use of 3D data derived from digital aerial photogrammetry (DAP) and image-matching algorithms. In particular,
research and operational forestry communities are interested in using DAP data to update existing ALS-derived enhanced forest
inventories. Although DAP depends on accurate terrain information provided by ALS to normalize digital surface models to
heights above ground, in an inventory update scenario, DAP data currently have cost advantages over repeat ALS acquisitions.
Recent Findings Extensive research across a broad range of forest types has demonstrated that DAP data can provide comparable
accuracies to ALS for estimating inventory attributes such as volume, basal area, and height when used in an area-based approach
with co-located ground plot information.
Summary Herein, we review research relevant to the use of DAP for updating area-based forest inventories in subsequent
inventory cycles, highlighting issues and opportunities for DAP data in this context. We examine the use of DAP for area-
based forest inventory applications, comparing data inputs, algorithms, and outcomes across numerous studies and forest
environments. Lastly, we outline outstanding research gaps that require further inquiry including benchmarking of acquisition
parameters and image-matching algorithms.

Keywords Digital aerial photogrammetry . Image-matching . Airborne laser scanning . Forest inventory update . Digital stereo
imagery . Forest structure . Image based point clouds

Introduction

It is well known that forests are highly dynamic ecosystems that
are perpetually undergoing successional changes through

growth and natural disturbance [1, 2]. The provision of accurate
and up-to-date forest inventories is essential to facilitate data-
driven, effective, and well-informed forest management scenar-
ios as well as formulate effective forest policy. High up-front
inventory costs, complexity in data acquisition, and ongoing
uncertainty surrounding the future state and condition of forests
due to climate change are principle motivators for enhancing
and modernizing forest inventory frameworks globally [3–5].
As with other resource management fields, the demand for,
and expectations of, inventory quality and content have
compounded. The inherent complexity of forest ecosystems in-
centivizes the argument that routine data acquisitions to update
inventories are needed to capture and integrate these changes in
order to increase knowledge of forest dynamics, improve forest
stewardship, and ultimately provide data-driven justifications for
forest and environmental policy [6–8].

To enhance inventory data content, the inclusion of struc-
tural characterizations of forests using technologies such as
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airborne laser scanning (ALS) with the goal of linking struc-
ture with standard forest inventory attributes such as height [9],
volume [10], and basal area [11] is becoming widespread in
research and operational forestry [12]. Linking ALS data in the
form of spatial and structural information with traditional forest
inventory plot data in the area-based approach (ABA) has
brought about a paradigm shift in the conceptualization and im-
plementation of forest inventories [13, 14]. Technological inno-
vations such as ALS have been used to enhance forest inventory
value through improvements in measurement and prediction ef-
ficiencies [15•], cost-effectiveness [16], and provision of a di-
verse and ever-increasing compilation of inventory data [17],
model predictions [18], and finalized mapping products [19].
Inventory frameworks incorporating these data sets can be re-
ferred to as enhanced forest inventories (EFI) [20–23]. Alam
et al. [24], who outline the economic impact of an EFI in
Ontario, Canada, found that these data help to maximize the total
value of wood fiber through proper product allocation, reduce
fluctuations in raw wood fiber supply, and minimize inventory
carrying costs and lost sales.

As opposed to traditional forest inventories, EFIs provide an
abundance of advantageous, non-traditional information, such as
structural forest characterizations that can be utilized to better
inform forest management practices. Acquisition of ALS data
with the intention of generating EFIs has become more common
globally as a result of improvement in sensor specifications,
quality of data sets, and innovative forest management research.
ALS data sets are increasingly becoming adopted and utilized in
industrial forest management as a method for enhancing inven-
tory content, as well as bridging gaps between strategic, tactical,
and operational levels [20, 25]. Integrating ALS into inventories
has been demonstrated to provide multi-scale information to im-
prove ecological understanding and guide forest planning and
management activities [15•, 26–28]. Likewise, these data sets
can be joined with existing inventory frameworks to establish
of EFI baselines. These baselines describe the initial state of the
forest for use as inputs for future predictions, as well as a refer-
ence to evaluate management prescriptions [6].

One challenge related to the use of ALS within an EFI
framework is how these data maintain their utility as they age.
McRoberts et al. [16] found that the shelf-life of ALS datasets
used in a model-assisted framework is at least 10 years, helping
to reduce long-term inventory costs, as well as to maintain the
accuracy and applicability of predictive attribute models.
Fekety et al. [29] likewise demonstrated the temporal transfer-
ability of the ABA, and how pooling data across time increases
their availability for improving inventory predictions. This in-
dicates that ALS data can provide lasting value related to the
landscape-level quantification of forest attributes, as well as
immediate cost savings through the provision of high-quality
digital terrain models (DTM).

While these data provide obvious quantifiable benefits to
inventory systems, reliance on a single ALS data acquisition

does not provide information on how forest vegetation is
changing through time, perhaps one of the most critical
long-term forest management directives [30]. Given the cur-
rent unreasonable economics of repeat ALS data acquisitions,
alternate technologies must be integrated to provide a means
of cost-effectively and efficiently updating pre-established
EFIs [20, 31, 32].

A technology that has garnered significant interest due to
its similarities with ALS is digital aerial photogrammetry
(DAP) [33••, 34••] (Fig. 1). The incorporation of DAP data
for enhancing forest inventories is logical for a number of
reasons:

& Stereo-photogrammetry has a long-standing history in forest
management in general [35], enabling characterization of ter-
rain, forest cover, and species data, amongst others [20, 36].

& The use of aerial imagery in forest inventory programs has a
long history [37], extending almost a century in Canada [38].
Manual photo-interpretation of inventory attributes has been
a primary data source for forest inventories since the 1950s
[39, 40]; however, reliance on manual photo-interpretation is
decreasing due to a lack of skilled interpreters and improve-
ments in semi-automated and automated approaches.

& The advent of ALS data in the late 1990s challenged the
utility of aerial photography as the data source of choice
for forest applications [41]; however, renewed interest and
investment in photogrammetry has occurred largely as a
function of new capacity to derive 3D information that is
similar to that of ALS data at a lower cost [42, 43••].

& The historical prominence and ongoing development of
photogrammetry in the field of forestry, and resources
management more generally, provide structural, spatial,
and spectral information for the purposes of enhancing
and updating forest inventories [11].

The relative advantages of ALS and DAP were first summa-
rized byBaltsavias [44••]. For DAP, key strengths continue to be
the ability to acquire data from greater altitudes at faster speeds,
thereby enabling data acquisition over substantially larger areas
relative to that of ALS, for a fixed number of flying hours. As a
result, DAP acquisition costs are estimated to be one-half to one-
third less than that of ALS [33••, 43••]. Ultimately, the cost
differential between DAP and ALS will vary depending on the
size and complexity of the area to be flown and the data acqui-
sition specifications (e.g., point density for ALS, across-track
overlap for DAP). DAP workflows are becoming increasingly
automated [45] and in many jurisdictions, photos are routinely
acquired for other mapping projects (e.g., base mapping up-
dates) [46], further underwriting the costs of data acquisitions.
In addition, there are commonly more service providers for air-
borne imagery than ALS data and increased competition
amongst providers also influences acquisition costs.
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Key considerations are that acquisition and processing
benchmarks have yet to be established, and that DAP is
strongly influenced by shadows and occlusions from objects
that can prevent image-matching. DAP’s major difference
from ALS in the context of EFIs is that it is limited to charac-
terizing the outer canopy envelope (Fig. 1), as opposed to the
vertical distribution of vegetation through the canopy profile
[42]. DAP is however effective for conventional forest inven-
tory processes such as manual interpretation tasks or stand
boundary delineation, although options to automate these
tasks are becoming increasingly viable.

In this review, we outline the role DAP has as a synergistic
technology capable of integration into EFI frameworks. Our ob-
jective is to demonstrate that DAP data provide a viable source of
information for updating EFIs. To do so, we first provide a back-
ground of digital photogrammetric approaches including notable
acquisition parameters, DAP point cloud generation, and conse-
quent point cloud processing. We then outline information needs
for EFIs with a focus on the potential of DAP to be a successful
data source within these frameworks. We then consider the role
of DAP in the ABA [47] in estimating forest inventory attributes.
Specifically, with reference to comparative literature, we outline
the role DAP data sets can have as a tool for updating baseline
ALS EFIs within the ABA framework. This synergistic EFI
framework has the potential to reduce short- and long-term in-
ventory costs, provide accurate and precise multi-scale data, and
most importantly, be used to derive information on forest change
through time to inform progressive socio-economic and environ-
mental policy. It is our intention in this review to outline DAP’s
potential for integration into inventory systems to improve cur-
rent practices, while also having the potential to improve efficien-
cy, value, and the long-term viability of data products.

Digital Aerial Photogrammetry

DAP enables the generation of spatially continuous, 3D
information derived from digital imagery datasets [43••].
Nomenclature for digital photogrammetric techniques and
data have yet to be standardized, although DAP is acknowl-
edged as a technology capable of characterizing certain
components of vegetation structure in a manner analogous
to ALS data [31, 42, 43••, 48]. The implementation of
photogrammetric techniques to generate these 3D data is
often referred to in the scientific literature as image-
matching, 3D vision, or structure from motion, while terms
to describe the 3D data itself have included image-based
point clouds, image point clouds, photogrammetric point
clouds, and digital stereo imagery, amongst others. Using
photogrammetric principles in combination with digital im-
agery and computer vision algorithms, DAP measures the
geometry of objects by projecting rays through stereo or
multiple imagery to derive 3D features [36].

A digital photogrammetric system or framework is com-
prised of computer hardware and software designed to gener-
ate photogrammetric products from digital stereo-imagery
using a combination of manual and automatic techniques.
Rapid technological advancements and cost reductions for
computer/platform hardware components have lowered the
barriers-to-entry to conduct photogrammetric processing rou-
tines at spatial and temporal frequencies that were once cost-
restrictive [49]. Increased availability and cost-effectiveness
of high-quality computer hardware has shifted the competitive
edge of digital photogrammetry systems to being software
driven with a variety of commercial and open source software
available [50].

Fig. 1 Point cloud cross-section comparison of ALS (light green) and DAP (dark blue). ALS points can be seen characterizing internal forest structure
and the ground surface, while DAP is limited to the outer canopy envelope
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Enabling Technologies

Although digital frame scanners (area-array sensors) have
been predominantly used for photogrammetric surveying,
some linear-array architecture sensors, also known as
pushbroom or three-line scanners (e.g., Leica ADS80), have
shown promise for stereo image acquisitions [51, 52]
(Table 1). These sensors incorporate forward-, nadir- and
backward-oriented overlapping panchromatic scenes that al-
low derivation of 3D products [53]. Additional linear arrays
have also been added to provide multispectral, as well as true-
and false-color imagery [54]. Studies such as Haala et al. [55],
which compared the ability of frame and pushbroom sensors
to generate DTMs and ortho-imagery, found that both tech-
nologies are equally capable of generating accurate products
and that the choice of sensor type ismore dependent on overall
hardware and software costs, as well as the performance of
commercially available processing suites. In-depth summaries
and examples of contemporary linear- and area-array sensors
can be found in Lemmens [56] and Pepe et al. [51].

Digital sensors provide improved radiometric perfor-
mance, eliminate film processing costs, physical storage
space requirements, and facilitate highly automated
workflows that greatly reduce the time needed to generate
photogrammetric products [43••, 57]. Digital sensor technol-
ogies have also improved ground sample distances (GSD)
and image capture rates. These technological advancements
have increased the number and quality of images being ac-
quired and consequently improved the potential for in-
creased imagery overlaps. This means that more images
are being acquired at no additional cost [58], improving
rates of successful image matching and survey cost-effec-
tiveness. Increased image overlaps can also reduce the re-
quired intensity of ground control due to reductions in sys-
tematic and pseudo-systematic errors influencing photo-
grammetric measurement accuracy [59]. It must be added
that although increases in along-track overlap can be real-
ized without any added cost to surveying [43••], increasing
across-track overlap would require more flight lines, driving
up cost. This is why a high-overlap/flight efficiency trade-
off exists and must be balanced according to image param-
eter requirements.

Significant advancements in the quality and quantity of
imagery through direct geo-referencing from high-quality on-
board GPS-derived positions and inertial navigation systems
(INS) have led to improved accuracy of photogrammetric pro-
cessing [60]. Unlike frame cameras, linear-array systems must
rely on GPS and INS systems for accurate position informa-
tion. These components add cost to the overall image system
[61, 62]. These technological innovations have provided a
means of generating high-density and accuracy point clouds
for forest surveying [43••], while realized economic efficien-
cies can be attributed to imagery digitization.

Image-Matching Algorithms

Image-matching algorithms are diverse, with a variety of al-
gorithms having been used to generate point clouds for the
purposes of estimating structural attributes of vegetation and
timber [9, 11, 47, 48, 63, 64]. Algorithms can be separated into
two distinct streams, feature- and area-based methods [45,
65–67]. Feature-based methods, the simpler of the two types,
use rudimentary cartographic points and lines to find image
matches, while area-based methods use a moving window
approach that analyzes pixel differences to find matching
points [68]. A thorough history and description of the devel-
opment, testing, and implementation of image-matching algo-
rithms can be found in Remondino et al. [45, 69]. The perfor-
mance of contemporary algorithms has invoked a renewed
interest in aerial photography due to their provision of very-
high-resolution imagery and structural information at a lesser
cost than ALS [50].

Software robustness, reliability, and speed are a rapidly
advancing field, increasing competition amongst software de-
velopers [50, 70, 71]. The proprietary nature of some algo-
rithms, however, raises challenges related to their functional-
ity, where Bblack-box^ transparency restrictions limit knowl-
edge of the assumptions of inner workings of the algorithms
and reduce algorithm-focused reporting [69]. A secondary
challenge in using these algorithms is that they have not been
purposefully developed to reconstruct vegetation for forest
inventory purposes [72], an area where continued research
into algorithm refinement and benchmarking is warranted.
The degree to which software can be parameterized is impor-
tant for forest environments (amongst others). Parameters are
often determined by trial and error and many are software
specific. This poses challenges for large area implementations.

Many software packages implement some form of the
semi-global matching (SGM) algorithm [70, 73]. SGM is a
fast and efficient image-matching algorithm and has been
demonstrated to provide accurate image-matching results with
low processing times [74, 75]. The inter-comparison of select-
ed algorithms for the purposes of producing point clouds for
forest attribute prediction has typically focused on a compar-
ison of two software packages, rather than a systematic eval-
uation. Ullah et al. [48] and Kukkonen et al. [68] compared
software in the context of the ABA for forest attributes, for
canopy cover prediction by Granholm et al. [76], and for mis-
cellaneous targets in Remondino et al. [45]. Both Ullah et al.
[48] and Kukkonen et al. [68] found that data derived from
image-matching techniques were capable of predicting forest
inventory attributes with comparable accuracies to those from
ALS, which is the consensus from other comparative analyses
[42, 58, 77]. In Ullah et al. [48] the SGM algorithm was found
to outperform the enhanced automatic terrain extraction
(eATE) algorithm for generating information layers or themat-
ic map products to aid forest management. SGMwas found to
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be the simpler of the two algorithms, with less user-defined
parameters, produced denser point clouds (SGM= 27.66 m–2,
eATE = 3.29 m–2) at faster processing speeds, and achieved
slightly greater predictive model (multiple linear regression)
accuracies (%RMSE SGM = 28.3; eATE = 29.0), k-NN
(%RMSE SGM = 29.9; eATE = 30.0), and SVM (%RMSE
SGM= 28.3; eATE = 29.0)). Kukkonen et al. [68] compared
SGM to the next-generation automatic terrain extraction
(NGATE) algorithm [78] for predicting a suite of forest attri-
butes. They found negligible differences in generated digital
surface models and indicated that both algorithms were capa-
ble, accurate, and consistent (±~ 2% RMSE for all attributes)
at providing forest attribute predictions with the pre-condition
that an ALS DTM was available. Granholm et al. [76] com-
pared the MATCH-T and SURE algorithms for estimating
vertical canopy cover and found differences in point cloud
outputs, but not in generated metrics. All studies, however,
were cautious in their recommendation of a particular algo-
rithm due to the potential differences that could arise from
software tuning, forest type, and solar illumination.

Digital Photogrammetric Workflow

Prior to image acquisition and consequent photogrammetric
processing, a number of factors must be considered for suc-
cessful imagery acquisitions (Fig. 2). Mission planning in ae-
rial photogrammetric projects is the primary and critical step
to ensure success in consequent acquisition and processing
stages [51]. Flight planning is likely the area that would most
benefit from parameter benchmarking studies as it would help
to improve overall cost-effectiveness and efficiency of acqui-
sitions, while ensuring that consequent point cloud products
are best suited to area-based predictions. Pepe et al. [51] pro-
vide an in-depth review of flight planning considerations for a
variety of platforms and sensors, as well as commercially
available and open source flight planning software.
Similarly, Osborn et al. [79] detail photographic componentry
and settings, imaging sensors and platforms, and flight plan-
ning details with their advantages and disadvantages for pho-
togrammetric mapping to support forest inventories.

Imagery Acquisition

Landscape-level imagery acquisitions for the purposes of for-
est inventory–related photogrammetric analyses have been
proven capable and effective for providing structural and
spectral forest inventory information [33••, 34••, 58, 80, 81].
Aerial imagery acquisitions are often updated on a regular
basis by national or regional mapping entities [46, 82], further
underwriting the costs of using these data in forest inventories,
and making aerial images a dependable data source with tem-
poral depth [83]. Examples of jurisdictions with planned im-
agery acquisitions every 3–10 years include the United States

of America (National Agriculture Inventory Program [84]),
Finland (National Land Survey of Finland [85]), and
Switzerland (Federal Office of Topography [86]). The utiliza-
tion of these datasets, which are often widely available, could
be a useful and cost-effective means for identifying and mon-
itoring forest change, as well as realizing unforeseen inventory
value.

Parameters of importance that have been tested in the litera-
ture that require continued benchmarking are flight altitude and
GSD, across-track overlap, sensor type and model, and light
conditions (Fig. 2). Standardization and benchmarking studies
that focus on these key parameters are therefore crucial to de-
tailing best practice approaches to image acquisition. Given that
the updating of area-based EFIs is generally conducted at a
landscape level, herein, we focus on the use of manned aircraft
for image acquisitions and their capacity to cost-effectively ac-
quire imagery over large spatial extents [43••]. We do however
acknowledge the growing body of research using unmanned
aerial systems (UAS) for imagery acquisition and EFI updates
[87].

Altitude and GSD Bohlin et al. [34••] tested multiple configu-
rations of altitude, image overlap, and GSD: 60%/30% overlap
along- and across-track respectively with GSD = 0.48 m, 80%/
30% with GSD = 0.48 m, and 80%/60% with GSD = 0.12 m
(Fig. 5). The authors found that variation in GSD from lesser
flight altitudes (e.g., 1200 m above ground level (agl) versus
4800 m agl) generated denser point clouds, but did not improve
tree height, basal area, or stem volume estimates. Similarly to
results found in Lim et al. [90] using ALS, Bohlin et al. [34••]
concluded that plot-level variable prediction with DAP is ro-
bust, and that an increase in point density will not affect out-
comes unless changes in forest structure occur. Honkavaara
et al. [91, 92] found that GSDs of 30–40 cm provided surface
models that adequately characterized leading forest cohorts.
This could provide justification for increasing flight altitude to
improve cost-effectiveness [58]. Gobakken et al. [93•], howev-
er, also highlight that the relationship between flight altitude,
camera lens angle, and increasing GSD can result in a reduction
in the accuracy of height predictions. Gobakken et al. [93•] note
that while wide angle lenses provide increased overlap, espe-
cially at greater altitudes, that if image capture proximity is
dispersed, point clouds will suffer from occlusion issues and
become less accurate in estimating tree heights. This point was
confirmed by Tanhuanpää et al. [94], who evaluated high alti-
tude DAP data for individual tree detection. Furthermore, in-
creased amounts of atmospheric noise at greater flight altitudes
could increase error in estimates [93•]. Considerations regard-
ing the need for point cloud completeness and height prediction
accuracy should guide acquisition planning and imagery cap-
ture [95]. Järnstedt et al. [77] conclude that differing require-
ments for ALS and DAP with regard to flying altitudes and
distances between flight lines is potential justification for using
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imagery as a single data source to considerably improve inven-
tory efficiency.

Image Overlap The most commonly used methods for planning
imagery acquisitions involve flying in strips with a pre-
determined amount of along- and across-track overlap. Along-
track overlaps between 60 and 80% are common for photogram-
metric projects [36] (Table 1), with values of 80% and above
being used for improved penetration between objects for more
effective and accurate depth reconstruction [51], as well as to
reduce the impact of shadows on image-matching algorithms
[72]. Given that mission planning has generally focused on the
acquisition of ortho-imagery products and not digital photo-
grammetric analyses, imagery overlap has generally been less
than what is needed for complete point cloud derivation, poten-
tially influencing area-based capabilities. With digital camera
systems, an increase in along-track overlap comes at no cost
[43••]. Several studies have demonstrated that an increase in
along-track overlap from 60 to 80% reduces the relative
RMSE for area-based attribute predictions [34••, 58, 96•]. This

again however must take into account the trade-off that exists
between image overlap, flight time, and increases in acquisition
costs [97]. Pre-planning of the most effective and efficient over-
lap for the desired data quality is therefore of great importance
for utility, efficiency, and budgetary reasons.

Straub et al. [46] concluded that imagery with overlaps of
65% and 30% along- and across-track respectively is suffi-
cient to support stereo image-matching and area-based out-
comes, noting that increased overlap would likely improve
other applications, such as detection of canopy gaps. White
et al. [98] compared the use of DAP and ALS data for canopy
gap detection and mapping, concluding that point clouds gen-
erated from imagery with 60% along-track and 20% across-
track could not provide analogous results to those of ALS for
detecting canopy gaps in coastal rainforests on Vancouver
Island, Canada. Indeed, the majority of imagery used for gen-
erating DAP point clouds for forest inventory applications are
acquired with along-track overlaps of 60% and across-track
overlaps that range between 20 and 35% (Table 1), reducing
the potential for multi-image matching. Further research into

1. Imagery acquisition

Altitude & GSD

Overlap

Illumination

Sensor type

2. Point cloud generation
Image alignment

Key-point generation

Automatic tie-point generation

3D textured mesh & orthomosaic

3. Point cloud processing
.laz compression

Tiling

DTM generation
(Merge ALS ground points)

Normalization

Metric generation

4. Area-based modelling

with co-located point cloud metrics

Establish modelling framework

Apply attribute models
wall-to-wall

Parameter benchmarking

Algorithm benchmarking
& forest type testing 

Establish standardized
processing streams 

Assess model robustness
& transferability

Research gaps
Fig. 2 Flowchart listing the order
of a theoretical digital
photogrammetric workflow with
associated research gaps for each
stage
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multi-imagematching for reducing the influence of occlusions
such as shadows in forest canopies is needed [58, 99••, 100].
UAS could provide a useful tool for benchmarking acquisition
parameters and optimizing overlap scenarios in different forest
types, as their ability to acquire imagery is fast, cost-effective,
and can be parameterized to mimic aerial acquisitions [101].

Imaging Sensors Studies that have assessed the utility of DAP
data for ABA have predominantly used large-format digital
frame sensors (Table 1), although Pitt et al. [52] used a linear-
array system. Nurminen et al. [58] outlined that flight efficien-
cies and significant cost-savings, likely related to greater detail
and larger film surface, can be realized when using large-
format photogrammetric sensors. Straub et al. [46] found that
the frame-array sensors can be used to model inventory attri-
butes in more structurally complex forests. Iqbal et al. [89•]
compared photogrammetric approaches using small- and
medium-format digital camera systems. Their findings indi-
cate that both systems provide similar predictive accuracies to
those of ALS (Fig. 5), enabling forest managers to use data
acquisition solutions that best fit their operational needs.
Conclusions from these studies indicate that forest inventories
supported by an accurate pre-existing ALS DTM can be up-
dated using optical imagery from a variety of sensors.

Illumination Gobakken et al. [93•] indicated that large-area im-
agery acquisitions for the purposes of generating a DAP ABA
inventory may be prone to varying illumination conditions such
as sun angle, which have been shown to influence the geometric
properties of the generated DAP canopy [72]. White et al. [42]
and Rahlf et al. [102•], however, found that sun angle had min-
imal influence on ABA outcomes. Rahlf et al. [102•] found that
including sun inclination as a predictor reduced the relative
RMSE of area-based predictions by ~ 2%. Variation in lighting
conditions during a single flight could also be considered ratio-
nale for not incorporating spectral metrics as explanatory vari-
ables within forest parameter models unless rigorous radiometric
calibration is possible [102•]. Systematic testing of the potential
utility and importance of spectral metrics for estimating species-
specific forest variables and canopy health [103] could enhance
forest management and planning [11, 34••, 68, 80, 96•].

Point Cloud Generation

Following acquisition and compilation, acquired imagery must
be photogrammetrically processed. Images are first optimized
and aligned using meta-data including internal sensor specific
information such as the focal length and field of view, as well as
image specific external data such as GPS location and IMU
orientation. The inclusion of survey grade ground control loca-
tions during processing is also highly desirable [79]. Image key
points, pixels, or areas of interest with high contrast or texture
that are easily identifiable in image sets are then isolated within

each image. The number of key points that are compiled for an
imagery dataset is dependent on the size of the images as well as
its visual content. A landscape largely covered in snow with
little spectral variation will likely yield fewer key point matches
than a spectrally variable landscape.

Key points are then matched amongst the image dataset
and are consequently processed to derive their 3D location,
which are labeled as automatic tie-points. Manual tie-points
can also be added, which are user defined markers that are
often used to assess and improve 3D reconstruction accuracy.
The result of the initial tie-point generation produces a low-
density DAP point cloud.

In order to increase the density of the output point cloud,
automatic tie-point generation continues until pixel matching
has reached a pre-determined limit, or is exhausted. Software
packages generally have differing levels of automatic tie-point
thresholds [104], which depending on available computation-
al power increase the density of the output point cloud. The
product following completion of densification is what will be
exported and used for consequent point cloud analysis
(Fig. 3). Generally, however, the densified point cloud is used
to generate a 3D textured mesh, a structural surface with im-
age inherited spectral data, which is often used for the creation
of orthomosaics to remove perspective distortion from images
and reflectance maps. The 3D textured mesh can also be de-
scribed as a digital surface model (DSM).

Point Cloud Processing

Processing of densified DAP point clouds follows a similar
stream to that of ALS. This is one of a number of reasons why
the integration of DAP is logical for updating ALS-derived
EFIs. Major processing steps can be conducted as follows;
however, no common standards for point cloud processing
have yet been established (Fig. 2).

Exported densified point clouds, which are often stored as
uncompressed .las format files [105] are converted to com-
pressed files (.laz) to improve processing speed and reduce
digital storage requirements. This step is not mandatory; how-
ever, it is advisable as storage requirements can be reduced to
7–20% of original uncompressed file size [106]. Converted
files are then subdivided into tiles with a pre-determined
amount of overlap and processed individually to increase pro-
cessing efficiency. Given that anomalies can occur in point
cloud generation, tiles are filtered for noise that could intro-
duce bias into future processing stages. Points within tiles are
then classified into one of the ASPRS defined LAS classes
[105], which distinguish between ground, vegetation, and wa-
ter amongst others. Points classified as ground are isolated and
can be used to generate DTMs [107].

A fundamental limitation of DAP data is its inability to
produce accurate DTMs over areas of moderate to high cano-
py cover [108, 109]. DAP-derived DTMs from forested areas
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are often inaccurate and are inadvisable as products for nor-
malizing DAP point clouds to heights above ground level
potentially leading to inaccurate area-based estimates
(Fig. 4). Lack of the ability to provide accurate DTMs consid-
erably limits the scenarios where DAP could be used to estab-
lish baseline EFIs. DTMs from other sources such as shuttle
radar topographymission (SRTM) DTM products can be used
[11]; however, these will not provide results with the same
reliability and spatial accuracy as ALSDTMs, which are often
considered best available data products, having the requisite
spatial resolution and accuracy available under canopy.

To remedy the issue of poor DAP-derived DTM quality,
co-located ALS-derived DTMs can be integrated into the
DAP processing stream for point cloud normalization [33••,
34••, 58, 81, 99••]. Moreover, structural metrics derived from
DAP point clouds that use the same terrain information for
normalization to heights above ground readily facilitate multi-
temporal comparisons, while improving the long-term value
of ALS acquisitions [34••, 42, 77, 93•].

Forest Inventory Update: Information Needs

Forest inventories have made significant progress in improv-
ing forest stewardship and sustainable practices and are heavi-
ly relied upon as planning and management tools for effective
forest management operations [8]. Forest management infor-
mation needs are increasingly complex and wide ranging: bio-
diversity, habitat and non-timber values, riparian manage-
ment, evolving forest practices legislation, and climate change
amongst others [110]. These needs place pressure on forest
inventory programs to supply data that is timely, spatially

detailed, accurate, and that characterizes forest composition,
structure, and condition [111].

Globally, forest inventories at various spatial scales are con-
tinuing to shift towardmulti-attribute, spatially-explicit polygon
data derived from photo-interpretation and field measurement
campaigns [30]. Conventional update methods have involved
the acquisition of aerial photography and reconnaissance sketch
mapping missions, satellite imagery, and field surveys [6].
Acquired inventory data and modeling outcomes focus on the
provision of information on the current status, and projected
condition of timber and non-timber resources. Wall-to-wall for-
est parameter estimates such as tree height, volume, basal area,
growth and yield projections, and photo-interpreted imagery
polygons are common [18, 27, 28, 112, 113].

While traditional methods have been effective, there are
opportunities to modernize forest inventory frameworks
[111]. Ensuring completeness and currency, as well as design-
ing adaptable frameworks that facilitate the routine updating
of previously acquired data is essential to enhancing inventory
systems. In order to make the most informed and proactive
management decisions, data being used should be as current
as possible and aid in building on trends such as growth and
yield [32]. The routine updating of inventories for the pur-
poses of improving yield projections is critical to better un-
derstand stand growth and development patterns for formulat-
ing effective economic projections, understanding future
socio-economic reliance on forest ecosystems, and forest pol-
icy. Organized monitoring and scheduled inventory updating
can be used to have profound impacts on the long-term future
projections of forest and timber attributes [6, 114, 115].

According to Gillis and Leckie [6], an inventory update is
defined as the process of detecting, collecting, and adding

Image 1 Image 2 Image 3

20 m

Fig. 3 Simplified visualization example of how DAP point clouds are generated from stereo imagery
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changes to an inventory resulting from disturbances causing
depletions (harvesting, fire, insect defoliation, etc.), as well as
changes to the forest causing accretions (growth, silviculture).
Bonnor and Magnussen [116] added that depletions and ac-
cretions to total forested land from land-use change need also
be included. The two main data sources that facilitate updates
are information that can be observed and mapped such as
harvesting boundaries and fire damage, and those that must
be sampled and/or modeled such as permanent sample plots
detailing growth, health, and compositional change [116]. In
order to perform updates, mapping products and detection of
minimum levels of disturbance/growth must have acceptable
levels of accuracy, and the frequency and timing of data ac-
quisitions must be established.

Studies assessing the capacity for DAP to perform updating
tasks such as Ali-Sisto and Packalen [117] found that DAP
was able to detect clearcuts with 98.6% accuracy, while thin-
ning treatments were 24.1% accurate. Honkavaara et al. [91]
found that DAP was able to detect with 100% accuracy where
more than 10 trees/ha fell as a result of storm conditions.
These studies both indicate that DAP is capable of detecting
major changes in forests, but cannot accurately detect minor
changes such as removal of individual trees from a non-
dominant canopy layer.

Decisions to update are driven by a number of factors,
primarily a need for current information to support manage-
ment planning and decision-making, as well as regulatory
requirements and/or reporting obligations [6]. Herein, we
demonstrate that DAP data can be useful for both aspects of
inventory update: mapping and modeling.

EFI data products are commonly produced at a standard
grid-cell size, providing spatially and temporally explicit attri-
bute predictions. These cell-level predictions have the poten-
tial to be summarized to stand-level information typically used
in forest inventories, while maintaining often unavailable
within-stand variability [15•, 17, 18]. The inclusion of forest
structural data such as height percentiles and crown cover
within inventories also provides a means to characterize and
segment forested landscapes objectively and provide high-
resolution predictions of forest attributes. These data can be
used to guide forest planning and management decisions,
impacting socio-economic and environmental outcomes.

While the currency and spatial completeness of inventories
is critical for establishing inventory reliability, the data content
of these inventories is fundamental. Photo-interpretation and
field measure campaigns are indelible parts of forest inventory
frameworks; however, there is opportunity and substantial
scientific justification for continued technological

Fig. 4 Schematic visualizing how normalization of T1 ALS and T2 DAP
point clouds is conducted. ALS data is normalized using points classified
as ground (top) to remove terrain influence. When the same concept is
applied to DAP data (middle), however using DAP points classified as

ground, data are prone to errors due to lack of ground characterization by
DAP. To solve this issue, ground points from T1 ALS data are merged
with T2 DAP (bottom) and are used for normalization
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modernization within inventory programs [19, 118]. An abun-
dance of remote sensing and forest management research has
shown that the integration of structural characterizations of
forests improves inventory accuracy, precision, and spatial
objectivity [12, 16, 20, 99••, 119, 120]; however, these data
should not be viewed as a panacea. Field measurements and
validation of remote sensing products will always be essential
for ensuring reliability and improving future products [121,
122].

Inventory Update Using DAP Data

A DAP inventory updating framework would begin with
assessing the effectiveness of baseline ALS strata to reflect
stand growth as well as management and disturbance activity.
Assessing the robustness of DAP data to generate similar stra-
ta to ALS should be addressed. Specifically, calibration of
canopy closure estimates is important for reliable change de-
tection [63, 99••].

Following stratification and sample location, field mea-
surement campaigns should be designed to ensure the acqui-
sition of data to support area-based modeling [15•, 18].
Attributes of primary interest have commonly included vol-
ume, basal area, height, stem density, and quadratic mean
diameter [32, 34••, 42, 96•]. Plot-level point cloud metrics
describing height such as height percentiles (e.g., 90th percen-
tile of height), or mean height, and density measures (e.g.,
percent of points between 10 and 20 m) are matched with
corresponding field measurement data and used as predictors
for parametric or non-parametric predictive models. The use
of DAP spectral metrics as predictors, as used in Bohlin et al.
[34••] and Puliti et al. [96•], could also be incorporated; how-
ever, must be conducted with care due to the potential varia-
tion amongst flight imagery, and between successive imagery
acquisitions [97, 102•]. Following generation, models are ap-
plied wall-to-wall to enable landscape-level mapping of key
attributes of interest with known error (Table 1).

DAP Data for Forest Inventory: a Summary
of Quantitative Findings

Preliminary studies looking to determine DAP’s effectiveness
for area-based attribute predictions used scanned analog
photos with GSDs between 0.19 and 0.24 m. Næsset et al.
[47] found that mean stand height underestimated true stand
height by 5.42 m, and that results were not superior to manual
photogrammetric mensuration accuracies. Mean differences
were found to be influenced by image-matching parameters,
stand age, and site quality. Similarly, St-Onge et al. [83] also
found that the accuracy of height estimates were influenced by
image-matching parameters, as well as sun illumination,

viewing geometry, and the complexity of the forest canopy.
Correlations between ALS and DAP in St-Onge et al. [83]
were found to be highest in young forests. Results from these
pioneering studies helped to establish a foundation for further
photogrammetric forest inventory research and highlight how
DAP technology has changed.

EFI attribute predictions generated using an ABA and ALS
data often meet or exceed the accuracy requirements of forest
inventory programs [119]. Furthermore, EFI attribute predic-
tions generated using DAP data in an ABA have been found to
be of comparable accuracy to that of ALS data across a range
of forest environments, although inventory attribute predic-
tions made using ALS data are consistently more accurate
(Table 1). While the studies summarized in Table 1 vary dra-
matically in their design, parameterization, and implementa-
tion, they form a solid basis for recommending the use of DAP
data for updating EFIs in the context where an existing ALS-
derived DTM is available, as well as for continued research
into effective acquisition and processing standards.

Locations for comparing ALS and DAP prediction accura-
cies have predominantly taken place in Scandinavian boreal
forest environments [34••, 58, 93•, 123]. Examples of large
scale studies include Bohlin et al. [124], which compared
DAP and ALS attribute modeling over four 10,000 km2 areas
in Sweden, Rahlf et al. [125], which examined a range of
topographic and positional variables over a 25,000 km2 area
in Norway, and Tuominen et al. [126], which assessed the
potential contribution of 3D DAP metrics to the Finnish
Multi-Source National Forest Inventory (MS-NFI) over
5800 km2. Authors outline the importance of understanding
how well results translate to differing forested ecosystems
[77]. For example, Vastaranta et al. [99••] achieved high pre-
diction accuracies using DAP in southern Finland; however,
they were hesitant to provide recommendations regarding
DAP use in mixed-aged, multi-layered stands such as those
used in White et al. [42]. Their reasoning was that small var-
iations in landscape-level stand structure resulted in low sam-
ple variance, and corresponding strong relationships with
ALS and DAP metrics.

Height

Predictions of variables such as Lorey’s mean height [34••, 42,
93•, 127], mean height [58, 77, 99••], and top height [52]
using DAP were consistent across studies (Fig. 5). Pitt et al.
[52], which was conducted in central Canadian boreal site,
and White et al. [42] in a coastal temperate rainforest found
prediction accuracies similar to those found in less complex
forests in Scandinavia and Germany, indicating that DAP-
based predictions show some robustness to height measure-
ments across forest types. Navarro et al. [88] found that ALS
%RMSE was slightly larger than that of DAP, the only com-
parison where DAP was found to be more accurate than ALS.
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Density and Stem Diameter

The prediction of basal area [42, 46, 52, 68, 77, 99••, 127] and
mean basal area [34••], although larger in%RMSE than height
estimates, were consistent across studies and comparable to
their ALS counterparts. Iqbal et al. [89•] found that both
small- and medium-format sensors were comparable in accu-
racy to each other, as well as ALS (Fig. 5). Their study found
that basal area estimations using DAP (%RMSE = 14.37 and
14.27 for short- and medium-format respectively) had greater
accuracies than ALS (%RMSE = 15.26) at the stand-level.
Greater %RMSE values are expected for attributes such as
basal area, which are dependent on variables such as stem
diameter that, as of yet, cannot be directly measured by ALS
or DAP. Studies using DAP to model mean diameter [58, 77,
99••], quadratic mean diameter [127], and diameter distribu-
tions [128] found similar results between ALS and DAP esti-
mates (Fig. 5).

The accurate prediction of stem number remains a chal-
lenge for both ALS and DAP, especially with low-density
point cloud data. Stem number prediction accuracies are

variable in the literature (e.g., %RMSE = 43.7 for DAP and
35.1 for ALS in Gobakken et al. [93•]; 70.1 for DAP and 63.5
for ALS in Iqbal et al. [89•]; 42.3 for DAP and 31.4 for ALS in
Kukkonen et al. [68]). The use of CHMs and other rasterized
point cloud metrics are common for individual tree detection
approaches [129, 130]; however, there is also growing body of
research directly using 3D point cloud data for individual tree
detection analyses [131, 132]. Studies have outlined the im-
portance of high-density point clouds for improving detection
accuracy [133], predominantly using ALS data [134–136];
however, the advent of very high-density DAP acquired using
UAS data is becoming more prevalent. Methodologies seek-
ing to improve stem number prediction accuracy such as those
presented in Tompalski et al. [137] are promising.

Volume

Comparisons for volume have been most common in the lit-
erature (Fig. 5). Estimates of volume for ALS and DAP pro-
vide promising and consistent results, and although DAP is
shown to have larger %RMSE, differences are generally small

Fig. 5 Result of literature review comparing %RMSE for ALS and DAP
for the prediction of volume, height, basal area, and diameter. Standard
deviation (SD) of ALS and DAP are presented for each attribute. Mean
differences (Diffmean) between ALS and DAP all indicate the average
%RMSE difference for the attribute being predicted. %RMSE for DAP
was greater for all comparisons except for dominant height in Navarro

et al. [88], and basal area in Iqbal et al. [89•]. Blank spaces indicate that a
comparison of ALS and DAP for estimating that particular attribute did
not take place for that study. Bohlin et al. [34••] [A], [B], [C] as well as
Nurminen et al. [58] [A], [B] are separate analyses conducted within the
same study with varying acquisition parameters. Iqbal et al. [89•] com-
pared small- [A] and medium-format [B] digital sensors
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(Fig. 5). Accurate and consistent volume estimates provide the
ability to directly evaluate the economic value of standing
timber resources. This information can improve long-term
forest planning through maximizing revenue from harvesting
operations, and delineating where and when operations should
be conducted [23].

Vertical Complexity and Cover

ALS and DAP characterize forest structure differently,
with DAP data primarily characterizing the outer canopy
envelope, whereas ALS is capable of characterizing the
full vertical distribution of vegetation through the canopy.
Studies analyzing these differences have reported that
DAP height metrics often provide redundant information
resulting from their high degree of correlation. For exam-
ple, White et al. [42] found that the 10th and 90th percen-
tile of ALS heights in coastal temperate forests were not
correlated (r = 0.33), but that the same metrics were high-
ly correlated for DAP data (r = 0.92). Lesser height per-
centiles are generally found to be situated higher in the
canopy for DAP data, as demonstrated by the high level
of correlation found by White et al. [42] for DAP mean
height and both the 10th and 90th percentiles (r = 0.98).
Conversely, the greater percentiles are found to be more
comparable to their ALS counterparts, indicating that
DAP captures the top of canopy well. Nurminen et al.
[58] found that image matching with 80% along-track
overlap provided a very dense surface model, however
only penetrated to the ground if forest gaps were present.
Image matching using 60% forward overlap in the same
study found that matches were predominantly on the outer
forest surface indicating that imagery overlap can influ-
ence point distribution through the canopy. The density of
DAP point clouds (80% overlap = 155 points m–2; 60%
overlap = 44 points m–2) in Nurminen et al. [58] were
greater than those of ALS (7 points m–2), although these
greater point densities do not neccesarily translate into
greater attribution predictions accuracies [138].

Just as DAP characterization of the outer envelope of the
tree canopy limits its ability to provide reliable data on ground
surfaces, it also limits its ability to provide information on the
vertical distribution of vegetation through the canopy. This
limitation could be challenging when considering the transfer-
ability of existing ALS area-based models for use with DAP
data. In these cases, the point cloud predictors generated from
the DAP data may not convey the same structural information
as the ALS point cloud predictors used in model development
[42]. This highlights a need to develop area-based models
with predictor sets that are similar between ALS and DAP
data if model transferability is a consideration for inventory
update [9].

Cost Considerations

It is well established that DAP acquisition is considerably
cheaper than that of ALS [33••, 43••], while prediction
accuracies for basic forest inventory attributes are similar
(Fig. 5). Results reported in Kangas et al. [3] support this
statement, concluding that the differences in prediction ac-
curacy can be considered negligible from a forest manage-
ment perspective, especially if the data will be used for
10 years or less, which is the approximate shelf-life of
ALS data for supporting forest inventories according to
McRoberts et al. [16]. In their study, Kangas et al. [3]
assessed the value of ALS and DAP to support harvest
scheduling. Both data sources were found to be equally
valuable to support decision-making although ALS was
more precise. Given that economic losses and accuracy
for both technologies were similar, it was recommended
that DAP and ALS be considered analogous, and that the
decision to acquire either data type should be dependent on
availability, experience, project constraints and require-
ments, and cost rather than geometric properties, point
density, or resulting prediction accuracy. Notably, this
study did not include the cost of the ALS DTM used to
normalize the DAP data. Given that the provision of the
ALS DTM is of major importance and motivation for data
acquisitions, as well as being critical for DAP normaliza-
tion, future studies should include its value within econom-
ic comparisons. Gobakken et al. [93•] likewise concluded
that in a forest inventory context, accuracy alone should
not be the only factor considered when choosing between
DAP or ALS, but rather the choice must be informed by the
utility of the data to support decision-making. It is impor-
tant to note the substantial computational requirements for
processing large areas of DAP data and the potential costs
that these requirements may entail.

Research Gaps

While motivations for the incorporation of DAP into EFI
frameworks are justified, there are also logistic and scientific
justifications for continued research (Fig. 6).

Acquisition Planning

& Standardization and benchmarking for acquisition param-
eters such as flight altitude and GSD, image overlap
(along- and across-track), sensor types, and illumination
conditions

& Further explore UAS as platforms for cost-effective pa-
rameter benchmarking
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& Investigate capacity of new forms of ALS technology for
characterizing terrain surfaces under forest canopy, includ-
ing single photon systems

An area that requires rigorous sensitivity analysis is under-
standing how differences in acquisition parameters such as
altitude, GSD, and across-track overlap influence the viability
of produced point clouds for forest inventory applications.
Some such studies have been conducted [34••, 58, 81, 104,
139]; however, more research on this topic is required to out-
line best practice approaches for different forested ecosys-
tems. Forests with variable vertical and horizontal structure
could require acquisition parameters that are different from
less complex structures in order to achieve best photogram-
metric processing results. Inquiries into which parameters
should be used for particular forest types are warranted for
the use of DAP as a ubiquitous EFI updating technology.

One of the major inhibitors of conducting parameter
benchmarking experiments is high cost. The use of UAS
for quickly operationalized, cost-effective, and efficient
image acquisition campaigns could help to illuminate
how differences in acquisition and point cloud processing
parameterization impact variation of area-based outcomes
[23, 87]. Studies focusing on how UAS can be used to
establish parametric benchmarking and standardization
will help to improve the utility and value of data acquired
using conventional manned aircraft. Some parameters such
as flight altitude may be more difficult to benchmark due to
regulatory restrictions.

The need for an ALS-derived DTM is fundamental. The
advent of new ALS technologies such as single photon lidar
may enable cost-effective landscape-level characterization of
the ground surface with sufficient accuracy to support DAP
normalization. Single photon systems have the ability to fly at
greater elevations and faster speeds, acquiring ALS data for

less cost than currently standard systems [140]. This raises the
potential for DAP data to be used to support forest inventory
frameworks, especially areas beyond existing EFI boundaries.
This would allow EFIs to be used to update previous conven-
tional photo-based inventories and modernize landscape-level
forest inventory assessments. Further inquiry into the potential
of this technology is needed.

Data Processing

& Optimize parameterization of image-matching software
for varying forest environments

& Establish standardized photogrammetric and point cloud
processing workflows and tools

Image-matching algorithms with a focus on forest vegeta-
tion reconstruction are needed. Current algorithms, although
showing success, could have the potential to be optimized for
vegetated environments, helping to further enhance the capac-
ity for area-based predictions using DAP.

Physical characteristics of forests and the local environ-
ment that pose problems to photogrammetric point cloud gen-
eration also require a greater level of inquiry. Studies have
found that shadowing and solar angle/illumination [50, 83,
92, 99••, 102•], occlusion from neighboring tree canopy
[97], and tree swaying caused by wind [141, 142] have con-
tributed to problems with point cloud generation [104].
Robust analyses into these potential sources of variability in
point cloud generation will help to establish best practice con-
ditions, as well as outline potential sources of error, and how
to manage them effectively prior to image acquisitions.

Studies that describe how photogrammetric algorithm
parameterization can influence point cloud utility for area-
based estimates are needed. Iqbal et al. [104] provided a
detailed description of how processing parameterization
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within Agisoft Photoscan [143] can influence point cloud out-
puts and found that differing levels of key point limits, quality,
and depth filtering parameters were relatively robust to differ-
ences in processing strategies. These results demonstrate that
parameterization differences using this particular software do
not necessarily adversely influence point cloud utility. Given
that processing speed is determined by hardware componentry,
these results suggest that parameters with lower processing
requirements can be used to generate point clouds that are of
utility for area-based outcomes.While promising, analyses that
test parameterization in a range of commercially available and
open source photogrammetric software’s for the purposes of
forest inventory applications such as Probst et al. [144] are
needed to help establish best practice parametrization routines.

Inventory Update and Model Development

& Systematic testing of spectral metrics for estimating
species-specific forest variables

& Assessing the robustness of DAP for segmenting forest
strata relative to ALS

& Calibration of DAP canopy closure estimates to reliably
detect change

& Assess potential for ALS area–based model transferability
to DAP acquisitions

& Investigate how prediction accuracies vary across differ-
ing forest conditions, especially in larger and more com-
plex stands

The provision of spectral information from acquired stereo-
imagery could play an important role in further deriving qual-
itative differences in the forested landscape. Investigations of
the potential to utilize spectral indices in combination with
structural metrics for area-based outcomes should continue.

The integration of these metrics for assessing how well DAP
is able to stratify, or delineate forests of relatively homogenous
stand structures across landscapes could also be important.
Continued assessments of where DAP is successful and limited
in stratifying landscapeswith similar results toALS are important
steps for more seamless inventory integration. Landscape-level
investigations looking to determine DAPs effectiveness for strat-
ifying forest types as well as stand-level assessments to outline
canopy closure are needed. Inquiries into characterizing small
canopy openings and the influence of shadows and occlusions
prevalent in mature forest canopies are of particular importance.

Using DAP to update previously established ALS EFI at-
tributes requires investigation into the potential transferability
of area-based models and their coefficients. Relationships be-
tween DAP and ALS metrics have been well described [42];
however, details on the potential ubiquity of models across
forest types have yet to be conducted in detail. Additionally,
further investigations are required regarding how variations in
acquisition parameters (e.g., point density, flying altitude,

instrumentation, and seasonal effects) could potentially influ-
ence model transferability [145]. Rombouts et al. [146] noted
that protocols and modeling strategies should account for var-
iations in acquisition parameters as a prerequisite to operation-
al deployment of these approaches.

Forest Change and Growth

& Potential to use archival stereo-imagery acquisitions to
inform on forest change

& Capacity for multi-temporal DAP structure data to inform
site index and age

& Synergistic use of ALS and DAP for improving growth
and yield projections

While in-depth summaries of forest change and growth are
beyond the scope of this review, there have been developments
using DAP data to characterize forest change and growth that
are worthy of mention. Synergistic uses of ALS and multi-
temporal DAP acquisitions are showing increasing promise for
accurately estimating growth and yield attributes such as height,
site index, and age. Analyses capitalizing on the availability of
long-term photo archives such as Vastaranta et al. [147], which
developed and tested an approach to estimate stand age, and
Véga and St-Onge [148•, 149], which showed the potential to
estimate and spatially map site index and growth, present prom-
ising analytical frameworks. Stepper et al. [150] assessed forest
height changes using regularly acquired aerial imagery and sug-
gested that CHMs derived from repeat aerial image surveys can
be a viable and cost-effective data source to monitor forest
height changes through time. Studies such as these show that
the prediction of these attributes can be conducted using avail-
able stereo-imagery archives, improving the quality and com-
pleteness of forest inventory databases.

A template matching approach proposed in Tompalski et al.
[151] for integrating area-based inventories with growth and
yield simulators is also promising. Methodologies propose the
use of multiple attributes such as volume, basal area, and height
to define a growth curve for a spatially explicit area. This spa-
tially explicit method could provide improved and more spa-
tially detailed results than using traditional polygon-based ap-
proaches. Adding to this work, Tompalski et al. [32] also
looked to determine whether improved growth curve assign-
ments could be realized with the addition of a secondary DAP
time-step. Other approaches to assimilating remote sensing data
sets such as Nyström et al. [152], which tested the ability to use
a DAP-derived CHM time series in combination with growth
models, showed promising results for incorporating multiple
types of remote sensing data to provide spatial layers of up-
to-date estimates of forest stand predictions. Further research
into data assimilation approaches and multi-temporal modeling
of growth and yield curves using DAP data sets is warranted.
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Summary

DAP data have been proven accurate and cost-effective for the
ABAwhere high accuracy ALS DTMs exist. Analyses com-
paring area-based estimates for DAP and ALS have found that
accuracies can be considered analogous (although ALS data is
generally more accurate), with DAP acquisitions being con-
siderably less expensive relative to ALS. These findings high-
light the potential role DAP can play in strategic, tactical, and
operational forest inventory frameworks in a variety of forest-
ed environments. Although successful, we outline that further
research and development into DAP acquisition parameters,
image-matching algorithms, and point cloud processing
streams are needed. Advances in these areas will help to fur-
ther establish DAP as a logical data source for improving
proactive forest management, and fill a gap for technologies
capable of cost-effective and accurately updating EFIs.
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