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Introduction

The use of remotely sensed (RS) data in forestry is motivated by
efforts to increase cost efficiency, precision and timeliness of
forest information [1]. Differently, to traditional field-based sam-
pling, the availability of full-coverage RS data enables the pro-
duction of maps of key forestry variables, which are useful for
forest management purposes. First examples of aerial imagery
usage for forestry purposes date back to the beginning of the
1920s [2, 3]. Over the past century, there has been tremendous
growth in the number of RS data sources available for the as-
sessment and monitoring of forests. Three-dimensional (3D) RS
data, which can describe tree or canopy height, have shown
great potential for forest inventory [4]. In the past 20 years, the
use of airborne laser scanning (ALS) has been widely used for
forest inventory purposes and has become the standard data
source for operational forest inventories in many countries
around the world [5–7]. Nevertheless, the acquisition of ALS
data requires a degree of planning and investment, making these
data sources cost-effective only on a relatively large scale [8].
Up to the beginning of 2010, there were no cost-effective means
of acquiring high-resolution 3D RS data for smaller areas, such
as single forest properties or forest stands. Furthermore, in those
cases, where ALS-based forest management is implemented,
surveys are carried out infrequently, e.g. at intervals of 10–
20 years [5]. Hence, for some forest stands, the information
may be too unreliable for decision-making. Timeliness is a key
requirement to enable the adoption of precision forestry prac-
tices. This is especially true when the forest structure is changing
rapidly, as is the case in fast-growing regeneration forests, or
when growth is hindered by biotic or abiotic disturbances.

Photogrammetric approaches to obtain 3D information on
forest structure have become popular, offering substantial cost
savings in the case of aerial photogrammetry compared with
ALS [9, 10]. Photogrammetry is limited to the reconstruction
of surfaces visible in the image data, providing ground informa-
tion only where large vegetation gaps exist. However, photo-
grammetric data can be combined with pre-existing ground data,
derived from light detection and ranging data (LiDAR) for ex-
ample. This data synergy has been thoroughly discussed by
Goodbody et al. [11], indicating the potential for cost-efficient
forest inventory updates. Similarly, Kangas et al. [6] suggest an
equal value of photogrammetric and ALS data in forest manage-
ment planning, given that a ALS ground information is available
from previous campaigns. Additional to the proven complemen-
tary use of LiDAR and photogrammetric data [9, 11, 12], recent
attempts at deriving inventory relevant forest metrics from pho-
togrammetric data alone show potential for aerial [13•, 14] and
terrestrial [15•, 16] acquisitions. Further standalone use of photo-
grammetry was shown for forest health monitoring [17, 18•, 19]
species classification [20] and biodiversity assessments [21, 22].

In the last decade, a photogrammetric approach offering
flexible and cost-effective acquisition of combined 3D and

spectral RS data has found wide application and acceptance in
physical geography [23]: Structure from Motion (SfM), paired
with multi-view stereo (MVS) algorithms (SfM-MVS, com-
monly abbreviated to just SfM). SfM is based on computer
vision and facilitates the photogrammetric reconstruction from
images alone. Contrary to traditional stereophotogrammetry,
3D information can be computed from overlapping images,
without the need for prerequisite information on camera loca-
tion and orientation, camera calibration and/or surveyed refer-
ence points in the scene. This allows the use of inexpensive
imaging platforms, both for aerial or terrestrial applications.

SfM photogrammetry has been comprehensively reviewed
in the geosciences [24, 25, 26••], where it has been gaining
prominence for topographical surveys. We complement these
findings with a summary of SfM photogrammetry use specific
to forestry. We present an overview of the theoretical princi-
ples of a SfM-MVS workflow and its applications in forestry
by reviewing a representative sample of key research in this
field. Challenges and technical considerations are discussed,
concluding with opportunities and practical implications for
operational use of SfM by forest practitioners.

Structure from Motion: Theoretical Principles

Traditional stereophotogrammetrymethods are based on an anal-
ogy of the binocular human vision. Depth can be perceived from
two points whose relative position is known. However, depth,
volumes or 3D features can also be perceived from a single
observing point if either the observer or the object is moving
[27, 28]. SfM is a photogrammetric technique that is based on
both these principles: (i) the binocular vision and (ii) the chang-
ing vision of an object that is moving or observed from amoving
point [29]. SfM is used for estimating 3D models from se-
quences of overlapping 2D images. It gained popularity in recent
years due to its ability to deal with sets of unordered and hetero-
geneous images without prior knowledge of the camera param-
eters [30]. SfM differs from traditional photogrammetry mainly
in three aspects: (i) features can be automatically identified and
matched in images at differing scales, viewing angles and orien-
tations, which is of particular benefit when small unstable plat-
forms are considered; (ii) the equations used in the algorithm can
be solved without information of camera positions or ground
control points, although both can be added and used and (iii)
camera calibration can be automatically solved or refined during
the process. SfM can thus automatically deliver photogrammet-
ric models without requiring rigorous homogeneity in overlap-
ping images, camera poses and calibrations [31–33].

‘SfM’ photogrammetry is commonly used to define the
entire reconstruction workflow, from image set to dense point
cloud; however, strictly speaking, SfM only refers to a specific
step in the workflow that provides camera parameters and a
sparse point cloud (see Fig. 1). Although some studies use the
sparse point cloud as a final product [31, 34], in most cases,
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dense image matching algorithms, such as MVS, are used in a
subsequent step to densify the point cloud. The whole process
can thus be referred to as SfM-MVS. Figure 1 contains a
schematic workflow of the whole SfM-MVS process, and
Fig. 2 shows a graphic diagram of the main three steps.

The SfM-MVS process starts with the automatic extraction of
keypoints (i.e. points or sets of pixels with distinctive contrast or
texture) in the images. The keypoints are identified in all images
and then tied (matched) across images where they appear. The
scale-invariant feature transform (SIFT [35]) and its variations
are the most common algorithms for keypoint identification and
matching in SfM [26••]. SIFT produces numerical descriptors for
each point in each image. These descriptors are invariant to scale
and orientation, thus suitable for identifying points or objects in
pictures taken from different perspectives and under different
conditions. Then, coherence of keypoint matches is checked
using a coarse reconstruction of the geometry of the images
and the relative position of the keypoints on them (Figs. 1 and 2).

Given a sufficient number of images and keypoint matches,
SfM performs bundle adjustments to simultaneously compute
camera poses and parameters, and a sparse 3D point cloud of
the scene (consisting of the position of keypoints matched in
different images). The bundle adjustment is solved using (i)
initialization values obtained from sequences of randomly se-
lected matched keypoints and, complementarily, parameters
from the cameras and poses and (ii) a non-linear refinement
[36]. Then, the outputs of SfM are scaled and georeferenced
based on ground control points (GCPs) and/or data from nav-
igation devices from the camera or its platform (Figs. 1 and 2).

The camera poses and parameters obtained fromSfM are then
applied to generate a densified point cloud using MVS algo-
rithms. Prior to the MVS densification, and for computational
efficiency or even viability, images are clustered based on their
location [37]. In this way, the dense point cloud of each cluster
(i.e. group of images) is computed separately (Figs. 1 and 2).

A dense point cloud, with colour/spectral information de-
rived from the input images, represents the primary output of
the SfM-MVS workflow. Subsequent processing steps (for ae-
rial surveys) typically involve the derivation of a digital surface
model (DSM) and an orthomosaic. A canopy height model
(CHM) can be attained by height normalization (i.e. conversion
from height above sea level to height above ground) with a pre-
existing digital terrain model (DTM). When SfM-derived sur-
face data are height normalized in such a way, this offers the
calculation of forest metrics like those commonly derived from
ALS (e.g. height, timber volume, biomass). Additionally, image
metrics like radiance/reflectance values and texture may be ex-
tracted [13•, 18•, 20, 38, 39]. Finally, rasterization can offer
opportunities to explore the sensed information in more depth
when statistics are calculated for every cell (e.g. height percen-
tiles, surface roughness, spectral indices) [40–42].

SfM Photogrammetry in Practice

With photogrammetry being a passive technique, results are
highly influenced by the input image data. SfM photogram-
metry, employing an automated process to identify and match
features by computer vision, is fundamentally dependent on
image quality. Sensors, settings and acquisition designs
should be considered with great care.

In every circumstance, the camera settings need to be consid-
ered to ensure optimal image data is acquired given a set of con-
straints, namely (i) those from the environment (lighting condi-
tions), (ii) the platform (UAV, pole, tripod or handheld) and (iii) the
camera and lens combination (the exposure triangle, focal length,
sensor size). Acquiring high-quality image data has been
discussed in O’



mounted. For terrestrial imaging, a convergence of images on
AOIs is advised, as presented in Mosbrucker et al. [44].

Within image acquisition and SfM photogrammetric
workflows, users have many parameters which they can vary
depending on the equipment and software used. For some,
users can have near full control (e.g. the ‘exposure triangle’;
ISO, shutter speed and aperture), though there are several which
will only be estimated prior to performing a survey (such as the
exact camera positions images will be acquired from). Other
influential factors, which cannot be manipulated (e.g. light con-
ditions), will have to be carefully considered when planning a
SfM-based survey. The success of reconstruction is ultimately
dependent on factors that can be broken down into five catego-
ries, as presented in Table 1. The accuracy of the position and
scale of a survey is then determined by the referencing approach
(e.g. GCPs, direct georeferencing, manual scaling).

To apply SfM photogrammetry in forestry, important aspects
to a successful survey are as follows: (i) the scene is covered

with overlapping images from multiple locations and angles
(high overlap to increase redundancy and multiple viewing an-
gles of the same object to reduce occlusions and systematic
errors), (ii) any feature to be reconstructed should be visible in
at least three images (five or six images for dense vegetation)
and the angular divergence between neighbouring images be-
tween should not exceed 10–20°, (iii) the scene is sufficiently
illuminated (constant lighting is preferable, e.g. overcast or
cloud-free conditions) and (iv) object of interest is fixed (pref-
erably no movement from branches in wind).

The Current Status of SfM in Forestry

With the ability to produce highly detailed 3D information
from a set of images alone, SfM photogrammetry lays a pow-
erful tool into the hands of anyone looking to collect their own
fit-for-purpose RS data. Owing particularly to the potential of
using off-the-shelf cameras and the availability of affordable

Fig. 2 The three key stages in a
SfM-MVS workflow illustrated
on two hypothetical images of a
Canary Island pine forest: (1)
keypoint identification and
matching (e.g. SIFT), (2) SfM
with camera parameters and a
sparse point cloud as output and
(3) the densified point cloud fol-
lowing MVS
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user-friendly software, the application of SfM photogramme-
try in physical geography has increased rapidly [26••, 48].
With SfM photogrammetry being scale independent, images
may be acquired from a multitude of platforms ranging from
ground-based, handheld or pole-mounted options, to un-
manned aerial vehicles (UAVs) and manned aircraft. UAVs
have enabled geospatial data to be acquired in new ways.
Flexibly deployed at scales from several hectares to square
kilometres [49], they allow forest practitioners to collect their
own aerial information. In fact, there is an increasing interest
in UAV forest surveys that can arguably be attributed to SfM-
based photogrammetric processing [26••].

The rapid adoption of SfM photogrammetry is indicated by a
growing number of scientific publications in forestry that utilize



to produce wall-to-wall auxiliary information in a similar fash-
ion to ALS data. As such, UAV-SfM data has been shown to
be suitable for the estimation of inventory relevant biophysical
parameters such as height, density and biomass [11, 12, 34,
54–56]. Even though SfM has mostly been applied to aerial

image data, in recent years, there has been an increasing effort
in developing terrestrial SfM applications to replace or aug-
ment field data collections. The focus of studies incorporating
CRP lies on estimating diameter at breast height (DBH), tree
position and stem curves. The following sub-sections

Table 2 Number of publications
on SfM photogrammetry for
forest/tree remote sensing per
year with manually assigned sub-
categories

2010 2013 2014 2015 2016 2017 2018 02/
2019

SfM in forestry 1 3 3 11 18 31 66 4

- Airborne inventory 0 1 2 4 7 22 24 1

- Terrestrial inventory 0 0 0 1 4 2 10 0

- Forest health 0 0 0 2 4 1 7 1

- Proof-of-concept 1 2 1 4 3 6 15 2

Results presented are based on a manually filtered search in the scientific publications database Web of
Knowledge using the search terms: TS = (‘Structure from Motion’ OR ‘Structure-from-Motion’ OR ‘SfM’ OR
‘sfm’ OR ‘structure from motion’ OR ‘structure-from-motion’ OR photogrammetry OR UAS OR SfM OR UAV
ORRPAS OR drone OR CRPOR ‘unmanned aerial’OR ‘Unmanned Aerial’) AND TS = (forest OR forestry OR
tree). The date of this search was 21 February 2019

Table 1 Overview of variables influencing the results of a SfM survey

Domain Variable Recommendation

Scene Texture High surface contrast to allow for feature-point detection

Pattern repetition Increase overlap and increase accuracy of geotags

Moving features Avoid!

Occlusions Increase overlap and viewing angles

Lighting conditions Sun angle High! Solar noon is ideal

Weather Overcast provides even lighting (ambient occlusion) for structural (RGB) surveys.
For spectral surveys little atmospheric influence may be required, clear skies.

Changing illumination Avoid!

Camera parameters Focal length Wide but not too wide to minimize distortions. 28–35 mm is a good basis (James et al. 2012)

Exposure Δ Well exposed

- Aperture Small for max DOF*, f/8 an advisable default

- Shutter speed High for reduced motion blur*, ground speed (m/s) * exposure time (s) = blurred pixel

- ISO Length
Low for min noise*, auto-ISO an advisable default
*Ideal scenario, but will always be a compromise between these three parameters

Pixel pitch As high as is practical. Physical pixel size positively influences dynamic range and sensitivity

Survey characteristics Overlap High (> 80% forward and lateral) as rule of thumb for forests to increase redundancy
and matchability in scenes with high pattern repetition, moving features and/or
occlusions. As a rule of thumb, a UAV-SfM data acquisition should be planned
so that each point will be visible at least in 4–5 images.

View angles Convergent for reduction of systematic errors (RGB)
Parallel (Nadir) for spectral sensing (reflectance)

Survey range With increasing distance to the object/scene (decreasing GSD) survey precision degrades.
Increased GSD requires higher overlap.

Processing parameters SfM—matching
- Image scale

If matching is not successful at full image scale ½ or ¼ may promote matchability

- Keypoints The number may be reduced for large datasets to reduce processing time

MVS—densification Densification may not always be required at full image scale/maximum point cloud density

Secondary products Multitude of algorithms for meshing, gridding etc. (results will depend on specific method)
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elaborate further on the developments up to today regarding
aerial and terrestrial SfM and highlight some of the key work
on using these photogrammetric data for inventory purposes.

Aerial Inventory

The use of SfM techniques applied to aerial image data for
forest inventory was pioneered by Dandois and Ellis in 2010
[54]. These authors were the first to use a series of unordered
but overlapping images acquired using a consumer-grade
camera mounted on a kite to produce a dense 3D point cloud
representing the forest canopy. A first attempt to model forest
biophysical properties using UAV-SfM data was done by
Dandois and Ellis in 2013 [34] and Lisein et al. in 2013
[55]. Both studies found that even though the results were
not consistent in all the studied areas, there was a correlation
between UAV-SfM data and variables such as dominant
height (R2 = 0.07–0.91) or aboveground biomass (R2 = 0.27–
0.73). A more comprehensive evaluation of the possibilities to
use UAV-SfM for forest inventories came with the studies by
Puliti et al. in 2015 [12] and Tuominen et al. in 2015 [56] who
extended their evaluation to the range of biophysical variables
commonly used in forest management. Their results in terms
of RMSE% for dominant height (3.5%), Lorey’s height
(13.3%–14.4%), stem density (38.6%), basal area (15.4–
23.9%) and timber volume (14.9–26.1%) were found to be
similar to errors associated with ALS-based forest inventories.
While these two studies set an important benchmark, they
were both conducted in even-aged managed boreal forests
and thus provided limited information on how UAV-SfM
may perform in different forest types and forest developmental
stages.

Since the early days of UAV-SfM, the rapid growth in
computing capabilities, availability of UAVs and SfM soft-
ware triggered increased interest in the scientific community
(see Table 1). This led to a widespread evaluation of UAV-
SfM technology over a variety of forest types and forest de-
velopmental stages. UAV-SfM data has been consistently
proven to be useful for forest inventories in a large variety of
forest types, including temperate European beech forests in
Italy [13•], mangrove forests in Malaysia [57], tropical forests
in Guyana [58], mixed conifer-broadleaved forest in Japan
[59], sparse sub-alpine coniferous forests in China [60], trop-
ical woodlands in Malawi [41] and various plantations around
the globe [61–63]. From these studies, a conclusion can be
drawn that the accuracy of UAV-SfM models is consistent
across many different forest types and on a similar scale to
ALS models. All of the aforementioned studies dealt with
mature to nearly mature forest, while there has been little
effort dedicated to estimating biophysical variables for forests
under regeneration [64, 65, 66•]. Nevertheless, the use of
UAV-SfM data for regeneration forests may outperform alter-
native data sources such as field assessments or the use of

ALS data in terms of costs and accuracy. Goodbody et al.
[64] demonstrated the possibility to discriminate coniferous
and deciduous species (overall accuracy of 86–95%). Puliti
et al. [66•] showed that UAV-SfM data could be used to accu-
rately model stem density and height (RMSE%= 21.8% and
23.6%). Such results represent a substantial increase in accu-
racy over ALS forest inventories and field assessment.
Furthermore, their study reported that data acquired using
UAV-SfM techniques halved the amount of time required for
traditional field surveys that are commonly performed in re-
generation stands. Thus, the use of UAV-SfM for regeneration
forest may be particularly interesting since it allows a simul-
taneous increase in the precision of the inventory while reduc-
ing its costs.

Different methodological approaches have been applied to
UAV-SfM data, similarly to ALS data. The methods can be
categorized into area-based approaches (ABA) [67] and indi-
vidual tree crown (ITC) approaches [68, 69]. While in the
former case, the population units are represented by grid cells
of area equal to that of the field plots; in the latter, they are
polygons representing single-tree crowns. In both cases, the
UAV-SfM data, corresponding either to the grid cells or the
single-tree crowns, are then linked to a sample of field obser-
vations either for field plots or for single trees through models.
These models are then applied to all the population units either
for estimation of parameters for stand or forest level mapping.
The results of ABA methods have been presented in the pre-
vious paragraph. The adoption of ITC approaches to UAV-
SfM has been found to be useful for detecting single trees with
25–90% detection accuracy [63, 70, 71], to classify them ac-
cording to tree species with overall accuracies up to 95% [71],
and measuring their height with RMSEs in the range of 0.5–
2.84 m [55, 63]. In addition to rather large variability in the
accuracy of some of these variables, the results of UAV-SfM
ITC approaches vary according to forest types since they re-
main limited to the detection of the dominant tree layer, while
smaller and dominated trees remain mostly undetected.

Terrestrial Inventory

Currently, terrestrial laser scanning (TLS) is the most accurate
non-contact method of measurement to derive detailed forest
inventory information at the plot level [15•]. The main draw-
backs of this technology are the high hardware costs [53], and
the time required for multiple scans mitigating occlusions
along with post-processing to provide full coverage of a plot
[72]. Mobile laser scanning systems reduce acquisition time
but high costs remain [73].

The deficiencies of traditional field data collection and the
need for reducing the cost of alternative laser scanning solu-
tions have encouraged the application of terrestrial photo-
grammetry for forest inventory. Efforts to utilize terrestrial
photogrammetric point clouds for deriving forest parameters
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derive from the low-cost of the equipment for the data collec-
tion, the automated SfM-based data processing and the poten-
tially simple and fast data acquisition [74]. Requiring only a
camera, typically handheld or mounted to a pole or tripod,
terrestrial SfM photogrammetry makes such a system highly
mobile, reducing the risk of occlusion yet providing a level of
detail comparable to TLS [75].

Studies on terrestrial SfM for forestry purposes have be-
come more frequent in the last years (Table 1) and mainly
focus on linear rather than volumetric tree metrics. Studies
vary according to (i) the scale of application, i.e. at plot level
and individual tree reconstruction; (ii) the measured forest
parameters like tree position, DBH, height and stem curve;
(iii) the resolution of the sensor, e.g. video, mobile phone
and SLR camera; (iv) the camera configuration and photo-
graphic path and (v) the equipment used to acquire the images,
e.g. pole, tripod, camera rig and backpack. Based on these
aspects an overview of key work on terrestrial SfM applica-
tions together with the obtained accuracies, acquisition meth-
od and geo-referencing approach are provided.

Most of the recent studies on photogrammetric measure-
ments of forest parameters are based on the single-camera
technique, according to which overlapping images are ac-
quired around the plot (Fig. 4).

Terrestrial photogrammetry has been evaluated in several
studies in the past few years at plot scales [14, 15•, 16, 74,
76–78]. In these studies, DBH and tree locations were estimat-
ed in circular plots with diameters ranging from 12 to 30 m.
The reported RMSE of the DBH ranged from 0.88 to 6.80 cm
compared with either field or TLS DBH measurements. Tree
detection ranged between 60 and 98%. Results were influ-
enced by the complexity of the forest plot, the acquisition path
and mode.

The impact of photographic path on the accuracy of forest
metrics derived from terrestrial SfM point clouds was firstly

investigated by Liang et al. in 2014 and 2015 [74, 75] follow-
ed by Mokroš et al. in 2018 [78]. According to Mokroš et al.
[78], the optimal acquisition solution resulted in portrait im-
ages, stop and go shootingmode and a path leading around the
plot with two diagonal paths through the plot. Differently,
Liang et al. [75] concluded that the image matching results
of landscape images were optimal together with a
photographing path based on inside and outside of an inner
circle (Fig. 4). For complex forest plots, Piermattei et al. [15•]
found that the optimal acquisition path was a combination of
the solution found by Liang et al. [75] and Mokroš et al. [78]:
landscape images, stop and go mode around the plot pointing
in, following by an inner circle pointing out of the plot and
two diagonals. This solution allowed reconstruction of stems
with an accuracy of few centimetres up to a few metres above
ground. For low-density and medium-density forests, Liu
et al. [77] proposed a system that combines two pole-
mounted cameras with a RTK GNSS for continuous captur-
ing. Comparedwith total station measurements, their automat-
ic determination of tree position, DBH and height achieved
RMSEs of 0.16–0.2 m, 0.92–1.13 cm and 2.41–2.51 m
respectively.

Most investigations on the use of terrestrial SfM were per-
formed reconstructing single trees (i.e. not the entire forest
plot) [16, 76, 79–83]. In those studies, DBH was the most
frequently estimated parameter and often compared with
TLS data for accuracy assessment. Although sub-centimetre
accuracy was achieved in all cases, the obtained RMSEs dif-
fered according to the approaches used, forest types and sur-
vey conditions, i.e. natural forest and controlled field settings.

Not all the research studies report the time required for
collecting the images. This can range from around 10 min to
2 h depending on the system used, parameters to be estimated,
plot size and survey configuration, by excluding the time to
acquire scaling measurements. However, the accuracy of the

Fig. 4 Example of a terrestrial SfM survey [51] in an open forest plot
showing a the configuration of camera positions and orientations, dense
point cloud and ground control points; b an example of an image and the

dense point cloud from the same point of view and c the dense point cloud
of a single stem without RGB colouring together with a 10-cm cross-
section at 1.3 m (light blue point cloud)
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scaling factor is crucial for forest plot and individual tree re-
construction [74]. To scale the photogrammetric point cloud,
most of the studies used targets surveyed by total station,
implying additional equipment needs to be carried into the
field, consequently increasing the total acquisition time per
plot and reducing the portability of the entire surveying sys-
tem. Aside from systems requiring a GNSS solution [77],
currently, only Liang et al. [74] tested natural reference ob-
jects, e.g. tree stems, for the determination of correct scale.
Their results showed that both natural reference objects and



spectral information that SfM-based processing of UAVimage
data provides [18•, 50].

Point clouds generated from high-resolution images can
exhibit point densities greater than LiDAR, providing higher
detail information on the visible surface of forests. The in-
creased spectral variation stemming from such high-
resolution data may hereby provide another valuable source
of information, namely texture, such as the case in an OBIA
approach [94]. Alongside the computational analysis, high-
resolution SfM-generated models appear visually realistic,
providing experts a near true depiction of the scene. Intuitive
to understand, SfM models thus hold an important advantage
over coarser remote sensing methods by enabling the rapid
visual assessment and/or validation.

As is the case with all RS data, these will only ever be an
approximation of the Earth’s surface and some limitations
always remain. With SfM photogrammetry being a new tech-
nology, the boundaries of these limitations are not fully tested
yet. Some of the main challenges with SfM photogrammetry
for forest applications that we are facing nowadays relate to
the following:

1) Reproducibility:
With SfM photogrammetry enabling frequent surveys,

variations in illumination, atmospheric and seasonal con-
ditions are inevitable between acquisitions. Being a pas-
sive sensing technique, these variations are directly
reflected on the data thus on the replicability of analyses.
To ensure the use of SfM data on demand, allowing ac-
quisitions at different times of the year, it is therefore
crucial to develop protocols for varying conditional sce-
narios and models that account for variations in the data.

2) Availability of accurate DTMs:
Most airborne inventory studies presented here

adopted highly accurate DTMs (e.g. ALS-based DTMs)
to normalize UAV-SfM data and these are relatively rare
around the globe, thus potentially limiting the area of
application of UAV-SfM. To overcome this issue, some
authors proposed the use of DTMs generated from the
UAV-SfM data themselves [41] or the use of coarse reso-
lution global DTMs such as shuttle radar topographymis-
sion data (SRTM) [41]. While the former type of DTM is
obtainable only in open forests, the latter source was
found to be unsuitable for estimation of aboveground bio-
mass. A conceptually novel approach camewith the study
by Giannetti et al. [13•] who, to overcome any of the
abovementioned limitations, proposed the use of UAV-
SfM data-derived variables without prior normalization
(i.e. DTM-independent variables). Their results showed
that models fitted raw UAV-SfM data alone predicted
stem volume with similar accuracy to ALS data, even in
the highly productive broadleaf forest in steep terrain.
Despite such encouraging results, it remains fundamental

to further apply the method by Giannetti et al. [13•] in a
wider variety of forest types and response variables.
Furthermore, the greater complexity of DTM-
independent variables over more traditional explanatory
variables could limit the transferability of the models
through space and time.

3) Lack of acquisition and processing protocols:
The success of a SfM-based photogrammetric acquisi-

tion is largely based on the sensor used, the photographic
path and viewing angles along with the chosen image
overlap as well as the composition of a scene.
Adjustments to the acquisition approach to ensure quality
data are currently undertaken based on the surveyor’s
experience. Here protocols that enable certainty for SfM
outputs across forest types and phenological stages, yet
minimizing acquisition efforts, need to be established.
Eltner et al. [24] suggested a protocol for the collection
of image data in geoscientific studies, which should be
extended to take into account forestry-specific factors.
Additional research is required on the parametrization of
SfM-based photogrammetric software for vegetated
scenes specifically. Processing protocols designed to de-
liver data adequate to the research question and to opti-
mize processing speed are needed.

4) Image matching issues:
Forests may prove to be challenging scenes for the

feature matching algorithms underlying a SfM workflow.
Their fine uniform texture, repeating patterns and poten-
tial movement (e.g. branches in wind) can introduce un-
certainty in matching, consequently leading to incomplete
reconstruction and/or noisy point clouds. In such cases,
the likelihood of identifying visual similarities in overlap-
ping images is promoted by increasing the distance to the
area of interest (AOI), thus increasing the number of fea-
tures per image and decreasing perspective distortions.
Coarser ground sampling distances (GSDs) and higher
image overlaps were shown to positively influence image
matching [95, 96]. The overlap should thus be increased
when decreasing the GSD (i.e. images with finer detail).
Other potential mitigation strategies for reconstruction er-
rors, like the use of high-accuracy position and orientation
information for reduction of matching uncertainty, have
yet to be studied.

To widely employ SfM photogrammetry in operational for-
estry, future research needs to tackle the abovementioned hur-
dles. It is essential to develop a consensus on acquisition pro-
tocols and parametrization of SfM photogrammetry software
that is set to answer specific research questions across forest
types and environmental conditions. We have started to gain
some understanding of how image quality, overlap, GSD and
photographic path are influencing SfM-based reconstruction
[15•, 43••, 95–97]. However, prior to processing, uncertainty
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remains in predicting the completeness of these photogram-
metric models. More in-depth work on these influential pa-
rameters is needed in conjunction with the development of
methods that allow for reliable quality estimation of SfM-
based outputs. Towards the quantification of data quality,
James et al. [98] presented a method for estimating the preci-
sion of each point produced within the SfM pipeline by re-
peatedly running bundle adjustments on a set of input images.
These ‘precision maps’ allow practitioners to describe the
spatial variability of precision within SfM-derived products
and gain insight into limitations in a given survey (such as
image quality or control-point measurements). To our knowl-
edge, ‘precision maps’ have not been applied in the context of
forested scenes. In forestry, future studies would benefit from
this method to objectively describe the data quality of SfM-
derived products and thereby reduce uncertainty in subsequent
analysis.

Conclusions

A camera and a computer are the basic requirements for
SfM photogrammetry. With the examples given here,
and in terms of what valuable data may be extracted
from SfM-derived data by analysis, SfM photogramme-
try shows great potential for forest practitioners and
researchers. Adding the power of UAVs for the acquisi-
tion of aerial image data, the canopy of a forest can be
mapped nearly in real time, responding rapidly to man-
agement needs. The temporal and spatial dimension that
can be provided with SfM photogrammetry enables as-
sessment and monitoring of forests in an economical
way that has not existed before.

However, constraints linked to the fundamental principles
of SfM photogrammetry being a passive optical method will
remain. Influencing factors like viewing geometry, lighting
and the availability of static texture have to be carefully con-
sidered prior to every survey. We suggest that, in order to
enable the collection of fit-for-purpose data with predictable
quality, further work is needed on acquisition and processing
protocols specific to forestry. Further progress in these areas
will facilitate the move away from proof-of-concept studies
and towards the operational application of SfM photogram-
metry in forestry.
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