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Abstract. Measures of complexity are of immediate interest for the field of autonomous robots both as
a means to classify the behavior and as an objective function for the autonomous development of robot
behavior. In the present paper we consider predictive information in sensor space as a measure for the
behavioral complexity of a two-wheel embodied robot moving in a rectangular arena with several obstacles.
The mutual information (MI) between past and future sensor values is found empirically to have a maximum
for a behavior which is both explorative and sensitive to the environment. This makes predictive information
a prospective candidate as an objective function for the autonomous development of such behaviors. We
derive theoretical expressions for the MI in order to obtain an explicit update rule for the gradient ascent
dynamics. Interestingly, in the case of a linear or linearized model of the sensorimotor dynamics the
structure of the learning rule derived depends only on the dynamical properties while the value of the
MI influences only the learning rate. In this way the problem of the prohibitively large sampling times
for information theoretic measures can be circumvented. This result can be generalized and may help to
derive explicit learning rules from complexity theoretic measures.

PACS. 89.70.Cf Entropy and other measures of information – 87.19.lo Information theory – 87.85.St
Robotics

1 Introduction

The predictive information of a process quantifies the total
information of past experience that can be used for pre-
dicting future events. Technically, it is defined as the mu-
tual information between the future and the past, see [1].
It has been shown that predictive information, also termed
excess entropy [4] and effective measure complexity [11],
is the most natural complexity measure for time series.
This concept is of immediate interest for the field of au-
tonomous robots if applied to the time series of sensor
values the robot produces. The difference to classical time
series analysis is in the fact that the robot generates these
time series by its behavior so that behavior can be related
to the complexity of the time series. Thus, on the one hand
we may use complexity theory in order to classify the be-
havior of robots in interaction with the environment. On
the other hand, once such a measure is established it can
be used as an objective function for the self-organization
of behavior of the robot.

The self-organization scenario we have in mind is com-
pletely based on the internal perspective of the robot i.e.
the adaptation of the behavior is driven by an objective
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function which is based on the time series of the sensor val-
ues alone. Predictive information seems to be a good can-
didate for the self-organization of environment related ex-
plorative behavior. In fact, predictive information is high
if – by its behavior – the robot manages to produce a
stream of sensor values with high information content un-
der the constraint that the consequences of the actions of
the robot remain still predictable. The behaviors emerg-
ing from maximizing the predictive information (like any
other complexity measure) depend in an essential way on
the embodiment of the robot in its interaction with the en-
vironment. This paper aims at investigating, in a concrete
embodied robot experiment, the link between the com-
plexity measure in sensor space and the realization of the
behavior in physical space. We use a robotic system that
is simple enough to be treated analytically but reflects al-
ready much of the general case. In particular our robotic
system is fully embodied in the sense that physical influ-
ences like inertia, collisions and so on play an essential role.
However, we do not study the full predictive information
but restrict ourselves to the mutual information (MI) be-
tween successive time steps which is equal to the predictive
information in the case of Markovian systems, see below.
We show by both theoretical analysis and experimental
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results, that the maximization of the predictive informa-
tion defines a working regime of the robot where it is par-
ticularly explorative (richness in dynamics) while being
in good sensor contact with the environment (high pre-
dictability of future events).

Our approach relates to other approaches of using sta-
tistical measures for robotics, a good introduction is [16]
where a set of univariate and multivariate statistical mea-
sures are used in order to quantify the information struc-
ture in sensory and motor channels, see also [14] and [13].
In particular we consider the predictive information as
a prospective tool for concepts like internal motivation.
Potential applications of this approach are expected in
developmental robotics which has found some interest re-
cently [15,25]. There is a close relationship to the attempts
of guiding autonomous learning by internal reinforcement
signals [24] and to task independent learning [19,21,23].
Quite generally, using a complexity measure as the objec-
tive function for the development of a robot corresponds
to giving the robot an internal, task independent motiva-
tion for the development of its behavior.

The paper is organized as follows: We introduce in Sec-
tion 2 the robot and then give a dynamical systems analy-
sis of its behavior. In particular we introduce the concept
of the effective bifurcation point (BP). This analysis is
helpful in understanding the different behavioral regimes
realized by the robot. Section 3 introduces the informa-
tion theoretic measures and gives a theoretical expression
for the case at hand. After this we present in Section 4 the
results of experiments with the simulated robot showing
that the MI has a maximum close to the effective bifur-
cation point where the robot is seen to cover the largest
distances without losing its sensitivity against collisions
with the environment. Finally in Section 5 we formulate a
general learning rule for the parameters of the controller
based on the gradient ascent of the mutual information as
obtained by the theory of Section 3. This is seen to be an
appropriate way to avoid the sampling problem associated
with the empirical MI measure.

2 The robot

In the present paper we are using a simple two-wheel robot
simulated in the lpzrobots simulation tool [18] based on the
physics engine ODE, see [22]. Each wheel is driven by a
motor, the motor values being given by the vector yt ∈ R2

which is the output of the controller. The only sensors are
wheel counters measuring the true velocity of each of the
wheels, i.e. xt ∈ R2 is the vector of the measured wheel
rotation velocities. The physics engine ODE simulates in
a realistic way effects due to the inertia of the robot, slip
and friction effects of the wheels with the ground and the
effects of collisions. The velocities are such that the robot
upon collisions may tumble so that we have a truly em-
bodied robotic system.

2.1 The control paradigm

There are many different paradigms for the control of au-
tonomous robots. In the present paper we consider closed
loop control with a tight sensorimotor coupling. The con-
troller is a function

y = K (x) (1)

mapping sensor values x ∈ Rn to motor values y ∈ Rm.
We restrict ourselves in the present paper to a purely reac-
tive controller. In more general cases the controller might
additionally depend on an internal state. In the concrete
setting, the sensor values are the velocities of the wheels
as measured by the wheel counters, the outputs y being
the target velocities of the wheels. There are a few con-
ditions the controller must fulfill for physical reasons. On
the one hand, the controller outputs must be limited by
the maximum velocity the robot can realize. On the other
hand, due to the directional symmetry of the robot used
in the experiments, the controller should be invariant with
respect to inverting the input and output velocities simul-
taneously. For the sake of simplicity we use a pseudo linear
expression

yi = g (Ci1x1 + Ci2x2) (2)

where i = 1, 2, and require additionally that the func-
tion g (z) is monotonic. Due to the symmetry and bound-
edness argument an antisymmetric sigmoid function is
a natural choice for g (z). We use in the present paper
g (z) = tanh (z). Any other sigmoid function will produce
qualitatively similar results as can be seen in terms of the
analysis given below.

In the present paper we want to determine empirically
the predictive information over the coupling parameters
Cij defining the behavior of the robot. In order to keep
the sampling effort manageable we omit the cross channel
couplings, i.e. C12 = C21 = 0. Due to the right-left sym-
metry of the robot we also put C11 = C22 = c so that our
matrix C is

C =
(
c 0
0 c

)
(3)

and there is only one parameter determining the behavior
of the robot.

2.2 The sensorimotor loop

Taking the internal perspective, the only information
available to the robot is the time series of its sensor val-
ues xt ∈ Rn, t = 1, 2, . . .. In order to “understand” the
world (its body embedded dynamically into the environ-
ment), the robot may use the following model of the time
series xt

xt+1 = F (xt, yt) + ξt+1 (4)

where in general F : Rn × Rm → Rn is a function map-
ping old sensor and motor values to the new sensor values
with ξ ∈ Rn being the modelling error. In practical appli-
cations F may be realized by a neural network which can
be trained by supervised learning. In our simplistic case,
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when in unperturbed motion, the observed wheel veloci-
ties are essentially those prescribed by the controller, i.e.
xt+1 = Ayt where the matrix A is given by Aij = aδij

with a hardware constant a which we may set a = 1 so
that equation (4) boils down to

xt+1 = yt + ξt+1 (5)

where ξ contains all the effects due to friction, slip, iner-
tia and so on which make the response of the robot to its
controls uncertain. In particular, if the robot hits an ob-
stacle, the wheels may get totally or partially blocked so
that in this case ξ may be large, possible fluctuating with
a large amplitude if the wheels are not totally blocked.
Moreover ξ will also reveal whether the robot hits a mov-
able or a static object.

Using equation (1) in equation (4) we may write the
sensorimotor dynamics as

xt+1 = ψ (xt) + ξt+1 (6)

where ψ (x) = F (x,K (x)). In the specific case of equa-
tion (5) we have

ψ (x) = G (Cx) (7)

where G is the vector function G : R2 → R2, Gi (z) =
g (zi) = tanh zi with zi = Ci1x1 + Ci2x2 for i = 1, 2 and
thus

xt+1 = G (Cxt) + ξt+1 (8)

Although the robot may behave in a very intricate way
(see below), equation (6) is exact, since the effects of the
embodied interaction with the world are concealed in the
model error ξ. In the theoretical analysis given below we
will consider ξ as a random number (white Gaussian noise)
in order to obtain an explicit expression for the predictive
information which forms the basis of our learning rule.

2.3 Properties of the single channel dynamics

Let us now consider at first the case of identical wheel
velocities, i.e. the robot is moving along a straight line.
Dropping the model error (noise) for the moment, the sta-
tionary behavior of the robot is given by the fixed points
(FPs) of equation (8). We consider each loop indepen-
dently (uncorrelated noise) with fixed point equation

x = tanh (cx) . (9)

Standard FP analysis shows that there is a stable FP
x∗ = 0 for 0 < c < 1. With c > 1 the FP x∗ = 0 be-
comes unstable and there are two new, stable FPs x∗ = ±u
where for small u we get by means of the Taylor expan-
sion tanh z ≈ z − z3/3 in leading order the FP equation
x = cx− (cx/3)3 with solution

x∗ = ±
√

3
(c− 1)
c3

(10)
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and equations (13) and (14) yield the joint probability in
the stationary state immediately as

p (xt+1, xt) =

√
(1 − c2)
2σ2π

× exp

(
− (xt+1 − cxt)

2 +
(
1 − c2

)
x2

t

2σ2

)
.

(15)

3.2 Predictive information in the linear case

Our system equation (11) obeys the Markov property.
Hence, as shown in Appendix A.1, the full predictive in-
formation, which relates the future to the past is given by
the one-step mutual information

I (Xt+1;Xt) =
〈

log2

p (xt+1, xt)
p (xt+1) p (xt)

〉

=
〈

log2

p (xt+1|xt)
p (xt+1)

〉

=
∫ ∫

p (x, s) log2

p (x|s)
p (x)

dx ds. (16)

Using equations (13) and (14) we find by elementary
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The analysis below the bifurcation point (unimodal
distribution) is identical to the one given in the linear
case, i.e. we obtain

I (Xt+1;Xt) = −1
2

log2

(
1 − L2

)
(25)

where actually L = c since x∗ = 0 and g′ (0) = 1. Above
the bifurcation point the distribution is bimodal, approx-
imated by two Gaussians with equal weight. As shown in
Appendix A, Section 8.3 we obtain

I (Xt+1;Xt) = 1 − 1
2

log2

(
1 − L2

)
. (26)

The additional bit is due to the knowledge of the branch
of the bimodal distribution one is in. The MI increases if
approaching the bifurcation point both from below and
above, see Appendix A.3.

When approaching the bifurcation point too closely
(depending on the noise) the expressions fail. However one
can see by the following heuristic argument that the in-
crease of I given by equation (25) (with c = L) extends
smoothly beyond c = 1. We write equation (6) as

xt+1 = tanh (cxt) + ξt+1 = γ (cxt) cxt + ξt+1

and note that the positive, even function γ (z) =
tanh (z) /z < 1 acts as a reduction factor on the value
of c which is the smaller the larger x. Approximately we
may replace γ (cx) with its (time) average so that we get
the dynamics equation

xt+1 = ceffxt + ξt+1 (27)

where ceff = γ(x)c. An explicit expression for ceff can be
obtained in the sense of a self-consistent mean field ap-
proach, by using the distribution p(x), see equation (13),
with c replaced by ceff . However we do not want to go into
these details here since the main point is that ceff < c
so that the linear dynamics, equation (27), can be used
as a crude approximation for the full nonlinear dynamics
around c = 1. Then, using in equation (17) ceff instead of
c immediately yields an expression

I (Xt+1;Xt) ≈ −1
2

log2

(
1 − c2eff

)
(28)

for the MI valid approximately even for c � 1. Speaking in
terms of distributions, the argument relies on the fact that,
with noise, the bimodality is felt only somewhat above
the actual bifurcation point. Before that the distribution
can be crudely approximated by a Gaussian with a width
defined by ceff instead of c in equation (13).

4 An embodied robot experiment

It is one of our aims to use the information theoretic mea-
sures in realistic robotic applications putting particular
emphasis on the role of the embodiment. This means that
we want to discuss physical robots, be it in reality or

Fig. 2. The arena for our two-wheel robot in the starting sit-
uation. The robot is “blind” and feels the environment only
by the reactions of its wheel counters on collissions with the
obstacles. The behavior with c = 1.07 (maximum mutual infor-
mation) is singled out with the robot covering large distances
while keeping maximum contact with the environment, see the
videos [18].

in simulations, where the embodiment manifests itself by
physical effects like inertia, slip and friction effects, uncer-
tain sensor and actuator functioning. On the other hand
we have chosen our experiments such that our theoretical
expressions are still applicable.

4.1 Experiments

In the experiments, the robot is moving in an arena sur-
rounded by walls and with several obstacles in it so that,
without any proximity sensors, the robot will often collide
with either the walls or the obstacles. As discussed in Sec-
tion 2.3, this behavior is largely depending on the value c
of the controller (which determines the feed-back strength
of the sensorimotor loop).

4.2 The mutual information

A central aim of the present paper was to find the mutual
information as a function of the behavior parameter c in
the embodied robot experiment. In the experiments we
evaluated the MI of each of the sensor channels indepen-
dently. For this purpose we started the robot at a random
position and let it run for a long time, mostly for up to one
million steps with a fixed value of c. We discretized the
interval of possible sensor values into 30 bins which proved
sufficiently accurate by comparison with cases of 10, 20,
and 50 bins. Probabilities p (x) or p (xt+1, xt) were inter-
preted as relative frequencies of the sensor values in each
bin or pair of bins, respectively, sampled over time t. The
integral in equation (16) was replaced by the Riemannian
sum. The procedure was repeated for every of the c values
in the graphics, see Figure 3.



N. Ay et al.: Predictive information and explorative behavior of autonomous robots 335

In practice, the MI was evaluated by an update rule
in order to control the convergence progress. Convergence
of the MI was reached in typical runs after about 105 to
106 steps. The convergence largely depends on the value
of c. In particular for c� 1 the robot may change between
FPs after a very long time only and this means that the
additional bit of the bimodal regime is not seen in the
experiments with a finite number of steps.

4.3 Results

The most important experimental result is the relatively
sharp maximum of the empirical MI at cMI ≈ 1.07, see
Figure 3. In order to relate the MI, which is taken in sensor
space, to the behavior of the robot in physical space, we
partitioned the maze into 10 × 10 cells and recorded the
probability of visiting each cell. The Shannon entropy of
this spatial distribution is a convenient measure of the
exploration of the maze by the robot. From Figure 4 which
is depicting the trajectories of the robot we see that at the
maximum of the MI the robot visits much more different
sites in the maze than away from it.

The result indicates a close link between the mutual
information in sensor space and the behavior of the robot
in physical space, i.e. in the specific environment. In or-
der to discuss this point let us start with considering the
behavior of the robot in terms of the dynamical system
analysis given in Sections 2.3 and 2.4. Obviously, in the
experiment, the robot behaves most effectively in the re-
gion around the effective bifurcation point (critical re-
gion). This is not surprising given that the robot is blind
and feels the environment only by the reactions of its wheel
counters on collisions with the obstacles. In fact, in this
region the robot deploys already its modes (rotation or
straight) which are however both softened and occasion-
ally swapped by the noise. Moreover, collisions with ob-
stacles are soft and lead to immediate switching in the
modes so that in the maze environment the robot seems
to develop a kind of controlled bouncing strategy.

This is a mechanistic explanation based on the specific
attractor landscape of the sensorimotor dynamics. What
is the relation to the MI? Coarsely speaking the predictive
information (the MI in our case) is large if the behavior is
rich (so that much information from the past is necessary
in order to describe the future) but still as predictable
as possible. The soft mode scenario at the effective BP
seems to fit well into this picture since behavior in stable
modes is well predictable but not rich in dynamics whereas
a behavior fluctuating around and jumping between fixed
points is much more rich while retaining still some amount
of predictability. Thus, in the specific setting considered,
the phenomenon of an effective bifurcation point may be
considered as the link between the behavior in physical
and the complexity measure in sensor space.

In Figure 3 we also present the MI as obtained from
the model dynamics. In the interpretation of the result we
have to consider that in the embodied robot experiments
we used a certain amount of sensor noise (white Gaussian
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MI -theory
MI - theory with random restarts
MI -experiment
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H(Xt|Xt-1 ) - experiment

Spatial entropy

Fig. 3. Mutual information in sensor channels and spatial ex-
plorativity in an embodied robot experiment: The mutual in-
formation between successive time steps as a function of the
parameter c shows a clear maximum at c = 1.07. The posi-
tion of the maximum agrees nearly exactly with the maximum
of the spatial entropy, measuring the distribution of the sites
visited by the robot. This indicates, that the maximum of the
MI corresponds to the best exploration behavior in the maze.
The experimental MI is compared with the MI as obtained
from the model dynamics by numerical simulation. All runs
are over 600 000 time steps. The drop off of the theoretical
curve results from the fact that the bimodality is not felt due
to the finite sampling time. The behavior of the entropy of the
sensor values H (X) and the conditional entropy H (Xt+1|Xt)
are also presented.

noise with σ = 0.06) which is essential for the behav-
ior of the robot under our closed loop control paradigm.
The nice agreement with the experiment seems to indicate
that the model with the white Gaussian noise accounts al-
ready for most of the empirical behavior of the robot in
the maze. The drop off of the theoretical curve at c ≈ 1.2
is due to the fact that, given the finite sampling time, the
system does not switch between the modes any more. In
order to test this hypothesis we used random restarts of
the system repeatedly. This introduces the additional bit
of information, see equation (26). The faster decay of the
empirical MI probably is due to the fact that the robot
has a rather large mass which stabilizes any rotational
mode against being switched by the noise. Thus, once the
robot has entered a rotational mode (by a collision with
an obstacle) it will stay in it for the rest of the sampling
time. The dependence of the MI on the sampling time in
the bimodal region might seem dissatisfying. However, the
difference is just the additional bit of information which
is independent on the parameter c. Hence, for the deriva-
tion of the learning rule this effect is of no relevance, see
Appendix A.4 below.

The results obtained may form the basis for future
generalizations of the present findings to more complex
systems. We have seen that there is a direct relation of
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the MI in each sensor channel with the behavior of the
robot in the world although the sensor values (wheel ve-
locities) are related only in a very indirect way to the navi-
gation behavior (bouncing strategy) in the maze. However,
we studied only the one-step predictive information. The
generalization therefore has to go into the direction of (i)
taking a larger time horizon for both past and future since
the physical is non-Markovian, (ii) include proximity sen-
sors so that the obstacles can be seen beforehand, and (iii)
using a more complex controller including internal states.
It is our strong believe, that in this setting the maximum
predictive information will correspond to a smooth but ex-
plorative navigation behavior in the maze with strategies
for circumventing the obstacles. In fact, it is only in this
way that the predictability can be made large. In future
work we will also observe further characteristics of the
robot behavior like the distances covered versus the dam-
age probability (overload of the motors, e.g.) and compare
those with the predictive information.

5 Learning rules based on information
measures

By our experiments we may conclude that the maximum
of the mutual information defines a working regime where
the robot is both explorative and sensitive to the environ-
ment. This can be used for the construction of a learning
rule for the behavioral development of the robot, i.e. we
define an update rule for the parameter c as

Δc = ε0
∂I (Xt+1;Xt)

∂c
. (29)

We have seen above that the sampling times for the MI
are very long so that an on-line learning seems difficult to
be realized. On the other hand, when using the theoretical
expressions given by equations (25) and (26), we obtain
the explicit update rule as

Δc = ε− 2εcxtyt (30)

see Appendix A.4. This learning rule has some nice fea-
tures. In particular it is extremely simple in structure (ε
may be kept constant since it does influence only the learn-
ing speed, see Appendix A) and moreover, besides the con-
stant driving term it has an anti-Hebbian structure. This
is interesting in the context of neural realizations of the
controller.

However as explained in the Appendix, the learning
rule involves approximations valid only sufficiently far
away from the bifurcation point. In order to find the learn-
ing behavior around the bifurcation point we discuss at
first the stationary point of the rule (30). Learning stops if
(assuming the state is at the fixed point) 1 = 2cxy = 2cx2

according to the sensorimotor dynamics. On the other
hand, the FP condition is x = tanh (cx). The numeri-
cal solution of these two equations yields c = 1.191 which
is in the region of the effective bifurcation point (which
is dependent on the noise, see above) found in the exper-
iments. As a consequence we argue to use the learning

rule for all values of c since it drives c into the vicinity
of the maximum mutual information. This might be ap-
propriate for some moderate noise but is not correct if the
noise is small. The derivation of a more general rule which
drives c to the effective bifurcation point must be left to
a later paper.

The learning rule (30) (apart from the effective learn-
ing rate) has also been derived by minimizing the so called
time loop error in the context of homeokinesis and was dis-
cussed in detail elsewhere, cf. [6]. This rule and its multi-
dimensional generalizations was extensively used and ob-
served to drive various types of robotic systems towards
interesting working regimes under many different circum-
stances, cf. [8,9]. It is interesting to see that the present
approach also leads to this rule (albeit with a different
prefactor) relating the concept of the time loop error with
complexity measures like the predictive information.

6 Concluding remarks

The aim of the present paper has been twofold. On the
one hand we have investigated, in an embodied robot ex-
periment, the role of predictive information as a tool for
quantifying the behavior of an autonomous robot. Pre-
dictive information has been shown to reduce to the mu-
tual information (MI) between time points in the case of
Markovian systems so that the MI may be used as a first
step towards the full predictive information. The MI of the
sensor values over time has been determined empirically in
embodied robot experiments. The main result is that the
MI shows a clear maximum in the working regime where,
from the point of view of an external observer, the robot
may be said to develop a kind of effective strategy for nav-
igating the environment. The latter result is not trivial
since, without any proximity sensors, the robot feels the
environment only via its wheel counters in a very implicit
way. It remains to be seen in future experiments whether
this link between the information measure in sensor chan-
nels and the strategy of the robot is of a more fundamental
nature, as claimed for instance in [17].

On the other hand we discussed the complexity mea-
sure as the basis for the self-organization of robot behavior
by using the measure as an objective function for a gradi-
ent following learning rule. The main obstacle in such an
attempt are the large sampling times until convergence
is reached. In our case we needed 105 to 106 time steps.
Since behavior changes by the learning process, this is
prohibitive for any on-line learning scenario. However, our
theoretical considerations have shown that, at least in the
present case, the structure of the learning rule can be ob-
tained by using a simple model of the sensorimotor loop
(which can be learned on-line by any of the known super-
vised learning procedures) with the mutual information
featuring only as some parameter in this rule (here in the
effective learning rate). Therefore it seems appropriate to
use the crude estimate of the current value of the mutual
information given by the theory in order to move, in an
on-line learning scenario, towards the maximum of the MI.
Once in that region, behavior is changing only slowly so
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xC=1. 075Fig. 4. Tr aject ories of t he r obot in t he m aze for different values of t he behavior param et erc . Runs are over 600.000 t im e st epseach. W ithc= 0.8 t he rob ot is seen t o essent ially fluct uat e on sit e whereas forc= 1.15 the r ob ot is caught two tim es in a deadlock. The runsforc= 1.0and c= 1.075 show thesensitive dependenceofthebehavioronthe controllerparameterc . that sampling of the MI will converge partially and maybe us ed for improvements over the es timate.The generalization of our results to more complicatedcases is based on the close relationship of the informa-tion theoretic meas ure to the s o called time loop er-ror and the principle of homeok inesis, cf. [5,7,10], whichhas been the basis for concrete learning rules leadingto theself-organization of explorative behaviors in com-plex robo ts with many degrees of freedom in dynamic,unstructuredenvironments, cf. [6,8,9] and the videos on http://robot.informatik.uni-leipzig.de/. We ho pe in the near future to produce s imilar results on the bas is ofinfor mation theor etic measur es. Pr eliminar y r esults indi-cate that P
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In order to evaluate

H (X,S) = −
∫ ∫

dx ds p (x, s) log2 p (x, s)

we use the joint distribution given by equation (15), find

1
2

∫ ∫
dx ds p (x, s)

(
(x− cs)2 +

(
1 − c2

)
s2

σ2

)

=
1
2

∫
ds

1√
2σ2π

√
(1 − c2) exp

(
−

(
1 − c2

)
s2

2σ2

)

×
(

1 +

(
1 − c2

)
s2

σ2

)
= 1

and get finally

H (X,S) = log2

(
2πσ2

) − 1
2

log2

(
1 − c2

)
+ 1.

The MI is therefore

I (Xt+1;Xt) = 2H (Xt) −H (Xt+1;Xt)

= −1
2

log2

(
1 − c2

)

which is the result used in the main text. Note that this
result is obtained also more elegantly from the general
expression given by equation (22) using equation (32). In
the linearized but still unimodal case we have to replace
c with L.

A.3 MI in the bimodal regime

Let us assume that we are sufficiently far from the bifurca-
tion point so that the distribution can be approximated as

p (x) =
1
2

(p+ (x) + p− (x))

where

p± (x) =

√
1 − L2

2πσ2
exp

(
−

(
(x± |x∗|)2

2σ2

(
1 − L2

)))

are two normalized Gaussians with negligible overlap. Us-
ing equation (22) we have to calculate

H (X) = −
∫ ∞

−∞
p (x) log2 p (x)

= −2
∫ ∞

−∞

p+ (x)
2

log2

(
p+ (x)

2

)

= 1 +
∫ ∞

−∞
p+ (x) log2 p+ (x)

= 1 +
1
2

+
1
2

log2

(
2π

σ2

1 − L2

)
.

Altogether we have in the bimodal case approximately

I (Xt+1;Xt) = 1 − 1
2

log2

(
1 − L2

)

so that, as compared to the unimodal case, we have an
additional bit of information which is clear since we now
have the freedom to choose between two states.

The relations reveal that the MI increases when ap-
proaching the bifurcation point both from below and
above. This is obvious for the unimodal region. In the bi-
modal region we can use approximate expressions valid
on the one hand if c = 1 + δ with 0 < δ � 1. Us-
ing equation (10) and g′ (z) ≈ 1 − 3δ + O

(
δ2

)
we get

L = 1 − 2δ +O
(
δ2

)
and

I = − ln δ
2 ln 2

+O (δ) (33)

which decreases logarithmically for sufficiently small δ. On
the other hand, with sufficiently large c we may write ap-
proximately g′ (z) = 4e−2|z| and z∗ ≈ c so that

L = 4ce−2c

and

I (Xt+1;Xt) = 1 − 1
2

log2

(
1 − L2

)

≈ 1 +
1

2 ln 2
L2 ≈ 1 +

8
ln 2

c2e−4c.

Obviously, the MI decreases exponentially with increas-
ing c.

A.4 Derivation of the learning rule

Let us write the two expressions for the MI below and
above the BP as

I (Xt+1;Xt) = θ + Ĩ (Xt+1;Xt) = θ − 1
2

log2

(
1 − L2

)

where θ = 0 below and θ = 1 above the BP. The derivative
in equation (29) is taken by the chain rule, i.e. consider
first

∂I

∂L
=
∂Ĩ

∂L
=

L

(1 − L2) ln 2
=

1
ln 2

e(2 ln 2)ĨL

Using equation (24) we have, neglecting the dependence
of the fixed point on c (see below),

∂L

∂c
=

∂

∂c
(cg′ (z)) = g′ (z) + cxg′′ (z) .

With g (z) = tanh z we get in particular g′ (z) = 1−g2 (z)
and g′′ (z) = −2g (z) g′ (z) so that

∂L

∂c
= (1 − 2zg (z)) g′ (z)
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and

∂I

∂c
=

1
ln 2

e(2 ln 2)ĨL
∂L

∂c

=
Lg′ (z)

ln 2
e(2 ln 2)Ĩ (1 − 2zg (z))

which has been written in such a way that the MI is fig-
uring explicitly. Introducing (absorbing constants into ε0)

ε = ε0e
(2 ln 2)Ĩ(Xt+1;Xt)

(
1 − g2 (z)

)2
c (34)

equation (29) leads to the learning rule valid in the region
where the linearization is valid

Δc = ε− 2εcxg (cx) (35)

Δc denoting the increment of c in the learning step and
ε > 0 is an effective learning rate which may be taken
constant in practical applications since it influences only
the magnitude but not the direction of the gradient.

So far, x is the fixed point around which the lineariza-
tion was taken. However if sufficiently far away from the
bifurcation point, x stays close to its fixed point value so
that we may replace x with its current value xt and in
the same sense g (cx) with yt = g (cxt). Equation (35) is
remarkable because of its simplicity. However, it is so far
valid only far away from the BP. In order to derive a learn-
ing rule for the full range of c we have to consider several
points. On the one hand, equation (35) has been obtained
by taking the derivative of I only with respect to the ex-
plicit c dependence. Including the dependence of x on c
the gradient descent is seen to drive c to the BP at c = 1.
However, this is valid only in the limit of vanishing noise
where the linearization is valid for all values of c. With
finite noise the rule is to converge towards the effective bi-
furcation point and we hope to present a correction term
to the above learning rule, equation (35), in a later paper.
In the present paper we simply use equation (35) for the
full range of c, see the main text.

References

1. W. Bialek, I. Nemenman, N. Tishby, Neural Comput. 13,
2409 (2001)

2. G. Box, G.M. Jenkins, G.C. Reinsel, Time Series Analysis:
Forecasting and Control (Prentice Hall, 1994)

3. T.M. Cover, J.A. Thomas, Elements of Information
Theory Wiley series in telecommunications (Wiley, New
York, 1991)

4. J.P. Crutchfield, K. Young, Phys. Rev. Lett. 63, 105 (1989)
5. R. Der, Theory in Biosciences 120, 179 (2001)

6. R. Der, F. Hesse, G. Martius, J. Adaptive Behavior 14,
105 (2005)

7. R. Der, R. Liebscher, True autonomy from self-organized
adaptivity, in Proc. Workshop Biologically Inspired
Robotics. The Legacy of Grey Walter 14-16 August 2002,
Bristol Labs (Bristol, 2002)

8. R. Der, G. Martius, From motor babbling to purposive ac-
tions: Emerging self-exploration in a dynamical systems
approach to early robot development, in From Animals to
Animats, Vol. 4095 of Lecture Notes in Computer Science,
edited by S. Nolfi (Springer, 2006), p. 406

9. R. Der, G. Martius, F. Hesse, Let it roll – emerging senso-
rimotor coordination in a spherical robot, in Artificial Life
X, edited by L.M. Rocha (MIT Press, 2006), p. 192

10. R. Der, U. Steinmetz, F. Pasemann, Homeokinesis -
a new principle to back up evolution with learning, in
Computational Intelligence for Modelling, Control, and
Automation, Vol. 55 of Concurrent Systems Engineering
Series (IOS Press, Amsterdam, 1999), p. 43

11. P. Grassberger, Int. J. Theor. Phys. 25(9) 907 (1986)
12. G. Jumary, Relative Information, Vol. 47 of Springer

Series in Synergetics (Springer-Verlag, Berlin Heidelberg,
1990)

13. A.S. Klyubin, D. Polani, C.L. Nehaniv, Empowerment: A
universal agent-centric measure of control, in Proc. CEC.
IEEE, 2005

14. A.S. Klyubin, D. Polani, C.L. Nehaniv, Neural Comput.
19, 2387, 2007

15. M. Lungarella, G. Metta, R. Pfeifer, G. Sandini, Connect.
Sci. 15(4), 151 (2003)

16. M. Lungarella, T. Pegors, D. Bulwinkle, O. Sporns,
Neuroinformatics 3(3) 243 (2005)

17. M. Lungarella, O. Sporns, Comput. Biol. 2(10), e144
(2006)

18. G. Martius, R. Der, lpzrobots – simulation tool for au-
tonomous robots,
http://robot.informatik.uni-leipzig.de/, 2007

19. P.-Y. Oudeyer, F. Kaplan, V.V. Hafner, A. Whyte, The
playground experiment: Task-independent development of
a curious robot, in Proceedings of the AAAI Spring
Symposium on Developmental Robotics, edited by D. Bank,
L. Meeden (Stanford, California, 2005), p. 42

20. H. Risken, The Fokker-Planck Equation (Springer, 1989)
21. J. Schmidhuber, Completely self-referential optimal rein-

forcement learners, in ICANN (2), pp. 223–233 (2005)
22. R. Smith, Open dynamics engine, http://ode.org/, 2005
23. S. Still, Statistical mechanics approach to interactive learn-

ing arXiv:0709.1948v1 [physics.data-an], 2007. sub-
mitted

24. A. Stout, G. Konidaris, A. Barto, Iintrinsically motivated
reinforcement learning: A promising framework for devel-
opmental robotics, in The AAAI Spring Symposium on
Developmental Robotics, 2005

25. J. Weng, J. McClelland, A. Pentland, O. Sporns,
I. Stockman, M. Sur, E. Thelen, Science 291, 599 (2001)


	Introduction
	The robot
	Information theoretic measures
	An embodied robot experiment
	Learning rules based on information measures
	Concluding remarks
	Appendix A
	References

