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Abstract

In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read
counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate
numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We
present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold
changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the
strength rather than the mere presence of differential expression. The DESeg2 package is available at http://www.
bioconductor.org/packages/release/bioc/html/DESeq2.html.

Background

The rapid adoption of high-throughput sequencing (HTS)
technologies for genomic studies has resulted in a need
for statistical methods to assess quantitative differences
between experiments. An important task here is the anal-
ysis of RNA sequencing (RNA-seq) data with the aim
of finding genes that are differentially expressed across
groups of samples. This task is general: methods for it are
typically also applicable for other comparative HTS assays,
including chromatin immunoprecipitation sequencing,
chromosome conformation capture, or counting observed
taxa in metagenomic studies.

Besides the need to account for the specifics of count
data, such as non-normality and a dependence of the vari-
ance on the mean, a core challenge is the small number
of samples in typical HTS experiments — often as few as
two or three replicates per condition. Inferential methods
that treat each gene separately suffer here from lack of
power, due to the high uncertainty of within-group vari-
ance estimates. In high-throughput assays, this limitation
can be overcome by pooling information across genes,
specifically, by exploiting assumptions about the similarity
of the variances of different genes measured in the same
experiment [1].
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Many methods for differential expression analysis of
RNA-seq data perform such information sharing across
genes for variance (or, equivalently, dispersion) estima-
tion. edgeR [2,3] moderates the dispersion estimate for
each gene toward a common estimate across all genes, or
toward a local estimate from genes with similar expres-
sion strength, using a weighted conditional likelihood.
Our DESeq method [4] detects and corrects dispersion
estimates that are too low through modeling of the depen-
dence of the dispersion on the average expression strength
over all samples. BBSeq [5] models the dispersion on
the mean, with the mean absolute deviation of disper-
sion estimates used to reduce the influence of outliers.
DSS [6] uses a Bayesian approach to provide an estimate
for the dispersion for individual genes that accounts for
the heterogeneity of dispersion values for different genes.
baySeq [7] and ShrinkBayes [8] estimate priors for a
Bayesian model over all genes, and then provide posterior
probabilities or false discovery rates (FDRs) for differential
expression.

The most common approach in the comparative anal-
ysis of transcriptomics data is to test the null hypothesis
that the logarithmic fold change (LFC) between treat-
ment and control for a gene’s expression is exactly zero,
i.e.,, that the gene is not at all affected by the treatment.
Often the goal of differential analysis is to produce a list of
genes passing multiple-test adjustment, ranked by P value.
However, small changes, even if statistically highly signif-
icant, might not be the most interesting candidates for
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further investigation. Ranking by fold change, on the other
hand, is complicated by the noisiness of LFC estimates for
genes with low counts. Furthermore, the number of genes
called significantly differentially expressed depends as
much on the sample size and other aspects of experimen-
tal design as it does on the biology of the experiment —
and well-powered experiments often generate an over-
whelmingly long list of hits [9]. We, therefore, developed
a statistical framework to facilitate gene ranking and visu-
alization based on stable estimation of effect sizes (LFCs),
as well as testing of differential expression with respect to
user-defined thresholds of biological significance.

Here we present DESeq2, a successor to our DESeq
method [4]. DESeq2 integrates methodological advances
with several novel features to facilitate a more quantita-
tive analysis of comparative RNA-seq data using shrinkage
estimators for dispersion and fold change. We demon-
strate the advantages of DESeq2’s new features by describ-
ing a number of applications possible with shrunken fold
changes and their estimates of standard error, including
improved gene ranking and visualization, hypothesis tests
above and below a threshold, and the regularized loga-
rithm transformation for quality assessment and cluster-
ing of overdispersed count data. We furthermore compare
DESeq2’s statistical power with existing tools, revealing
that our methodology has high sensitivity and precision,
while controlling the false positive rate. DESeq?2 is avail-
able [10] as an R/Bioconductor package [11].

Results and discussion

Model and normalization

The starting point of a DESeq2 analysis is a count matrix
K with one row for each gene i and one column for each
sample j. The matrix entries Kj; indicate the number of
sequencing reads that have been unambiguously mapped
to a gene in a sample. Note that although we refer in this
paper to counts of reads in genes, the methods presented
here can be applied as well to other kinds of HTS count
data. For each gene, we fit a generalized linear model
(GLM) [12] as follows.

We model read counts Kj; as following a negative bino-
mial distribution (sometimes also called a gamma-Poisson
distribution) with mean y;; and dispersion «;. The mean is
taken as a quantity g;;, proportional to the concentration
of cDNA fragments from the gene in the sample, scaled by
a normalization factor s, i.e., i;; = s;g;;. For many appli-
cations, the same constant s; can be used for all genes in
a sample, which then accounts for differences in sequenc-
ing depth between samples. To estimate these size factors,
the DESeq2 package offers the median-of-ratios method
already used in DESeq [4]. However, it can be advanta-
geous to calculate gene-specific normalization factors s;;
to account for further sources of technical biases such as
differing dependence on GC content, gene length or the
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like, using published methods [13,14], and these can be
supplied instead.

We use GLMs with a logarithmic link, log,q; =
> XjrBir, with design matrix elements x;, and coefficients
Bir. In the simplest case of a comparison between two
groups, such as treated and control samples, the design
matrix elements indicate whether a sample j is treated
or not, and the GLM fit returns coefficients indicating
the overall expression strength of the gene and the log,
fold change between treatment and control. The use of
linear models, however, provides the flexibility to also ana-
lyze more complex designs, as is often useful in genomic
studies [15].

Empirical Bayes shrinkage for dispersion estimation
Within-group variability, i.e., the variability between repli-
cates, is modeled by the dispersion parameter «;, which
describes the variance of counts via Var Kj; = p;; + Olill,-zj'
Accurate estimation of the dispersion parameter «; is crit-
ical for the statistical inference of differential expression.
For studies with large sample sizes this is usually not
a problem. For controlled experiments, however, sample
sizes tend to be smaller (experimental designs with as lit-
tle as two or three replicates are common and reasonable),
resulting in highly variable dispersion estimates for each
gene. If used directly, these noisy estimates would com-
promise the accuracy of differential expression testing.

One sensible solution is to share information across
genes. In DESeq2, we assume that genes of similar aver-
age expression strength have similar dispersion. We here
explain the concepts of our approach using as examples a
dataset by Bottomly et al. [16] with RNA-seq data for mice
of two different strains and a dataset by Pickrell et al. [17]
with RNA-seq data for human lymphoblastoid cell lines.
For the mathematical details, see Methods.

We first treat each gene separately and estimate gene-
wise dispersion estimates (using maximum likelihood),
which rely only on the data of each individual gene
(black dots in Figure 1). Next, we determine the location
parameter of the distribution of these estimates; to allow
for dependence on average expression strength, we fit a
smooth curve, as shown by the red line in Figure 1. This
provides an accurate estimate for the expected dispersion
value for genes of a given expression strength but does not
represent deviations of individual genes from this overall
trend. We then shrink the gene-wise dispersion estimates
toward the values predicted by the curve to obtain final
dispersion values (blue arrow heads). We use an empiri-
cal Bayes approach (Methods), which lets the strength of
shrinkage depend (i) on an estimate of how close true dis-
persion values tend to be to the fit and (ii) on the degrees
of freedom: as the sample size increases, the shrinkage
decreases in strength, and eventually becomes negligi-
ble. Our approach therefore accounts for gene-specific
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Figure 1 Shrinkage estimation of dispersion. Plot of dispersion estimates over the average expression strength (A) for the Bottomly et al. [16]
dataset with six samples across two groups and (B) for five samples from the Pickrell et al. [17] dataset, fitting only an intercept term. First, gene-wise
MLEs are obtained using only the respective gene’s data (black dots). Then, a curve (red) is fit to the MLEs to capture the overall trend of
dispersion-mean dependence. This fit is used as a prior mean for a second estimation round, which results in the final MAP estimates of dispersion
(arrow heads). This can be understood as a shrinkage (along the blue arrows) of the noisy gene-wise estimates toward the consensus represented
by the red line. The black points circled in blue are detected as dispersion outliers and not shrunk toward the prior (shrinkage would follow the
dotted line). For clarity, only a subset of genes is shown, which is enriched for dispersion outliers. Additional file 1: Figure S1 displays the same data
but with dispersions of all genes shown. MAP, maximum a posteriori; MLE, maximum-likelihood estimate.
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variation to the extent that the data provide this informa-
tion, while the fitted curve aids estimation and testing in
less information-rich settings.

Our approach is similar to the one used by DSS [6],
in that both methods sequentially estimate a prior dis-
tribution for the true dispersion values around the fit,
and then provide the maximum a posteriori (MAP) as
the final estimate. It differs from the previous imple-
mentation of DESeq, which used the maximum of the
fitted curve and the gene-wise dispersion estimate as the
final estimate and tended to overestimate the dispersions
(Additional file 1: Figure S2). The approach of DESeq2
differs from that of edgeR [3], as DESeq2 estimates the
width of the prior distribution from the data and there-
fore automatically controls the amount of shrinkage based
on the observed properties of the data. In contrast, the
default steps in edgeR require a user-adjustable parameter,
the prior degrees of freedom, which weighs the contribu-
tion of the individual gene estimate and edgeR’s dispersion
fit.

Note that in Figure 1 a number of genes with gene-
wise dispersion estimates below the curve have their final
estimates raised substantially. The shrinkage procedure
thereby helps avoid potential false positives, which can
result from underestimates of dispersion. If, on the other
hand, an individual gene’s dispersion is far above the dis-
tribution of the gene-wise dispersion estimates of other
genes, then the shrinkage would lead to a greatly reduced
final estimate of dispersion. We reasoned that in many
cases, the reason for extraordinarily high dispersion of a

gene is that it does not obey our modeling assumptions;
some genes may show much higher variability than others
for biological or technical reasons, even though they have
the same average expression levels. In these cases, infer-
ence based on the shrunken dispersion estimates could
lead to undesirable false positive calls. DESeq2 handles
these cases by using the gene-wise estimate instead of
the shrunken estimate when the former is more than 2
residual standard deviations above the curve.

Empirical Bayes shrinkage for fold-change estimation

A common difficulty in the analysis of HTS data is the
strong variance of LFC estimates for genes with low read
count. We demonstrate this issue using the dataset by
Bottomly et al. [16]. As visualized in Figure 2A, weakly
expressed genes seem to show much stronger differ-
ences between the compared mouse strains than strongly
expressed genes. This phenomenon, seen in most HTS
datasets, is a direct consequence of dealing with count
data, in which ratios are inherently noisier when counts
are low. This heteroskedasticity (variance of LFCs depend-
ing on mean count) complicates downstream analysis and
data interpretation, as it makes effect sizes difficult to
compare across the dynamic range of the data.

DESeq2 overcomes this issue by shrinking LFC esti-
mates toward zero in a manner such that shrinkage is
stronger when the available information for a gene is
low, which may be because counts are low, dispersion
is high or there are few degrees of freedom. We again
employ an empirical Bayes procedure: we first perform
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Figure 2 Effect of shrinkage on logarithmic fold change estimates. Plots of the (A) MLE (i.e, no shrinkage) and (B) MAP estimate (i.e., with
shrinkage) for the LFCs attributable to mouse strain, over the average expression strength for a ten vs eleven sample comparison of the Bottomly
etal. [16] dataset. Small triangles at the top and bottom of the plots indicate points that would fall outside of the plotting window. Two genes with
similar mean count and MLE logarithmic fold change are highlighted with green and purple circles. (C) The counts (normalized by size factors s;) for
these genes reveal low dispersion for the gene in green and high dispersion for the gene in purple. (D) Density plots of the likelihoods (solid lines,
scaled to integrate to 1) and the posteriors (dashed lines) for the green and purple genes and of the prior (solid black line): due to the higher
dispersion of the purple gene, its likelihood is wider and less peaked (indicating less information), and the prior has more influence on its posterior
than for the green gene. The stronger curvature of the green posterior at its maximum translates to a smaller reported standard error for the MAP
LFC estimate (horizontal error bar). adj., adjusted; LFC, logarithmic fold change; MAP, maximum a posteriori; MLE, maximum-likelihood estimate.
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ordinary GLM fits to obtain maximum-likelihood esti-
mates (MLEs) for the LFCs and then fit a zero-centered
normal distribution to the observed distribution of MLEs
over all genes. This distribution is used as a prior on LFCs
in a second round of GLM fits, and the MAP estimates
are kept as final estimates of LFC. Furthermore, a stan-
dard error for each estimate is reported, which is derived
from the posterior’s curvature at its maximum (see
Methods for details). These shrunken LFCs and their stan-
dard errors are used in the Wald tests for differential
expression described in the next section.

The resulting MAP LFCs are biased toward zero in a
manner that removes the problem of exaggerated LFCs for
low counts. As Figure 2B shows, the strongest LFCs are no
longer exhibited by genes with weakest expression. Rather,
the estimates are more evenly spread around zero, and

for very weakly expressed genes (with less than one read
per sample on average), LFCs hardly deviate from zero,
reflecting that accurate LFC estimates are not possible
here.

The strength of shrinkage does not depend simply on
the mean count, but rather on the amount of informa-
tion available for the fold change estimation (as indicated
by the observed Fisher information; see Methods). Two
genes with equal expression strength but different dis-
persions will experience a different amount of shrinkage
(Figure 2C,D). The shrinkage of LFC estimates can be
described as a bias-variance trade-off [18]: for genes with
little information for LFC estimation, a reduction of the
strong variance is bought at the cost of accepting a bias
toward zero, and this can result in an overall reduc-
tion in mean squared error, e.g., when comparing to LFC
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estimates from a new dataset. Genes with high informa-
tion for LFC estimation will have, in our approach, LFCs
with both low bias and low variance. Furthermore, as the
degrees of freedom increase, and the experiment pro-
vides more information for LEC estimation, the shrunken
estimates will converge to the unshrunken estimates. We
note that other Bayesian efforts toward moderating fold
changes for RNA-seq include hierarchical models [8,19]
and the GFOLD (or generalized fold change) tool [20],
which uses a posterior distribution of LFCs.

The shrunken MAP LFCs offer a more reproducible
quantification of transcriptional differences than standard
MLE LECs. To demonstrate this, we split the Bottomly
et al. samples equally into two groups, I and II, such that
each group contained a balanced split of the strains, sim-
ulating a scenario where an experiment (samples in group
I) is performed, analyzed and reported, and then indepen-
dently replicated (samples in group II). Within each group,
we estimated LFCs between the strains and compared
between groups I and II, using the MLE LFCs (Figure 3A)
and using the MAP LFCs (Figure 3B). Because the
shrinkage moves large LFCs that are not well supported
by the data toward zero, the agreement between the
two independent sample groups increases considerably.
Therefore, shrunken fold-change estimates offer a more
reliable basis for quantitative conclusions than normal
MLEs.

This makes shrunken LFCs also suitable for ranking
genes, e.g., to prioritize them for follow-up experiments.
For example, if we sort the genes in the two sample groups
of Figure 3 by unshrunken LFC estimates, and consider
the 100 genes with the strongest up- or down-regulation
in group I, we find only 21 of these again among the top
100 up- or down-regulated genes in group II. However, if
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we rank the genes by shrunken LFC estimates, the overlap
improves to 81 of 100 genes (Additional file 1: Figure S3).

A simpler often used method is to add a fixed num-
ber (pseudocount) to all counts before forming ratios.
However, this requires the choice of a tuning parame-
ter and only reacts to one of the sources of uncertainty,
low counts, but not to gene-specific dispersion differences
or sample size. We demonstrate this in the Benchmarks
section below.

Hypothesis tests for differential expression

After GLMs are fit for each gene, one may test whether
each model coefficient differs significantly from zero.
DESeq?2 reports the standard error for each shrunken LEC
estimate, obtained from the curvature of the coefficient’s
posterior (dashed lines in Figure 2D) at its maximum.
For significance testing, DESeq2 uses a Wald test: the
shrunken estimate of LFC is divided by its standard error,
resulting in a z-statistic, which is compared to a standard
normal distribution. (See Methods for details.) The Wald
test allows testing of individual coefficients, or contrasts
of coefficients, without the need to fit a reduced model as
with the likelihood ratio test, though the likelihood ratio
test is also available as an option in DESeq2. The Wald test
P values from the subset of genes that pass an independent
filtering step, described in the next section, are adjusted
for multiple testing using the procedure of Benjamini and
Hochberg [21].

Automatic independent filtering

Due to the large number of tests performed in the analy-
sis of RNA-seq and other genome-wide experiments, the
multiple testing problem needs to be addressed. A popu-
lar objective is control or estimation of the FDR. Multiple
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Figure 3 Stability of logarithmic fold changes. DESeq?2 is run on equally split halves of the data of Bottomly et al. [16], and the LFCs from the
halves are plotted against each other. (A) MLEs, i.e., without LFC shrinkage. (B) MAP estimates, i.e., with shrinkage. Points in the top left and bottom
right quadrants indicate genes with a change of sign of LFC. Red points indicate genes with adjusted P value < 0.1. The legend displays the
root-mean-square error of the estimates in group | compared to those in group Il. LFC, logarithmic fold change; MAP, maximum a posteriori; MLE,
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testing adjustment tends to be associated with a loss of
power, in the sense that the FDR for a set of genes is
often higher than the individual P values of these genes.
However, the loss can be reduced if genes that have little
or no chance of being detected as differentially expressed
are omitted from the testing, provided that the criterion
for omission is independent of the test statistic under the
null hypothesis [22] (see Methods). DESeq2 uses the aver-
age expression strength of each gene, across all samples,
as its filter criterion, and it omits all genes with mean
normalized counts below a filtering threshold from mul-
tiple testing adjustment. DESeq2 by default will choose a
threshold that maximizes the number of genes found at
a user-specified target FDR. In Figures 2A,B and 3, genes
found in this way to be significant at an estimated FDR
of 10% are depicted in red. Depending on the distribution
of the mean normalized counts, the resulting increase in
power can be substantial, sometimes making the differ-
ence in whether or not any differentially expressed genes
are detected.

Hypothesis tests with thresholds on effect size

Specifying minimum effect size

Most approaches to testing for differential expression,
including the default approach of DESeq2, test against
the null hypothesis of zero LFC. However, if any bio-
logical processes are genuinely affected by the difference
in experimental treatment, this null hypothesis implies
that the gene under consideration is perfectly decoupled
from these processes. Due to the high interconnected-
ness of cells’ regulatory networks, this hypothesis is, in
fact, implausible, and arguably wrong for many if not
most genes. Consequently, with sufficient sample size,
even genes with a very small but non-zero LFC will even-
tually be detected as differentially expressed. A change
should therefore be of sufficient magnitude to be consid-
ered biologically significant. For small-scale experiments,
statistical significance is often a much stricter require-
ment than biological significance, thereby relieving the
researcher from the need to decide on a threshold for
biological significance.

For well-powered experiments, however, a statistical
test against the conventional null hypothesis of zero LFC
may report genes with statistically significant changes that
are so weak in effect strength that they could be consid-
ered irrelevant or distracting. A common procedure is to
disregard genes whose estimated LFC B, is below some
threshold, |8;;] < 6. However, this approach loses the
benefit of an easily interpretable FDR, as the reported P
value and adjusted P value still correspond to the test of
zero LFC. It is therefore desirable to include the thresh-
old in the statistical testing procedure directly, i.e., not
to filter post hoc on a reported fold-change estimate,
but rather to evaluate statistically directly whether there
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is sufficient evidence that the LFC is above the chosen
threshold.

DESeq?2 offers tests for composite null hypotheses of
the form |B;;| < 6, where B;, is the shrunken LFC from
the estimation procedure described above. (See Methods
for details.) Figure 4A demonstrates how such a thresh-
olded test gives rise to a curved decision boundary: to
reach significance, the estimated LFC has to exceed the
specified threshold by an amount that depends on the
available information. We note that related approaches to
generate gene lists that satisfy both statistical and biolog-
ical significance criteria have been previously discussed
for microarray data [23] and recently for sequencing
data [19].

Specifying maximum effect size

Sometimes, a researcher is interested in finding genes that
are not, or only very weakly, affected by the treatment or
experimental condition. This amounts to a setting simi-
lar to the one just discussed, but the roles of the null and
alternative hypotheses are swapped. We are here asking
for evidence of the effect being weak, not for evidence of
the effect being zero, because the latter question is rarely
tractable. The meaning of weak needs to be quantified
for the biological question at hand by choosing a suit-
able threshold 6 for the LFC. For such analyses, DESeq2
offers a test of the composite null hypothesis |8;,| > 0,
which will report genes as significant for which there is
evidence that their LFC is weaker than 6. Figure 4B shows
the outcome of such a test. For genes with very low read
count, even an estimate of zero LFC is not significant,
as the large uncertainty of the estimate does not allow
us to exclude that the gene may in truth be more than
weakly affected by the experimental condition. Note the
lack of LEC shrinkage: to find genes with weak differen-
tial expression, DESeq2 requires that the LFC shrinkage
has been disabled. This is because the zero-centered prior
used for LFC shrinkage embodies a prior belief that LFCs
tend to be small, and hence is inappropriate here.

Detection of count outliers

Parametric methods for detecting differential expression
can have gene-wise estimates of LEC overly influenced
by individual outliers that do not fit the distributional
assumptions of the model [24]. An example of such an
outlier would be a gene with single-digit counts for all
samples, except one sample with a count in the thousands.
As the aim of differential expression analysis is typically to
find consistently up- or down-regulated genes, it is useful
to consider diagnostics for detecting individual observa-
tions that overly influence the LFC estimate and P value
for a gene. A standard outlier diagnostic is Cook’s dis-
tance [25], which is defined within each gene for each
sample as the scaled distance that the coefficient vector,
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,5,-, of a linear model or GLM would move if the sample
were removed and the model refit.

DESeq?2 flags, for each gene, those samples that have
a Cook’s distance greater than the 0.99 quantile of the
F(p, m — p) distribution, where p is the number of model
parameters including the intercept, and m is the num-
ber of samples. The use of the F distribution is motivated
by the heuristic reasoning that removing a single sample
should not move the vector ,gi outside of a 99% confidence
region around Bi fit using all the samples [25]. However,
if there are two or fewer replicates for a condition, these
samples do not contribute to outlier detection, as there are
insufficient replicates to determine outlier status.

How should one deal with flagged outliers? In an exper-
iment with many replicates, discarding the outlier and
proceeding with the remaining data might make best use
of the available data. In a small experiment with few
samples, however, the presence of an outlier can impair
inference regarding the affected gene, and merely ignoring
the outlier may even be considered data cherry-picking —
and therefore, it is more prudent to exclude the whole
gene from downstream analysis.

Hence, DESeq?2 offers two possible responses to flagged
outliers. By default, outliers in conditions with six or fewer
replicates cause the whole gene to be flagged and removed
from subsequent analysis, including P value adjustment
for multiple testing. For conditions that contain seven or
more replicates, DESeq2 replaces the outlier counts with
an imputed value, namely the trimmed mean over all
samples, scaled by the size factor, and then re-estimates
the dispersion, LFCs and P values for these genes. As
the outlier is replaced with the value predicted by the
null hypothesis of no differential expression, this is a
more conservative choice than simply omitting the out-
lier. When there are many degrees of freedom, the second
approach avoids discarding genes that might contain true
differential expression.

Additional file 1: Figure S4 displays the outlier replace-
ment procedure for a single gene in a seven by seven
comparison of the Bottomly et al. [16] dataset. While the
original fitted means are heavily influenced by a single
sample with a large count, the corrected LFCs provide a
better fit to the majority of the samples.

Regularized logarithm transformation

For certain analyses, it is useful to transform data to ren-
der them homoskedastic. As an example, consider the task
of assessing sample similarities in an unsupervised man-
ner using a clustering or ordination algorithm. For RNA-
seq data, the problem of heteroskedasticity arises: if the
data are given to such an algorithm on the original count
scale, the result will be dominated by highly expressed,
highly variable genes; if logarithm-transformed data are
used, undue weight will be given to weakly expressed
genes, which show exaggerated LFCs, as discussed above.
Therefore, we use the shrinkage approach of DESeq2 to
implement a regularized logarithm transformation (rlog),
which behaves similarly to a log, transformation for genes
with high counts, while shrinking together the values for
different samples for genes with low counts. It therefore
avoids a commonly observed property of the standard
logarithm transformation, the spreading apart of data for
genes with low counts, where random noise is likely to
dominate any biologically meaningful signal. When we
consider the variance of each gene, computed across sam-
ples, these variances are stabilized — i.e., approximately
the same, or homoskedastic — after the rlog transforma-
tion, while they would otherwise strongly depend on the
mean counts. It thus facilitates multivariate visualization
and ordinations such as clustering or principal component
analysis that tend to work best when the variables have
similar dynamic range. Note that while the rlog transfor-
mation builds upon on our LFC shrinkage approach, it
is distinct from and not part of the statistical inference
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procedure for differential expression analysis described
above, which employs the raw counts, not transformed
data.

The rlog transformation is calculated by fitting for each
gene a GLM with a baseline expression (i.e., intercept
only) and, computing for each sample, shrunken LFCs
with respect to the baseline, using the same empiri-
cal Bayes procedure as before (Methods). Here, how-
ever, the sample covariate information (e.g. treatment
or control) is not used, so that all samples are treated
equally. The rlog transformation accounts for variation
in sequencing depth across samples as it represents the
logarithm of g;; after accounting for the size factors
sij. This is in contrast to the variance-stabilizing trans-
formation (VST) for overdispersed counts introduced
in DESeq [4]: while the VST is also effective at stabi-
lizing variance, it does not directly take into account
differences in size factors; and in datasets with large
variation in sequencing depth (dynamic range of size
factors 2>4) we observed undesirable artifacts in the
performance of the VST. A disadvantage of the rlog
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transformation with respect to the VST is, however, that
the ordering of genes within a sample will change if neigh-
boring genes undergo shrinkage of different strength. As
with the VST, the value of rlog(Kj) for large counts is
approximately equal to log, (Kjj/s;). Both the rlog trans-
formation and the VST are provided in the DESeq2
package.

We demonstrate the use of the rlog transformation on
the RNA-seq dataset of Hammer et al. [26], wherein
RNA was sequenced from the dorsal root ganglion of
rats that had undergone spinal nerve ligation and con-
trols, at 2 weeks and at 2 months after the ligation. The
count matrix for this dataset was downloaded from the
ReCount online resource [27]. This dataset offers more
subtle differences between conditions than the Bottomly
et al. [16] dataset. Figure 5 provides diagnostic plots of
the normalized counts under the ordinary logarithm with
a pseudocount of 1 and the rlog transformation, show-
ing that the rlog both stabilizes the variance through the
range of the mean of counts and helps to find meaningful
patterns in the data.
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Gene-level analysis

We here present DESeq2 for the analysis of per-gene
counts, i.e., the total number of reads that can be uniquely
assigned to a gene. In contrast, several algorithms [28,29]
work with probabilistic assignments of reads to tran-
scripts, where multiple, overlapping transcripts can origi-
nate from each gene. It has been noted that the total read
count approach can result in false detection of differential
expression when in fact only transcript isoform lengths
change, and even in a wrong sign of LFCs in extreme
cases [28]. However, in our benchmark, discussed in the
following section, we found that LFC sign disagreements
between total read count and probabilistic-assignment-
based methods were rare for genes that were differentially
expressed according to either method (Additional file 1:
Figure S5). Furthermore, if estimates for average tran-
script length are available for the conditions, these can
be incorporated into the DESeq2 framework as gene- and
sample-specific normalization factors. In addition, the
approach used in DESeq2 can be extended to isoform-
specific analysis, either through generalized linear mod-
eling at the exon level with a gene-specific mean as in
the DEXSeq package [30] or through counting evidence
for alternative isoforms in splice graphs [31,32]. In fact,
the latest release version of DEXSeq now uses DESeq?2 as
its inferential engine and so offers shrinkage estimation
of dispersion and effect sizes for an exon-level analysis,
too.

Comparative benchmarks

To assess how well DESeq2 performs for standard
analyses in comparison to other current methods,
we used a combination of simulations and real data.
The negative-binomial-based approaches compared were
DESeq (old) [4], edgeR [33], edgeR with the robust
option [34], DSS [6] and EBSeq [35]. Other methods com-
pared were the voom normalization method followed by
linear modeling using the limma package [36] and the
SAMseq permutation method of the samr package [24].
For the benchmarks using real data, the Cuffdiff 2 [28]
method of the Cufflinks suite was included. For ver-
sion numbers of the software used, see Additional file 1:
Table S3. For all algorithms returning P values, the P val-
ues from genes with non-zero sum of read counts across
samples were adjusted using the Benjamini—Hochberg
procedure [21].

Benchmarks through simulation

Sensitivity and precision We simulated datasets of
10,000 genes with negative binomial distributed counts.
To simulate data with realistic moments, the mean
and dispersions were drawn from the joint distribu-
tion of means and gene-wise dispersion estimates from
the Pickrell et al. data, fitting only an intercept term.
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These datasets were of varying total sample size (m €
{6,8,10,20}), and the samples were split into two equal-
sized groups; 80% of the simulated genes had no true
differential expression, while for 20% of the genes, true
fold changes of 2, 3 and 4 were used to generate counts
across the two groups, with the direction of fold change
chosen randomly. The simulated differentially expressed
genes were chosen uniformly at random among all the
genes, throughout the range of mean counts. MA-plots
of the true fold changes used in the simulation and the
observed fold changes induced by the simulation for one
of the simulation settings are shown in Additional file 1:
Figure S6.

Algorithms’ performance in the simulation benchmark
was assessed by their sensitivity and precision. The sen-
sitivity was calculated as the fraction of genes with
adjusted P value < 0.1 among the genes with true
differences between group means. The precision was
calculated as the fraction of genes with true differ-
ences between group means among those with adjusted
P value < 0.1. The sensitivity is plotted over 1 —
precision, or the FDR, in Figure 6. DESeq2, and also
edgeR, often had the highest sensitivity of the algorithms
that controlled type-I error in the sense that the actual
FDR was at or below 0.1, the threshold for adjusted
P values used for calling differentially expressed genes.
DESeq2 had higher sensitivity compared to the other
algorithms, particularly for small fold change (2 or 3),
as was also found in benchmarks performed by Zhou
et al. [34]. For larger sample sizes and larger fold changes
the performance of the various algorithms was more
consistent.

The overly conservative calling of the old DESeq tool
can be observed, with reduced sensitivity compared to the
other algorithms and an actual FDR less than the nominal
value of 0.1. We note that EBSeq version 1.4.0 by default
removes low-count genes — whose 75% quantile of nor-
malized counts is less than ten — before calling differential
expression. The sensitivity of algorithms on the simulated
data across a range of the mean of counts are more closely
compared in Additional file 1: Figure S9.

Outlier sensitivity We used simulations to compare the
sensitivity and specificity of DESeq2’s outlier handling
approach to that of edgeR, which was recently added to
the software and published while this manuscript was
under review. edgeR now includes an optional method
to handle outliers by iteratively refitting the GLM after
down-weighting potential outlier counts [34]. The sim-
ulations, summarized in Additional file 1: Figure S10,
indicated that both approaches to outliers nearly recover
the performance on an outlier-free dataset, though edgeR-
robust had slightly higher actual than nominal FDR, as
seen in Additional file 1: Figure S11.
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Precision of fold change estimates We benchmarked
the DESeq2 approach of using an empirical prior to
achieve shrinkage of LFC estimates against two compet-
ing approaches: the GFOLD method, which can analyze
experiments without replication [20] and can also han-
dle experiments with replicates, and the edgeR package,
which provides a pseudocount-based shrinkage termed
predictive LFCs. Results are summarized in Additional
file 1: Figures S12—S16. DESeq2 had consistently low root-
mean-square error and mean absolute error across a range
of sample sizes and models for a distribution of true LFCs.
GFOLD had similarly low error to DESeq2 over all genes;
however, when focusing on differentially expressed genes,
it performed worse for larger sample sizes. edgeR with
default settings had similarly low error to DESeq2 when
focusing only on the differentially expressed genes, but
had higher error over all genes.

Clustering We compared the performance of the rlog
transformation against other methods of transformation
or distance calculation in the recovery of simulated clus-
ters. The adjusted Rand index [37] was used to compare
a hierarchical clustering based on various distances with
the true cluster membership. We tested the Euclidean
distance for normalized counts, logarithm of normalized
counts plus a pseudocount of 1, rlog-transformed counts
and VST counts. In addition we compared these Euclidean

distances with the Poisson distance implemented in the
PoiClaClu package [38], and a distance implemented
internally in the plotMDS function of edgeR (though not
the default distance, which is similar to the logarithm
of normalized counts). The results, shown in Additional
file 1: Figure S17, revealed that when the size factors
were equal for all samples, the Poisson distance and the
Euclidean distance of rlog-transformed or VST counts
outperformed other methods. However, when the size fac-
tors were not equal across samples, the rlog approach
generally outperformed the other methods. Finally, we
note that the rlog transformation provides normalized
data, which can be used for a variety of applications, of
which distance calculation is one.

Benchmark for RNA sequencing data
While simulation is useful to verify how well an algorithm
behaves with idealized theoretical data, and hence can ver-
ify that the algorithm performs as expected under its own
assumptions, simulations cannot inform us how well the
theory fits reality. With RNA-seq data, there is the com-
plication of not knowing fully or directly the underlying
truth; however, we can work around this limitation by
using more indirect inference, explained below.

In the following benchmarks, we considered three per-
formance metrics for differential expression calling: the
false positive rate (or 1 minus the specificity), sensitivity
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and precision. We can obtain meaningful estimates of
specificity from looking at datasets where we believe all
genes fall under the null hypothesis of no differential
expression [39]. Sensitivity and precision are more diffi-
cult to estimate, as they require independent knowledge
of those genes that are differentially expressed. To circum-
vent this problem, we used experimental reproducibility
on independent samples (though from the same dataset)
as a proxy. We used a dataset with large numbers of repli-
cates in both of two groups, where we expect that truly
differentially expressed genes exist. We repeatedly split
this dataset into an evaluation set and a larger verifica-
tion set, and compared the calls from the evaluation set
with the calls from the verification set, which were taken
as truth. It is important to keep in mind that the calls from
the verification set are only an approximation of the true
differential state, and the approximation error has a sys-
tematic and a stochastic component. The stochastic error
becomes small once the sample size of the verification
set is large enough. For the systematic errors, our bench-
mark assumes that these affect all algorithms more or less
equally and do not markedly change the ranking of the
algorithms.

False positive rate To evaluate the false positive rate of
the algorithms, we considered mock comparisons from
a dataset with many samples and no known condition
dividing the samples into distinct groups. We used the
RNA-seq data of Pickrell et al. [17] for lymphoblastoid
cell lines derived from unrelated Nigerian individuals. We
chose a set of 26 RNA-seq samples of the same read length
(46 base pairs) from male individuals. We randomly drew
without replacement ten samples from the set to compare
five against five, and this process was repeated 30 times.
We estimated the false positive rate associated with a crit-
ical value of 0.01 by dividing the number of P values less
than 0.01 by the total number of tests; genes with zero
sum of read counts across samples were excluded. The
results over the 30 replications, summarized in Figure 7,
indicated that all algorithms generally controlled the num-
ber of false positives. DESeq (0ld) and Cuffdiff 2 appeared
overly conservative in this analysis, not using up their
ty