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Abstract

In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read
counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate
numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We
present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold
changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the
strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.
bioconductor.org/packages/release/bioc/html/DESeq2.html.

Background
The rapid adoption of high-throughput sequencing (HTS)
technologies for genomic studies has resulted in a need
for statistical methods to assess quantitative differences
between experiments. An important task here is the anal-
ysis of RNA sequencing (RNA-seq) data with the aim
of finding genes that are differentially expressed across
groups of samples. This task is general: methods for it are
typically also applicable for other comparative HTS assays,
including chromatin immunoprecipitation sequencing,
chromosome conformation capture, or counting observed
taxa in metagenomic studies.
Besides the need to account for the specifics of count

data, such as non-normality and a dependence of the vari-
ance on the mean, a core challenge is the small number
of samples in typical HTS experiments – often as few as
two or three replicates per condition. Inferential methods
that treat each gene separately suffer here from lack of
power, due to the high uncertainty of within-group vari-
ance estimates. In high-throughput assays, this limitation
can be overcome by pooling information across genes,
specifically, by exploiting assumptions about the similarity
of the variances of different genes measured in the same
experiment [1].
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Many methods for differential expression analysis of
RNA-seq data perform such information sharing across
genes for variance (or, equivalently, dispersion) estima-
tion. edgeR [2,3] moderates the dispersion estimate for
each gene toward a common estimate across all genes, or
toward a local estimate from genes with similar expres-
sion strength, using a weighted conditional likelihood.
Our DESeq method [4] detects and corrects dispersion
estimates that are too low throughmodeling of the depen-
dence of the dispersion on the average expression strength
over all samples. BBSeq [5] models the dispersion on
the mean, with the mean absolute deviation of disper-
sion estimates used to reduce the influence of outliers.
DSS [6] uses a Bayesian approach to provide an estimate
for the dispersion for individual genes that accounts for
the heterogeneity of dispersion values for different genes.
baySeq [7] and ShrinkBayes [8] estimate priors for a
Bayesian model over all genes, and then provide posterior
probabilities or false discovery rates (FDRs) for differential
expression.
The most common approach in the comparative anal-

ysis of transcriptomics data is to test the null hypothesis
that the logarithmic fold change (LFC) between treat-
ment and control for a gene’s expression is exactly zero,
i.e., that the gene is not at all affected by the treatment.
Often the goal of differential analysis is to produce a list of
genes passingmultiple-test adjustment, ranked by P value.
However, small changes, even if statistically highly signif-
icant, might not be the most interesting candidates for
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further investigation. Ranking by fold change, on the other
hand, is complicated by the noisiness of LFC estimates for
genes with low counts. Furthermore, the number of genes
called significantly differentially expressed depends as
much on the sample size and other aspects of experimen-
tal design as it does on the biology of the experiment –
and well-powered experiments often generate an over-
whelmingly long list of hits [9]. We, therefore, developed
a statistical framework to facilitate gene ranking and visu-
alization based on stable estimation of effect sizes (LFCs),
as well as testing of differential expression with respect to
user-defined thresholds of biological significance.
Here we present DESeq2, a successor to our DESeq

method [4]. DESeq2 integrates methodological advances
with several novel features to facilitate a more quantita-
tive analysis of comparative RNA-seq data using shrinkage
estimators for dispersion and fold change. We demon-
strate the advantages ofDESeq2’s new features by describ-
ing a number of applications possible with shrunken fold
changes and their estimates of standard error, including
improved gene ranking and visualization, hypothesis tests
above and below a threshold, and the regularized loga-
rithm transformation for quality assessment and cluster-
ing of overdispersed count data.We furthermore compare
DESeq2’s statistical power with existing tools, revealing
that our methodology has high sensitivity and precision,
while controlling the false positive rate. DESeq2 is avail-
able [10] as an R/Bioconductor package [11].

Results and discussion
Model and normalization
The starting point of a DESeq2 analysis is a count matrix
K with one row for each gene i and one column for each
sample j. The matrix entries Kij indicate the number of
sequencing reads that have been unambiguously mapped
to a gene in a sample. Note that although we refer in this
paper to counts of reads in genes, the methods presented
here can be applied as well to other kinds of HTS count
data. For each gene, we fit a generalized linear model
(GLM) [12] as follows.
We model read counts Kij as following a negative bino-

mial distribution (sometimes also called a gamma-Poisson
distribution) withmeanμij and dispersion αi. Themean is
taken as a quantity qij, proportional to the concentration
of cDNA fragments from the gene in the sample, scaled by
a normalization factor sij, i.e., μij = sijqij. For many appli-
cations, the same constant sj can be used for all genes in
a sample, which then accounts for differences in sequenc-
ing depth between samples. To estimate these size factors,
the DESeq2 package offers the median-of-ratios method
already used in DESeq [4]. However, it can be advanta-
geous to calculate gene-specific normalization factors sij
to account for further sources of technical biases such as
differing dependence on GC content, gene length or the

like, using published methods [13,14], and these can be
supplied instead.
We use GLMs with a logarithmic link, log2 qij =∑
r xjrβir, with designmatrix elements xjr and coefficients

βir. In the simplest case of a comparison between two
groups, such as treated and control samples, the design
matrix elements indicate whether a sample j is treated
or not, and the GLM fit returns coefficients indicating
the overall expression strength of the gene and the log2
fold change between treatment and control. The use of
linearmodels, however, provides the flexibility to also ana-
lyze more complex designs, as is often useful in genomic
studies [15].

Empirical Bayes shrinkage for dispersion estimation
Within-group variability, i.e., the variability between repli-
cates, is modeled by the dispersion parameter αi, which
describes the variance of counts via VarKij = μij + αiμ2

ij.
Accurate estimation of the dispersion parameter αi is crit-
ical for the statistical inference of differential expression.
For studies with large sample sizes this is usually not
a problem. For controlled experiments, however, sample
sizes tend to be smaller (experimental designs with as lit-
tle as two or three replicates are common and reasonable),
resulting in highly variable dispersion estimates for each
gene. If used directly, these noisy estimates would com-
promise the accuracy of differential expression testing.
One sensible solution is to share information across

genes. In DESeq2, we assume that genes of similar aver-
age expression strength have similar dispersion. We here
explain the concepts of our approach using as examples a
dataset by Bottomly et al. [16] with RNA-seq data formice
of two different strains and a dataset by Pickrell et al. [17]
with RNA-seq data for human lymphoblastoid cell lines.
For the mathematical details, see Methods.
We first treat each gene separately and estimate gene-

wise dispersion estimates (using maximum likelihood),
which rely only on the data of each individual gene
(black dots in Figure 1). Next, we determine the location
parameter of the distribution of these estimates; to allow
for dependence on average expression strength, we fit a
smooth curve, as shown by the red line in Figure 1. This
provides an accurate estimate for the expected dispersion
value for genes of a given expression strength but does not
represent deviations of individual genes from this overall
trend. We then shrink the gene-wise dispersion estimates
toward the values predicted by the curve to obtain final
dispersion values (blue arrow heads). We use an empiri-
cal Bayes approach (Methods), which lets the strength of
shrinkage depend (i) on an estimate of how close true dis-
persion values tend to be to the fit and (ii) on the degrees
of freedom: as the sample size increases, the shrinkage
decreases in strength, and eventually becomes negligi-
ble. Our approach therefore accounts for gene-specific
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Figure 1 Shrinkage estimation of dispersion. Plot of dispersion estimates over the average expression strength (A) for the Bottomly et al. [16]
dataset with six samples across two groups and (B) for five samples from the Pickrell et al. [17] dataset, fitting only an intercept term. First, gene-wise
MLEs are obtained using only the respective gene’s data (black dots). Then, a curve (red) is fit to the MLEs to capture the overall trend of
dispersion-mean dependence. This fit is used as a prior mean for a second estimation round, which results in the final MAP estimates of dispersion
(arrow heads). This can be understood as a shrinkage (along the blue arrows) of the noisy gene-wise estimates toward the consensus represented
by the red line. The black points circled in blue are detected as dispersion outliers and not shrunk toward the prior (shrinkage would follow the
dotted line). For clarity, only a subset of genes is shown, which is enriched for dispersion outliers. Additional file 1: Figure S1 displays the same data
but with dispersions of all genes shown. MAP, maximum a posteriori; MLE, maximum-likelihood estimate.

variation to the extent that the data provide this informa-
tion, while the fitted curve aids estimation and testing in
less information-rich settings.
Our approach is similar to the one used by DSS [6],

in that both methods sequentially estimate a prior dis-
tribution for the true dispersion values around the fit,
and then provide the maximum a posteriori (MAP) as
the final estimate. It differs from the previous imple-
mentation of DESeq, which used the maximum of the
fitted curve and the gene-wise dispersion estimate as the
final estimate and tended to overestimate the dispersions
(Additional file 1: Figure S2). The approach of DESeq2
differs from that of edgeR [3], as DESeq2 estimates the
width of the prior distribution from the data and there-
fore automatically controls the amount of shrinkage based
on the observed properties of the data. In contrast, the
default steps in edgeR require a user-adjustable parameter,
the prior degrees of freedom, which weighs the contribu-
tion of the individual gene estimate and edgeR’s dispersion
fit.
Note that in Figure 1 a number of genes with gene-

wise dispersion estimates below the curve have their final
estimates raised substantially. The shrinkage procedure
thereby helps avoid potential false positives, which can
result from underestimates of dispersion. If, on the other
hand, an individual gene’s dispersion is far above the dis-
tribution of the gene-wise dispersion estimates of other
genes, then the shrinkage would lead to a greatly reduced
final estimate of dispersion. We reasoned that in many
cases, the reason for extraordinarily high dispersion of a

gene is that it does not obey our modeling assumptions;
some genes may showmuch higher variability than others
for biological or technical reasons, even though they have
the same average expression levels. In these cases, infer-
ence based on the shrunken dispersion estimates could
lead to undesirable false positive calls. DESeq2 handles
these cases by using the gene-wise estimate instead of
the shrunken estimate when the former is more than 2
residual standard deviations above the curve.

Empirical Bayes shrinkage for fold-change estimation
A common difficulty in the analysis of HTS data is the
strong variance of LFC estimates for genes with low read
count. We demonstrate this issue using the dataset by
Bottomly et al. [16]. As visualized in Figure 2A, weakly
expressed genes seem to show much stronger differ-
ences between the compared mouse strains than strongly
expressed genes. This phenomenon, seen in most HTS
datasets, is a direct consequence of dealing with count
data, in which ratios are inherently noisier when counts
are low. This heteroskedasticity (variance of LFCs depend-
ing on mean count) complicates downstream analysis and
data interpretation, as it makes effect sizes difficult to
compare across the dynamic range of the data.
DESeq2 overcomes this issue by shrinking LFC esti-

mates toward zero in a manner such that shrinkage is
stronger when the available information for a gene is
low, which may be because counts are low, dispersion
is high or there are few degrees of freedom. We again
employ an empirical Bayes procedure: we first perform



Love et al. Genome Biology  (2014) 15:550 Page 4 of 21

Figure 2 Effect of shrinkage on logarithmic fold change estimates. Plots of the (A)MLE (i.e., no shrinkage) and (B)MAP estimate (i.e., with
shrinkage) for the LFCs attributable to mouse strain, over the average expression strength for a ten vs eleven sample comparison of the Bottomly
et al. [16] dataset. Small triangles at the top and bottom of the plots indicate points that would fall outside of the plotting window. Two genes with
similar mean count and MLE logarithmic fold change are highlighted with green and purple circles. (C) The counts (normalized by size factors sj) for
these genes reveal low dispersion for the gene in green and high dispersion for the gene in purple. (D) Density plots of the likelihoods (solid lines,
scaled to integrate to 1) and the posteriors (dashed lines) for the green and purple genes and of the prior (solid black line): due to the higher
dispersion of the purple gene, its likelihood is wider and less peaked (indicating less information), and the prior has more influence on its posterior
than for the green gene. The stronger curvature of the green posterior at its maximum translates to a smaller reported standard error for the MAP
LFC estimate (horizontal error bar). adj., adjusted; LFC, logarithmic fold change; MAP, maximum a posteriori; MLE, maximum-likelihood estimate.

ordinary GLM fits to obtain maximum-likelihood esti-
mates (MLEs) for the LFCs and then fit a zero-centered
normal distribution to the observed distribution of MLEs
over all genes. This distribution is used as a prior on LFCs
in a second round of GLM fits, and the MAP estimates
are kept as final estimates of LFC. Furthermore, a stan-
dard error for each estimate is reported, which is derived
from the posterior’s curvature at its maximum (see
Methods for details). These shrunken LFCs and their stan-
dard errors are used in the Wald tests for differential
expression described in the next section.
The resulting MAP LFCs are biased toward zero in a

manner that removes the problem of exaggerated LFCs for
low counts. As Figure 2B shows, the strongest LFCs are no
longer exhibited by genes withweakest expression. Rather,
the estimates are more evenly spread around zero, and

for very weakly expressed genes (with less than one read
per sample on average), LFCs hardly deviate from zero,
reflecting that accurate LFC estimates are not possible
here.
The strength of shrinkage does not depend simply on

the mean count, but rather on the amount of informa-
tion available for the fold change estimation (as indicated
by the observed Fisher information; see Methods). Two
genes with equal expression strength but different dis-
persions will experience a different amount of shrinkage
(Figure 2C,D). The shrinkage of LFC estimates can be
described as a bias-variance trade-off [18]: for genes with
little information for LFC estimation, a reduction of the
strong variance is bought at the cost of accepting a bias
toward zero, and this can result in an overall reduc-
tion in mean squared error, e.g., when comparing to LFC
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estimates from a new dataset. Genes with high informa-
tion for LFC estimation will have, in our approach, LFCs
with both low bias and low variance. Furthermore, as the
degrees of freedom increase, and the experiment pro-
vides more information for LFC estimation, the shrunken
estimates will converge to the unshrunken estimates. We
note that other Bayesian efforts toward moderating fold
changes for RNA-seq include hierarchical models [8,19]
and the GFOLD (or generalized fold change) tool [20],
which uses a posterior distribution of LFCs.
The shrunken MAP LFCs offer a more reproducible

quantification of transcriptional differences than standard
MLE LFCs. To demonstrate this, we split the Bottomly
et al. samples equally into two groups, I and II, such that
each group contained a balanced split of the strains, sim-
ulating a scenario where an experiment (samples in group
I) is performed, analyzed and reported, and then indepen-
dently replicated (samples in group II). Within each group,
we estimated LFCs between the strains and compared
between groups I and II, using the MLE LFCs (Figure 3A)
and using the MAP LFCs (Figure 3B). Because the
shrinkage moves large LFCs that are not well supported
by the data toward zero, the agreement between the
two independent sample groups increases considerably.
Therefore, shrunken fold-change estimates offer a more
reliable basis for quantitative conclusions than normal
MLEs.
This makes shrunken LFCs also suitable for ranking

genes, e.g., to prioritize them for follow-up experiments.
For example, if we sort the genes in the two sample groups
of Figure 3 by unshrunken LFC estimates, and consider
the 100 genes with the strongest up- or down-regulation
in group I, we find only 21 of these again among the top
100 up- or down-regulated genes in group II. However, if

we rank the genes by shrunken LFC estimates, the overlap
improves to 81 of 100 genes (Additional file 1: Figure S3).
A simpler often used method is to add a fixed num-

ber (pseudocount) to all counts before forming ratios.
However, this requires the choice of a tuning parame-
ter and only reacts to one of the sources of uncertainty,
low counts, but not to gene-specific dispersion differences
or sample size. We demonstrate this in the Benchmarks
section below.

Hypothesis tests for differential expression
After GLMs are fit for each gene, one may test whether
each model coefficient differs significantly from zero.
DESeq2 reports the standard error for each shrunken LFC
estimate, obtained from the curvature of the coefficient’s
posterior (dashed lines in Figure 2D) at its maximum.
For significance testing, DESeq2 uses a Wald test: the
shrunken estimate of LFC is divided by its standard error,
resulting in a z-statistic, which is compared to a standard
normal distribution. (See Methods for details.) The Wald
test allows testing of individual coefficients, or contrasts
of coefficients, without the need to fit a reduced model as
with the likelihood ratio test, though the likelihood ratio
test is also available as an option inDESeq2. TheWald test
P values from the subset of genes that pass an independent
filtering step, described in the next section, are adjusted
for multiple testing using the procedure of Benjamini and
Hochberg [21].

Automatic independent filtering
Due to the large number of tests performed in the analy-
sis of RNA-seq and other genome-wide experiments, the
multiple testing problem needs to be addressed. A popu-
lar objective is control or estimation of the FDR. Multiple

Figure 3 Stability of logarithmic fold changes. DESeq2 is run on equally split halves of the data of Bottomly et al. [16], and the LFCs from the
halves are plotted against each other. (A)MLEs, i.e., without LFC shrinkage. (B)MAP estimates, i.e., with shrinkage. Points in the top left and bottom
right quadrants indicate genes with a change of sign of LFC. Red points indicate genes with adjusted P value < 0.1. The legend displays the
root-mean-square error of the estimates in group I compared to those in group II. LFC, logarithmic fold change; MAP, maximum a posteriori; MLE,
maximum-likelihood estimate; RMSE, root-mean-square error.
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testing adjustment tends to be associated with a loss of
power, in the sense that the FDR for a set of genes is
often higher than the individual P values of these genes.
However, the loss can be reduced if genes that have little
or no chance of being detected as differentially expressed
are omitted from the testing, provided that the criterion
for omission is independent of the test statistic under the
null hypothesis [22] (see Methods).DESeq2 uses the aver-
age expression strength of each gene, across all samples,
as its filter criterion, and it omits all genes with mean
normalized counts below a filtering threshold from mul-
tiple testing adjustment. DESeq2 by default will choose a
threshold that maximizes the number of genes found at
a user-specified target FDR. In Figures 2A,B and 3, genes
found in this way to be significant at an estimated FDR
of 10% are depicted in red. Depending on the distribution
of the mean normalized counts, the resulting increase in
power can be substantial, sometimes making the differ-
ence in whether or not any differentially expressed genes
are detected.

Hypothesis tests with thresholds on effect size
Specifyingminimum effect size
Most approaches to testing for differential expression,
including the default approach of DESeq2, test against
the null hypothesis of zero LFC. However, if any bio-
logical processes are genuinely affected by the difference
in experimental treatment, this null hypothesis implies
that the gene under consideration is perfectly decoupled
from these processes. Due to the high interconnected-
ness of cells’ regulatory networks, this hypothesis is, in
fact, implausible, and arguably wrong for many if not
most genes. Consequently, with sufficient sample size,
even genes with a very small but non-zero LFC will even-
tually be detected as differentially expressed. A change
should therefore be of sufficient magnitude to be consid-
ered biologically significant. For small-scale experiments,
statistical significance is often a much stricter require-
ment than biological significance, thereby relieving the
researcher from the need to decide on a threshold for
biological significance.
For well-powered experiments, however, a statistical

test against the conventional null hypothesis of zero LFC
may report genes with statistically significant changes that
are so weak in effect strength that they could be consid-
ered irrelevant or distracting. A common procedure is to
disregard genes whose estimated LFC βir is below some
threshold, |βir| ≤ θ . However, this approach loses the
benefit of an easily interpretable FDR, as the reported P
value and adjusted P value still correspond to the test of
zero LFC. It is therefore desirable to include the thresh-
old in the statistical testing procedure directly, i.e., not
to filter post hoc on a reported fold-change estimate,
but rather to evaluate statistically directly whether there

is sufficient evidence that the LFC is above the chosen
threshold.
DESeq2 offers tests for composite null hypotheses of

the form |βir| ≤ θ , where βir is the shrunken LFC from
the estimation procedure described above. (See Methods
for details.) Figure 4A demonstrates how such a thresh-
olded test gives rise to a curved decision boundary: to
reach significance, the estimated LFC has to exceed the
specified threshold by an amount that depends on the
available information. We note that related approaches to
generate gene lists that satisfy both statistical and biolog-
ical significance criteria have been previously discussed
for microarray data [23] and recently for sequencing
data [19].

Specifyingmaximum effect size
Sometimes, a researcher is interested in finding genes that
are not, or only very weakly, affected by the treatment or
experimental condition. This amounts to a setting simi-
lar to the one just discussed, but the roles of the null and
alternative hypotheses are swapped. We are here asking
for evidence of the effect being weak, not for evidence of
the effect being zero, because the latter question is rarely
tractable. The meaning of weak needs to be quantified
for the biological question at hand by choosing a suit-
able threshold θ for the LFC. For such analyses, DESeq2
offers a test of the composite null hypothesis |βir| ≥ θ ,
which will report genes as significant for which there is
evidence that their LFC is weaker than θ . Figure 4B shows
the outcome of such a test. For genes with very low read
count, even an estimate of zero LFC is not significant,
as the large uncertainty of the estimate does not allow
us to exclude that the gene may in truth be more than
weakly affected by the experimental condition. Note the
lack of LFC shrinkage: to find genes with weak differen-
tial expression, DESeq2 requires that the LFC shrinkage
has been disabled. This is because the zero-centered prior
used for LFC shrinkage embodies a prior belief that LFCs
tend to be small, and hence is inappropriate here.

Detection of count outliers
Parametric methods for detecting differential expression
can have gene-wise estimates of LFC overly influenced
by individual outliers that do not fit the distributional
assumptions of the model [24]. An example of such an
outlier would be a gene with single-digit counts for all
samples, except one sample with a count in the thousands.
As the aim of differential expression analysis is typically to
find consistently up- or down-regulated genes, it is useful
to consider diagnostics for detecting individual observa-
tions that overly influence the LFC estimate and P value
for a gene. A standard outlier diagnostic is Cook’s dis-
tance [25], which is defined within each gene for each
sample as the scaled distance that the coefficient vector,
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Figure 4 Hypothesis testing involving non-zero thresholds. Shown are plots of the estimated fold change over average expression strength
(“minus over average”, or MA-plots) for a ten vs eleven comparison using the Bottomly et al. [16] dataset, with highlighted points indicating low
adjusted P values. The alternate hypotheses are that logarithmic (base 2) fold changes are (A) greater than 1 in absolute value or (B) less than 1 in
absolute value. adj., adjusted.

�βi, of a linear model or GLM would move if the sample
were removed and the model refit.
DESeq2 flags, for each gene, those samples that have

a Cook’s distance greater than the 0.99 quantile of the
F(p,m − p) distribution, where p is the number of model
parameters including the intercept, and m is the num-
ber of samples. The use of the F distribution is motivated
by the heuristic reasoning that removing a single sample
should not move the vector �βi outside of a 99% confidence
region around �βi fit using all the samples [25]. However,
if there are two or fewer replicates for a condition, these
samples do not contribute to outlier detection, as there are
insufficient replicates to determine outlier status.
How should one deal with flagged outliers? In an exper-

iment with many replicates, discarding the outlier and
proceeding with the remaining data might make best use
of the available data. In a small experiment with few
samples, however, the presence of an outlier can impair
inference regarding the affected gene, andmerely ignoring
the outlier may even be considered data cherry-picking –
and therefore, it is more prudent to exclude the whole
gene from downstream analysis.
Hence, DESeq2 offers two possible responses to flagged

outliers. By default, outliers in conditions with six or fewer
replicates cause the whole gene to be flagged and removed
from subsequent analysis, including P value adjustment
for multiple testing. For conditions that contain seven or
more replicates, DESeq2 replaces the outlier counts with
an imputed value, namely the trimmed mean over all
samples, scaled by the size factor, and then re-estimates
the dispersion, LFCs and P values for these genes. As
the outlier is replaced with the value predicted by the
null hypothesis of no differential expression, this is a
more conservative choice than simply omitting the out-
lier. When there are many degrees of freedom, the second
approach avoids discarding genes that might contain true
differential expression.

Additional file 1: Figure S4 displays the outlier replace-
ment procedure for a single gene in a seven by seven
comparison of the Bottomly et al. [16] dataset. While the
original fitted means are heavily influenced by a single
sample with a large count, the corrected LFCs provide a
better fit to the majority of the samples.

Regularized logarithm transformation
For certain analyses, it is useful to transform data to ren-
der themhomoskedastic. As an example, consider the task
of assessing sample similarities in an unsupervised man-
ner using a clustering or ordination algorithm. For RNA-
seq data, the problem of heteroskedasticity arises: if the
data are given to such an algorithm on the original count
scale, the result will be dominated by highly expressed,
highly variable genes; if logarithm-transformed data are
used, undue weight will be given to weakly expressed
genes, which show exaggerated LFCs, as discussed above.
Therefore, we use the shrinkage approach of DESeq2 to
implement a regularized logarithm transformation (rlog),
which behaves similarly to a log2 transformation for genes
with high counts, while shrinking together the values for
different samples for genes with low counts. It therefore
avoids a commonly observed property of the standard
logarithm transformation, the spreading apart of data for
genes with low counts, where random noise is likely to
dominate any biologically meaningful signal. When we
consider the variance of each gene, computed across sam-
ples, these variances are stabilized – i.e., approximately
the same, or homoskedastic – after the rlog transforma-
tion, while they would otherwise strongly depend on the
mean counts. It thus facilitates multivariate visualization
and ordinations such as clustering or principal component
analysis that tend to work best when the variables have
similar dynamic range. Note that while the rlog transfor-
mation builds upon on our LFC shrinkage approach, it
is distinct from and not part of the statistical inference
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procedure for differential expression analysis described
above, which employs the raw counts, not transformed
data.
The rlog transformation is calculated by fitting for each

gene a GLM with a baseline expression (i.e., intercept
only) and, computing for each sample, shrunken LFCs
with respect to the baseline, using the same empiri-
cal Bayes procedure as before (Methods). Here, how-
ever, the sample covariate information (e.g. treatment
or control) is not used, so that all samples are treated
equally. The rlog transformation accounts for variation
in sequencing depth across samples as it represents the
logarithm of qij after accounting for the size factors
sij. This is in contrast to the variance-stabilizing trans-
formation (VST) for overdispersed counts introduced
in DESeq [4]: while the VST is also effective at stabi-
lizing variance, it does not directly take into account
differences in size factors; and in datasets with large
variation in sequencing depth (dynamic range of size
factors �4) we observed undesirable artifacts in the
performance of the VST. A disadvantage of the rlog

transformation with respect to the VST is, however, that
the ordering of genes within a sample will change if neigh-
boring genes undergo shrinkage of different strength. As
with the VST, the value of rlog(Kij) for large counts is
approximately equal to log2(Kij/sj). Both the rlog trans-
formation and the VST are provided in the DESeq2
package.
We demonstrate the use of the rlog transformation on

the RNA-seq dataset of Hammer et al. [26], wherein
RNA was sequenced from the dorsal root ganglion of
rats that had undergone spinal nerve ligation and con-
trols, at 2 weeks and at 2 months after the ligation. The
count matrix for this dataset was downloaded from the
ReCount online resource [27]. This dataset offers more
subtle differences between conditions than the Bottomly
et al. [16] dataset. Figure 5 provides diagnostic plots of
the normalized counts under the ordinary logarithm with
a pseudocount of 1 and the rlog transformation, show-
ing that the rlog both stabilizes the variance through the
range of the mean of counts and helps to find meaningful
patterns in the data.

Figure 5 Variance stabilization and clustering after rlog transformation. Two transformations were applied to the counts of the Hammer
et al. [26] dataset: the logarithm of normalized counts plus a pseudocount, i.e. f (Kij) = log2(Kij/sj + 1), and the rlog. The gene-wise standard
deviation of transformed values is variable across the range of the mean of counts using the logarithm (A), while relatively stable using the
rlog (B). A hierarchical clustering on Euclidean distances and complete linkage using the rlog (D) transformed data clusters the samples into the
groups defined by treatment and time, while using the logarithm-transformed counts (C) produces a more ambiguous result. sd, standard
deviation.
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Gene-level analysis
We here present DESeq2 for the analysis of per-gene
counts, i.e., the total number of reads that can be uniquely
assigned to a gene. In contrast, several algorithms [28,29]
work with probabilistic assignments of reads to tran-
scripts, where multiple, overlapping transcripts can origi-
nate from each gene. It has been noted that the total read
count approach can result in false detection of differential
expression when in fact only transcript isoform lengths
change, and even in a wrong sign of LFCs in extreme
cases [28]. However, in our benchmark, discussed in the
following section, we found that LFC sign disagreements
between total read count and probabilistic-assignment-
based methods were rare for genes that were differentially
expressed according to either method (Additional file 1:
Figure S5). Furthermore, if estimates for average tran-
script length are available for the conditions, these can
be incorporated into the DESeq2 framework as gene- and
sample-specific normalization factors. In addition, the
approach used in DESeq2 can be extended to isoform-
specific analysis, either through generalized linear mod-
eling at the exon level with a gene-specific mean as in
the DEXSeq package [30] or through counting evidence
for alternative isoforms in splice graphs [31,32]. In fact,
the latest release version of DEXSeq now uses DESeq2 as
its inferential engine and so offers shrinkage estimation
of dispersion and effect sizes for an exon-level analysis,
too.

Comparative benchmarks
To assess how well DESeq2 performs for standard
analyses in comparison to other current methods,
we used a combination of simulations and real data.
The negative-binomial-based approaches compared were
DESeq (old) [4], edgeR [33], edgeR with the robust
option [34],DSS [6] and EBSeq [35]. Other methods com-
pared were the voom normalization method followed by
linear modeling using the limma package [36] and the
SAMseq permutation method of the samr package [24].
For the benchmarks using real data, the Cuffdiff 2 [28]
method of the Cufflinks suite was included. For ver-
sion numbers of the software used, see Additional file 1:
Table S3. For all algorithms returning P values, the P val-
ues from genes with non-zero sum of read counts across
samples were adjusted using the Benjamini–Hochberg
procedure [21].

Benchmarks through simulation
Sensitivity and precision We simulated datasets of
10,000 genes with negative binomial distributed counts.
To simulate data with realistic moments, the mean
and dispersions were drawn from the joint distribu-
tion of means and gene-wise dispersion estimates from
the Pickrell et al. data, fitting only an intercept term.

These datasets were of varying total sample size (m ∈
{6, 8, 10, 20}), and the samples were split into two equal-
sized groups; 80% of the simulated genes had no true
differential expression, while for 20% of the genes, true
fold changes of 2, 3 and 4 were used to generate counts
across the two groups, with the direction of fold change
chosen randomly. The simulated differentially expressed
genes were chosen uniformly at random among all the
genes, throughout the range of mean counts. MA-plots
of the true fold changes used in the simulation and the
observed fold changes induced by the simulation for one
of the simulation settings are shown in Additional file 1:
Figure S6.
Algorithms’ performance in the simulation benchmark

was assessed by their sensitivity and precision. The sen-
sitivity was calculated as the fraction of genes with
adjusted P value < 0.1 among the genes with true
differences between group means. The precision was
calculated as the fraction of genes with true differ-
ences between group means among those with adjusted
P value < 0.1. The sensitivity is plotted over 1 −
precision, or the FDR, in Figure 6. DESeq2, and also
edgeR, often had the highest sensitivity of the algorithms
that controlled type-I error in the sense that the actual
FDR was at or below 0.1, the threshold for adjusted
P values used for calling differentially expressed genes.
DESeq2 had higher sensitivity compared to the other
algorithms, particularly for small fold change (2 or 3),
as was also found in benchmarks performed by Zhou
et al. [34]. For larger sample sizes and larger fold changes
the performance of the various algorithms was more
consistent.
The overly conservative calling of the old DESeq tool

can be observed, with reduced sensitivity compared to the
other algorithms and an actual FDR less than the nominal
value of 0.1. We note that EBSeq version 1.4.0 by default
removes low-count genes – whose 75% quantile of nor-
malized counts is less than ten – before calling differential
expression. The sensitivity of algorithms on the simulated
data across a range of the mean of counts are more closely
compared in Additional file 1: Figure S9.

Outlier sensitivity We used simulations to compare the
sensitivity and specificity of DESeq2’s outlier handling
approach to that of edgeR, which was recently added to
the software and published while this manuscript was
under review. edgeR now includes an optional method
to handle outliers by iteratively refitting the GLM after
down-weighting potential outlier counts [34]. The sim-
ulations, summarized in Additional file 1: Figure S10,
indicated that both approaches to outliers nearly recover
the performance on an outlier-free dataset, though edgeR-
robust had slightly higher actual than nominal FDR, as
seen in Additional file 1: Figure S11.
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Figure 6 Sensitivity and precision of algorithms across combinations of sample size and effect size. DESeq2 and edgeR often had the highest
sensitivity of those algorithms that controlled the FDR, i.e., those algorithms which fall on or to the left of the vertical black line. For a plot of
sensitivity against false positive rate, rather than FDR, see Additional file 1: Figure S8, and for the dependence of sensitivity on the mean of counts,
see Additional file 1: Figure S9. Note that EBSeq filters low-count genes (see main text for details).

Precision of fold change estimates We benchmarked
the DESeq2 approach of using an empirical prior to
achieve shrinkage of LFC estimates against two compet-
ing approaches: the GFOLD method, which can analyze
experiments without replication [20] and can also han-
dle experiments with replicates, and the edgeR package,
which provides a pseudocount-based shrinkage termed
predictive LFCs. Results are summarized in Additional
file 1: Figures S12–S16.DESeq2 had consistently low root-
mean-square error andmean absolute error across a range
of sample sizes and models for a distribution of true LFCs.
GFOLD had similarly low error to DESeq2 over all genes;
however, when focusing on differentially expressed genes,
it performed worse for larger sample sizes. edgeR with
default settings had similarly low error to DESeq2 when
focusing only on the differentially expressed genes, but
had higher error over all genes.

Clustering We compared the performance of the rlog
transformation against other methods of transformation
or distance calculation in the recovery of simulated clus-
ters. The adjusted Rand index [37] was used to compare
a hierarchical clustering based on various distances with
the true cluster membership. We tested the Euclidean
distance for normalized counts, logarithm of normalized
counts plus a pseudocount of 1, rlog-transformed counts
and VST counts. In addition we compared these Euclidean

distances with the Poisson distance implemented in the
PoiClaClu package [38], and a distance implemented
internally in the plotMDS function of edgeR (though not
the default distance, which is similar to the logarithm
of normalized counts). The results, shown in Additional
file 1: Figure S17, revealed that when the size factors
were equal for all samples, the Poisson distance and the
Euclidean distance of rlog-transformed or VST counts
outperformed othermethods. However, when the size fac-
tors were not equal across samples, the rlog approach
generally outperformed the other methods. Finally, we
note that the rlog transformation provides normalized
data, which can be used for a variety of applications, of
which distance calculation is one.

Benchmark for RNA sequencing data
While simulation is useful to verify how well an algorithm
behaveswith idealized theoretical data, and hence can ver-
ify that the algorithm performs as expected under its own
assumptions, simulations cannot inform us how well the
theory fits reality. With RNA-seq data, there is the com-
plication of not knowing fully or directly the underlying
truth; however, we can work around this limitation by
using more indirect inference, explained below.
In the following benchmarks, we considered three per-

formance metrics for differential expression calling: the
false positive rate (or 1 minus the specificity), sensitivity
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and precision. We can obtain meaningful estimates of
specificity from looking at datasets where we believe all
genes fall under the null hypothesis of no differential
expression [39]. Sensitivity and precision are more diffi-
cult to estimate, as they require independent knowledge
of those genes that are differentially expressed. To circum-
vent this problem, we used experimental reproducibility
on independent samples (though from the same dataset)
as a proxy. We used a dataset with large numbers of repli-
cates in both of two groups, where we expect that truly
differentially expressed genes exist. We repeatedly split
this dataset into an evaluation set and a larger verifica-
tion set, and compared the calls from the evaluation set
with the calls from the verification set, which were taken
as truth. It is important to keep in mind that the calls from
the verification set are only an approximation of the true
differential state, and the approximation error has a sys-
tematic and a stochastic component. The stochastic error
becomes small once the sample size of the verification
set is large enough. For the systematic errors, our bench-
mark assumes that these affect all algorithms more or less
equally and do not markedly change the ranking of the
algorithms.

False positive rate To evaluate the false positive rate of
the algorithms, we considered mock comparisons from
a dataset with many samples and no known condition
dividing the samples into distinct groups. We used the
RNA-seq data of Pickrell et al. [17] for lymphoblastoid
cell lines derived from unrelated Nigerian individuals. We
chose a set of 26 RNA-seq samples of the same read length
(46 base pairs) from male individuals. We randomly drew
without replacement ten samples from the set to compare
five against five, and this process was repeated 30 times.
We estimated the false positive rate associated with a crit-
ical value of 0.01 by dividing the number of P values less
than 0.01 by the total number of tests; genes with zero
sum of read counts across samples were excluded. The
results over the 30 replications, summarized in Figure 7,
indicated that all algorithms generally controlled the num-
ber of false positives.DESeq (old) and Cuffdiff 2 appeared
overly conservative in this analysis, not using up their
type-I error budget.

Sensitivity To obtain an impression of the sensitivity
of the algorithms, we considered the Bottomly et al.
[16] dataset, which contains ten and eleven replicates of
two different, genetically homogeneous mice strains. This
allowed for a split of three vs three for the evaluation set
and seven vs eight for the verification set, which were
balanced across the three experimental batches. Random
splits were replicated 30 times. Batch information was
not provided to the DESeq (old), DESeq2, DSS, edgeR
or voom algorithms, which can accommodate complex

Figure 7 Benchmark of false positive calling. Shown are estimates
of P(P value < 0.01) under the null hypothesis. The FPR is the number
of P values less than 0.01 divided by the total number of tests, from
randomly selected comparisons of five vs five samples from the
Pickrell et al. [17] dataset, with no known condition dividing the
samples. Type-I error control requires that the tool does not
substantially exceed the nominal value of 0.01 (black line). EBSeq
results were not included in this plot as it returns posterior
probabilities, which unlike P values are not expected to be uniformly
distributed under the null hypothesis. FPR, false positive rate.

experimental designs, to have comparable calls across all
algorithms.
We rotated though each algorithm to determine the

calls of the verification set. For a given algorithm’s ver-
ification set calls, we tested the evaluation set calls of
every algorithm. We used this approach rather than a
consensus-based method, as we did not want to favor or
disfavor any particular algorithm or group of algorithms.
Sensitivity was calculated as in the simulation bench-
mark, now with true differential expression defined by an
adjusted P value < 0.1 in the larger verification set, as dia-
grammed in Additional file 1: Figure S18. Figure 8 displays
the estimates of sensitivity for each algorithm pair.
The ranking of algorithms was generally consistent

regardless of which algorithm was chosen to determine
calls in the verification set. DESeq2 had comparable sen-
sitivity to edgeR and voom though less than DSS. The
median sensitivity estimates were typically between 0.2
and 0.4 for all algorithms. That all algorithms had rel-
atively low median sensitivity can be explained by the
small sample size of the evaluation set and the fact that
increasing the sample size in the verification set increases
power. It was expected that the permutation-based SAM-
seq method would rarely produce adjusted P value < 0.1
in the evaluation set, because the three vs three compari-
son does not enable enough permutations.

Precision Another important consideration from the
perspective of an investigator is the precision, or frac-
tion of true positives in the set of genes which pass the
adjusted P value threshold. This can also be reported as
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Figure 8 Sensitivity estimated from experimental reproducibility. Each algorithm’s sensitivity in the evaluation set (box plots) is evaluated
using the calls of each other algorithm in the verification set (panels with grey label).

1 − FDR. Again, ‘true’ differential expression was defined
by an adjusted P value < 0.1 in the larger verification
set. The estimates of precision are displayed in Figure 9,
where we can see that DESeq2 often had the second high-
est median precision, behind DESeq (old). We can also
see that algorithms with higher median sensitivity, e.g.,
DSS, were generally associated here with lower median
precision. The rankings differed significantly when Cuffd-
iff 2 was used to determine the verification set calls.
This is likely due to the additional steps Cuffdiff 2 per-
formed to deconvolve changes in isoform-level abundance
from gene-level abundance, which apparently came at the
cost of lower precision when compared against its own
verification set calls.
To compare the sensitivity and precision results further,

we calculated the precision of algorithms along a grid of
nominal adjusted P values (Additional file 1: Figure S19).
We then found the nominal adjusted P value for each algo-
rithm, which resulted in a median actual precision of 0.9
(FDR = 0.1). Having thus calibrated each algorithm to

a target FDR, we evaluated the sensitivity of calling, as
shown in Additional file 1: Figure S20. As expected, here
the algorithms performed more similarly to each other.
This analysis revealed that, for a given target precision,
DESeq2 often was among the top algorithms by median
sensitivity, though the variability across random replicates
was larger than the differences between algorithms.
The absolute number of calls for the evaluation and ver-

ification sets can be seen in Additional file 1: Figures S21
and S22, which mostly matched the order seen in the sen-
sitivity plot of Figure 8. Additional file 1: Figures S23 and
S24 provide heatmaps and clustering based on the Jaccard
index of calls for one replicate of the evaluation and veri-
fication sets, indicating a large overlap of calls across the
different algorithms.
In summary, the benchmarking tests showed that

DESeq2 effectively controlled type-I errors, maintaining a
median false positive rate just below the chosen critical
value in a mock comparison of groups of samples ran-
domly chosen from a larger pool. For both simulation and
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have been used include chromatin immunoprecipitation
sequencing assays (e.g., [40]; see also theDiffBind package
[41,42]), barcode-based assays (e.g., [43]), metagenomics
data (e.g., [44]), ribosome profiling [45] and CRISPR/Cas-
library assays [46]. Finally, the DESeq2 package is inte-
grated well in the Bioconductor infrastructure [11] and
comes with extensive documentation, including a vignette
that demonstrates a complete analysis step by step and
discusses advanced use cases.

Materials andmethods
A summary of the notation used in the following section
is provided in Additional file 1: Table S1.

Model and normalization
The read count Kij for gene i in sample j is described with
a GLM of the negative binomial family with a logarithmic
link:

Kij ∼ NB(mean = μij, dispersion = αi)

μij = sijqij
(1)

log qij =
∑
r

xjrβir. (2)

For notational simplicity, the equations here use the nat-
ural logarithm as the link function, though the DESeq2
software reports estimated model coefficients and their
estimated standard errors on the log2 scale.
By default, the normalization constants sij are consid-

ered constant within a sample, sij = sj, and are estimated
with the median-of-ratios method previously described
and used in DESeq [4] and DEXSeq [30]:

sj = median
i:KR

i �=0

Kij
KR
i

with KR
i =

⎛
⎝ m∏

j=1
Kij

⎞
⎠

1/m

.

Alternatively, the user can supply normalization con-
stants sij calculated using other methods (e.g., using
cqn [13] or EDASeq [14]), which may differ from gene to
gene.

Expanded designmatrices
For consistency with our software’s documentation, in the
following text we will use the terminology of the R statisti-
cal language. In linear modeling, a categorical variable or
factor can take on two ormore values or levels. In standard
design matrices, one of the values is chosen as a refer-
ence value or base level and absorbed into the intercept.
In standard GLMs, the choice of base level does not influ-
ence the values of contrasts (LFCs). This, however, is no
longer the case in our approach using ridge-regression-
like shrinkage on the coefficients (described below), when
factors withmore than two levels are present in the design

matrix, because the base level will not undergo shrinkage
while the other levels do.
To recover the desirable symmetry between all levels,

DESeq2 uses expanded design matrices, which include an
indicator variable for each level of each factor, in addi-
tion to an intercept column (i.e., none of the levels is
absorbed into the intercept). While such a design matrix
no longer has full rank, a unique solution exists because
the zero-centered prior distribution (see below) provides
regularization. For dispersion estimation and for estimat-
ing the width of the LFC prior, standard design matrices
are used.

Contrasts
Contrasts between levels and standard errors of such con-
trasts can be calculated as they would in the standard
design matrix case, i.e., using:

βc
i = �c t �βi (3)

SE
(
βc
i
) =

√
�c t�i�c, (4)

where �c represents a numeric contrast, e.g., 1 and −1
specifying the numerator and denominator of a simple
two-level contrast, and �i = Cov( �βi), defined below.

Estimation of dispersions
We assume the dispersion parameter αi follows a log-
normal prior distribution that is centered around a trend
that depends on the gene’s mean normalized read count:

log αi ∼ N
(
log αtr(μ̄i), σ 2

d
)
. (5)

Here, αtr is a function of the gene’s mean normalized
count,

μ̄i = 1
m

∑
j

Kij
sij

.

It describes the mean-dependent expectation of the prior.
σd is the width of the prior, a hyperparameter describing
how much the individual genes’ true dispersions scatter
around the trend. For the trend function, we use the same
parametrization as we used for DEXSeq [30], namely,

αtr(μ̄) = a1
μ̄

+ α0. (6)

We get final dispersion estimates from this model
in three steps, which implement a computationally fast
approximation to a full empirical Bayes treatment. We
first use the count data for each gene separately to
get preliminary gene-wise dispersion estimates α

gw
i by

maximum-likelihood estimation. Then, we fit the disper-
sion trend αtr. Finally, we combine the likelihood with the
trended prior to get maximum a posteriori (MAP) values
as final dispersion estimates. Details for the three steps
follow.
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Gene-wise dispersion estimates To get a gene-wise dis-
persion estimate for a gene i, we start by fitting a nega-
tive binomial GLM without an LFC prior for the design
matrix X to the gene’s count data. This GLM uses a rough
method-of-moments estimate of dispersion, based on the
within-group variances and means. The initial GLM is
necessary to obtain an initial set of fitted values, μ̂0

ij. We
then maximize the Cox–Reid adjusted likelihood of the
dispersion, conditioned on the fitted values μ̂0

ij from the
initial fit, to obtain the gene-wise estimate α

gw
i , i.e.,

α
gw
i = argmax

α
�CR

(
α; �μ0

i·, �Ki·
)

with

�CR(α; �μ, �K) = �(α) − 1
2
log

(
det

(
XtWX

))
�(α) =

∑
j
log fNB(Kj;μj, α),

(7)

where fNB(k;μ, α) is the probability mass function of the
negative binomial distribution with mean μ and disper-
sion α, and the second term provides the Cox–Reid bias
adjustment [47]. This adjustment, first used in the con-
text of dispersion estimation for SAGE data [48] and then
for HTS data [3] in edgeR, corrects for the negative bias
of dispersion estimates from using the MLEs for the fit-
ted values μ̂0

ij (analogous to Bessel’s correction in the usual
sample variance formula; for details, see [49], Section
10.6). It is formed from the Fisher information for the fit-
ted values, which is here calculated as det(XtWX), where
W is the diagonal weight matrix from the standard iter-
atively reweighted least-squares algorithm. As the GLM’s
link function is g(μ) = log(μ) and its variance function is
V (μ;α) = μ + αμ2, the elements of the diagonal matrix
Wi are given by:

wjj = 1
g′(μj)2V (μj)

= 1
1/μj + α

.

The optimization in Equation (7) is performed on
the scale of log α using a backtracking line search with
accepted proposals that satisfy Armijo conditions [50].

Dispersion trend A parametric curve of the form (6) is
fit by regressing the gene-wise dispersion estimates α

gw
i

onto the means of the normalized counts, μ̄i. The sam-
pling distribution of the gene-wise dispersion estimate
around the true value αi can be highly skewed, and there-
fore we do not use ordinary least-squares regression but
rather gamma-family GLM regression. Furthermore, dis-
persion outliers could skew the fit and hence a scheme to
exclude such outliers is used.
The hyperparameters a1 and α0 of (6) are obtained by

iteratively fitting a gamma-family GLM. At each iteration,

genes with a ratio of dispersion to fitted value outside the
range [ 10−4, 15] are left out until the sum of squared LFCs
of the new coefficients over the old coefficients is less than
10−6 (same approach as in DEXSeq [30]).
The parametrization (6) is based on reports by us and

others of decreasing dependence of dispersion on the
mean in many datasets [3-6,51]. Some caution is war-
ranted to disentangle true underlying dependence from
effects of estimation bias that can create a perceived
dependence of the dispersion on the mean. Consider
a negative binomial distributed random variable with
expectation μ and dispersion α. Its variance v = μ + αμ2

has two components, v = vP+vD, the Poisson component
vP = μ independent of α, and the overdispersion compo-
nent vD = αμ2. When μ is small, μ � 1/α (vertical lines
in Additional file 1: Figure S1), the Poisson component
dominates, in the sense that vP/vD = 1/(αμ) � 1, and the
observed data provide little information on the value of α.
Therefore the sampling variance of an estimator for α will
be large when μ � 1/α, which leads to the appearance
of bias. For simplicity, we have stated the above argument
without regard to the influence of the size factors, sj, on
the value of μ. This is permissible because, by construc-
tion, the geometric mean of our size factors is close to 1,
and hence, the mean across samples of the unnormalized
read counts, 1

m
∑

j Kij, and the mean of the normalized
read counts, 1

m
∑

j Kij/sj, will be roughly the same.
This phenomenon may give rise to an apparent depen-

dence of α on μ. It is possible that the shape of the
dispersion-mean fit for the Bottomly data (Figure 1A) can
be explained in that manner: the asymptotic dispersion is
α0 ≈ 0.01, and the non-zero slope of the mean-dispersion
plot is limited to the range of mean counts up to around
100, the reciprocal of α0. However, overestimation of α

in that low-count range has little effect on inference, as
in that range the variance v is anyway dominated by the
α-independent Poisson component vP. The situation is
different for the Pickrell data: here, a dependence of dis-
persion on mean was observed for counts clearly above
the reciprocal of the asymptotic dispersion α0 (Figure 1B),
and hence is not due merely to estimation bias. Simula-
tions (shown in Additional file 1: Figure S25) confirmed
that the observed joint distribution of estimated disper-
sions and means is not compatible with a single, constant
dispersion. Therefore, the parametrization (6) is a flexible
and mildly conservative modeling choice: it is able to pick
up dispersion-mean dependence if it is present, while it
can lead to a minor loss of power in the low-count range
due to a tendency to overestimate dispersion there.

Dispersion prior As also observed by Wu et al. [6], a
log-normal prior fits the observed dispersion distribution
for typical RNA-seq datasets. We solve the computational
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difficulty of working with a non-conjugate prior using
the following argument: the logarithmic residuals from
the trend fit, log α

gw
i − log αtr(μ̄i), arise from two con-

tributions, namely the scatter of the true logarithmic
dispersions around the trend, given by the prior with
variance σ 2

d , and the sampling distribution of the loga-
rithm of the dispersion estimator, with variance σ 2

lde. The
sampling distribution of a dispersion estimator is approx-
imately a scaled χ2 distribution with m − p degrees of
freedom, withm the number of samples and p the number
of coefficients. The variance of the logarithm of a χ2

f -
distributed random variable is given [52] by the trigamma
function ψ1,

Var logX2 = ψ1(f /2) for X2∼ χ2
f .

Therefore, σ 2
lde ≈ ψ1((m − p)/2), i.e., the sampling vari-

ance of the logarithm of a variance or dispersion estimator
is approximately constant across genes and depends only
on the degrees of freedom of the model.
Additional file 1: Table S2 compares this approximation

for the variance of logarithmic dispersion estimates with
the variance of logarithmic Cox–Reid adjusted dispersion
estimates for simulated negative binomial data, over a
combination of different sample sizes, number of param-
eters and dispersion values used to create the simulated
data. The approximation is close to the sample variance
for various typical values ofm, p and α.
Therefore, the prior variance σ 2

d is obtained by subtract-
ing the expected sampling variance from an estimate of
the variance of the logarithmic residuals, s2lr:

σ 2
d = max

{
s2lr − ψ1((m − p)/2), 0.25

}
.

The prior variance σ 2
d is thresholded at a minimal value

of 0.25 so that the dispersion estimates are not shrunk
entirely to αtr(μ̄i) if the variance of the logarithmic resid-
uals is less than the expected sampling variance.
To avoid inflation of σ 2

d due to dispersion outliers (i.e.,
genes not well captured by this prior; see below), we use
a robust estimator for the standard deviation slr of the
logarithmic residuals,

slr = mad
i

(
log α

gw
i − log αtr(μ̄i)

)
, (8)

where mad stands for the median absolute deviation,
divided as usual by the scaling factor 
−1(3/4).

Three or less residuals degrees of freedom When there
are three or less residual degrees of freedom (number of
samples minus number of parameters to estimate), the
estimation of the prior variance σ 2

d using the observed
variance of logarithmic residuals s2lr tends to underes-
timate σ 2

d . In this case, we instead estimate the prior
variance through simulation.Wematch the distribution of

logarithmic residuals to a density of simulated logarithmic
residuals. These are the logarithm of χ2

m−p-distributed
random variables added to N(0, σ 2

d ) random variables to
account for the spread due to the prior. The simulated
distribution is shifted by − log(m − p) to account for the
scaling of the χ2 distribution. We repeat the simulation
over a grid of values for σ 2

d , and select the value that mini-
mizes the Kullback–Leibler divergence from the observed
density of logarithmic residuals to the simulated density.

Final dispersion estimate We form a logarithmic poste-
rior for the dispersion from the Cox–Reid adjusted loga-
rithmic likelihood (7) and the logarithmic prior (5) and use
its maximum (i.e., the MAP value) as the final estimate of
the dispersion,

αMAP
i = argmax

α

(
�CR

(
α; �μ0

i·, �Ki·
)

+ �i(α)
)
, (9)

where

�i(α) = − (
log α − log αtr(μ̄i)

)2
2σ 2

d
,

is, up to an additive constant, the logarithm of the density
of prior (5). Again, a backtracking line search is used to
perform the optimization.

Dispersion outliers For some genes, the gene-wise esti-
mate α

gw
i can be so far above the prior expectation αtr(μ̄i)

that it would be unreasonable to assume that the prior is
suitable for the gene. If the dispersion estimate for such
genes were down-moderated toward the fitted trend, this
might lead to false positives. Therefore, we use the heuris-
tic of considering a gene as a dispersion outlier, if the
residual from the trend fit is more than two standard
deviations of logarithmic residuals, slr (see Equation (8)),
above the fit, i.e., if

log α
gw
i > log αtr(μ̄i) + 2slr.

For such genes, the gene-wise estimate α
gw
i is not shrunk

toward the trended prior mean. Instead of the MAP value
αMAP
i , we use the gene-wise estimate α

gw
i as a final dis-

persion value in the subsequent steps. In addition, the
iterative fitting procedure for the parametric dispersion
trend described above avoids that such dispersion outliers
influence the prior mean.

Shrinkage estimation of logarithmic fold changes
To incorporate empirical Bayes shrinkage of LFCs, we
postulate a zero-centered normal prior for the coefficients
βir of model (2) that represent LFCs (i.e., typically, all
coefficients except for the intercept βi0):

βir ∼ N
(
0, σ 2

r
)
. (10)
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As was observed with differential expression analysis
using microarrays, genes with low intensity values tend
to suffer from a small signal-to-noise ratio. Alternative
estimators can be found that are more stable than the
standard calculation of fold change as the ratio of aver-
age observed values for each condition [53-55]. DESeq2’s
approach can be seen as an extension of these approaches
for stable estimation of gene-expression fold changes to
count data.

Empirical prior estimate To obtain values for the empir-
ical prior widths σr for the model coefficients, we again
approximate a full empirical Bayes approach, as with the
estimation of dispersion prior, though here we do not sub-
tract the expected sampling variance from the observed
variance of maximum likelihood estimates. The estimate
of the LFC prior width is calculated as follows. We use
the standard iteratively reweighted least-squares algo-
rithm [12] for each gene’s model, Equations (1) and (2),
to get MLEs for the coefficients βMLE

ir . We then fit, for
each column r of the design matrix (except for the inter-
cept), a zero-centered normal distribution to the empirical
distribution of MLE fold change estimates �βMLE

r .
To make the fit robust against outliers with very high

absolute LFC values, we use quantile matching: the width
σr is chosen such that the (1−p) empirical quantile of the
absolute value of the observed LFCs, �βMLE

r , matches the
(1−p/2) theoretical quantile of the prior,N(0, σ 2

r ), where
p is set by default to 0.05. If we write the theoretical upper
quantile of a normal distribution as QN(1 − p) and the
empirical upper quantile of the MLE LFCs as Q|βr |(1− p),
then the prior width is calculated as:

σr = Q|βr |(1 − p)
QN (1 − p/2) .

To ensure that the prior width σr will be independent of
the choice of base level, the estimates from the quantile
matching procedure are averaged for each factor over all
possible contrasts of factor levels. When determining the
empirical upper quantile, extreme LFC values (

∣∣βMLE
ir

∣∣ >

log(2) 10, or 10 on the base 2 scale) are excluded.

Final estimate of logarithmic fold changes The loga-
rithmic posterior for the vector, �βi, of model coefficients
βir for gene i is the sum of the logarithmic likelihood of the
GLM (2) and the logarithm of the prior density (10), and
its maximum yields the final MAP coefficient estimates:

�βi = argmax
�β

⎛
⎝∑

j
log fNB

(
Kij;μj( �β), αi

)
+ �( �β)

⎞
⎠ ,

where

μj( �β) = sije
∑

r xjrβr , �( �β) =
∑
r

−β2
r

2σ 2
r
,

and αi is the final dispersion estimate for gene i, i.e., αi =
αMAP
i , except for dispersion outliers, where αi = α

gw
i .

The term �(β), i.e., the logarithm of the density of the
normal prior (up to an additive constant), can be read
as a ridge penalty term, and therefore, we perform the
optimization using the iteratively reweighted ridge regres-
sion algorithm [56], also known as weighted updates [57].
Specifically, the updates for a given gene are of the form

�β ←
(
XtWX + �λI

)−1
XtW�z,

with λr = 1/σ 2
r and

zj = log
μj
sj

+ Kj − μj
μj

,

where the current fitted values μj = sje
∑

r xjrβr are com-
puted from the current estimates �β in each iteration.

Fisher information. The effect of the zero-centered nor-
mal prior can be understood as shrinking the MAP LFC
estimates based on the amount of information the experi-
ment provides for this coefficient, and we briefly elaborate
on this here. Specifically, for a given gene i, the shrinkage
for an LFC βir depends on the observed Fisher information,
given by

Jm(β̂ir) = −
[

∂2

∂β2
ir

�
( �βi; �Ki, αi

)]
βir=β̂ir

,

where �
( �βi; �Ki, αi

)
is the logarithm of the likelihood, and

partial derivatives are taken with respect to LFC βir. For a
negative binomial GLM, the observed Fisher information,
or peakedness of the logarithm of the profile likelihood, is
influenced by a number of factors including the degrees
of freedom, the estimated mean counts μij, and the gene’s
dispersion estimate αi. The prior influences theMAP esti-
mate when the density of the likelihood and the prior are
multiplied to calculate the posterior. Genes with low esti-
mated mean values μij or high dispersion estimates αi
have flatter profile likelihoods, as do datasets with few
residual degrees of freedom, and therefore in these cases
the zero-centered prior pulls the MAP estimate from a
high-uncertainty MLE closer toward zero.

Wald test
The Wald test compares the beta estimate βir divided by
its estimated standard error SE(βir) to a standard normal
distribution. The estimated standard errors are the square
root of the diagonal elements of the estimated covariance
matrix, �i, for the coefficients, i.e., SE(βir) = √

�i,rr.
Contrasts of coefficients are tested similarly by forming
a Wald statistics using (3) and (4). We use the following
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formula for the coefficient covariance matrix for a GLM
with normal prior on coefficients [56,58]:

�i = Cov( �βi) = (XtWX + �λI)−1(XtWX)(XtWX + �λI)−1.

The tail integrals of the standard normal distribution are
multiplied by 2 to achieve a two-tailed test. TheWald test
P values from the subset of genes that pass the indepen-
dent filtering step are adjusted for multiple testing using
the procedure of Benjamini and Hochberg [21].

Independent filtering
Independent filtering does not compromise type-I error
control as long as the distribution of the test statistic is
marginally independent of the filter statistic under the null
hypothesis [22], and we argue in the following that this is
the case in our application. The filter statistic in DESeq2
is the mean of normalized counts for a gene, while the test
statistic is p, the P value from the Wald test. We first con-
sider the case where the size factors are equal and where
the gene-wise dispersion estimates are used for each gene,
i.e. without dispersion shrinkage. The distribution family
for the negative binomial is parameterized by θ = (μ, α).
Aside from discreteness of p due to low counts, for a
given μ, the distribution of p is Uniform(0, 1) under the
null hypothesis, so p is an ancillary statistic. The sam-
ple mean of counts for gene i, K̄i, is boundedly complete
sufficient for μ. Then from Basu’s theorem, K̄i and p are
independent.
While for very low counts, one can observe discrete-

ness and non-uniformity of p under the null hypothesis,
DESeq2 does not use the distribution of p in its estima-
tion procedure – for example, DESeq2 does not estimate
the proportion of null genes using the distribution of
p – so this kind of dependence of p on μ does not lead to
increased type-I error.
If the size factors are not equal across samples, but

not correlated with condition, conditioning on the mean
of normalized counts should also provide uniformly dis-
tributed p as with conditioning on the mean of counts,
K̄i. We may consider a pathological case where the size
factors are perfectly confounded with condition, in which
case, even under the null hypothesis, genes with lowmean
count would have non-uniform distribution of p, as one
condition could have positive counts and the other condi-
tion often zero counts. This could lead to non-uniformity
of p under the null hypothesis; however, such a patholog-
ical case would pose problems for many statistical tests of
differences in mean.
We used simulation to demonstrate that the indepen-

dence of the null distribution of the test statistic from
the filter statistic still holds for dispersion shrinkage.
Additional file 1: Figure S26 displays marginal null distri-
butions of p across the range of mean normalized counts.
Despite spikes in the distribution for the genes with the

lowest mean counts due to discreteness of the data, these
densities were nearly uniform across the range of average
expression strength.

Composite null hypotheses
DESeq2 offers tests for composite null hypotheses of the
formH0 : |βir| ≤ θ to find genes whose LFC significantly
exceeds a threshold θ > 0. The composite null hypothesis
is replaced by two simple null hypotheses:H0a : βir = θ

and H0b : βir = −θ . Two-tailed P values are generated
by integrating a normal distribution centered on θ with
standard deviation SE(βir) from |βir| toward∞. The value
of the integral is thenmultiplied by 2 and thresholded at 1.
This procedure controls type-I error even when βir = ±θ ,
and is equivalent to the standard DESeq2 P value when
θ = 0.
Conversely, when searching for genes whose absolute

LFC is significantly below a threshold, i.e., when testing
the null hypothesis H0 : |βir| ≥ θ , the P value is con-
structed as the maximum of two one-sided tests of the
simple null hypotheses:H0a : βir = θ andH0b : βir = −θ .
The one-sided P values are generated by integrating a nor-
mal distribution centered on θ with standard deviation
SE(βir) from βir toward−∞, and integrating a normal dis-
tribution centered on −θ with standard deviation SE(βir)
from βir toward ∞.
Note that while a zero-centered prior on LFCs is con-

sistent with testing the null hypothesis of small LFCs, it
should not be used when testing the null hypothesis of
large LFCs, because the prior would then favor the alter-
native hypothesis.DESeq2 requires that no prior has been
used when testing the null hypothesis of large LFCs, so
that the data alone must provide evidence against the null
hypothesis.

Interactions
Two exceptions to the default DESeq2 LFC estimation
steps are used for experimental designs with interaction
terms. First, when any interaction terms are included in
the design, the LFC prior width for main effect terms
is not estimated from the data, but set to a wide value
(σ 2

r = (log(2))2 1000, or 1000 on the base 2 scale). This
ensures that shrinkage of main effect terms will not result
in false positive calls of significance for interactions. Sec-
ond, when interaction terms are included and all factors
have two levels, then standard design matrices are used
rather than expanded model matrices, such that only a
single term is used to test the null hypothesis that a combi-
nation of two effects is merely additive in the logarithmic
scale.

Regularized logarithm
The rlog transformation is calculated as follows. The
experimental design matrix X is substituted with a design
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matrix with an indicator variable for every sample in
addition to an intercept column. A model as described
in Equations (1) and (2) is fit with a zero-centered nor-
mal prior on the non-intercept terms and using the fit-
ted dispersion values αtr(μ̄), which capture the overall
variance-mean dependence of the dataset. The true exper-
imental design matrix X is then only used in estimating
the variance-mean trend over all genes. For unsuper-
vised analyses, for instance sample quality assessment, it
is desirable that the experimental design has no influ-
ence on the transformation, and hence DESeq2 by default
ignores the designmatrix and re-estimates the dispersions
treating all samples as replicates, i.e., it uses blind disper-
sion estimation. The rlog-transformed values are the fitted
values,

rlog
(
Kij

) ≡ log2 qij = βi0 + βij,

where βij is the shrunken LFC on the base 2 scale for
the jth sample. The variance of the prior is set using a
similar approach as taken with differential expression, by
matching a zero-centered normal distribution to observed
LFCs. First a matrix of LFCs is calculated by taking the
logarithm (base 2) of the normalized counts plus a pseu-
docount of 1

2 for each sample divided by the mean of
normalized counts plus a pseudocount of 1

2 . The pseudo-
count of 1

2 allows for calculation of the logarithmic ratio
for all genes, and has little effect on the estimate of the
variance of the prior or the final rlog transformation. This
matrix of LFCs then represents the common-scale log-
arithmic ratio of each sample to the fitted value using
only an intercept. The prior variance is found bymatching
the 97.5% quantile of a zero-centered normal distribu-
tion to the 95% quantile of the absolute values in the LFC
matrix.

Cook’s distance for outlier detection
The MLE of �βi is used for calculating Cook’s distance.
Considering a gene i and sample j, Cook’s distance for
GLMs is given by [59]:

Dij = R2
ij

τp
hjj

(1 − hjj)2
,

where Rij is the Pearson residual of sample j, τ is an
overdispersion parameter (in the negative binomial GLM,
τ is set to 1), p is the number of parameters including the
intercept, and hjj is the jth diagonal element of the hat
matrix H :

H = W 1/2X(XtWX)−1XtW 1/2.

Pearson residuals Rij are calculated as

Rij = (Kij − μij)√
V (μij)

,

where μij is estimated by the negative binomial GLM
without the LFC prior, and using the variance function
V (μ) = μ + αμ2. A method-of-moments estimate αrob

i ,
using a robust estimator of variance s2i,rob to provide
robustness against outliers, is used here:

αrob
i = max

(
s2i,rob − μ̄i

μ̄2
i

, 0

)
.

R/Bioconductor package
DESeq2 is implemented as a package for the R statis-
tical environment and is available [10] as part of the
Bioconductor project [11]. The count matrix and meta-
data, including the gene model and sample information,
are stored in an S4 class derived from the Summarized-
Experiment class of the GenomicRanges package [60].
SummarizedExperiment objects containing count matri-
ces can be easily generated using the summarizeOverlaps
function of the GenomicAlignments package [61]. This
workflow automatically stores the genemodel as metadata
and additionally other information such as the genome
and gene annotation versions. Other methods to obtain
count matrices include the htseq-count script [62] and
the Bioconductor packages easyRNASeq [63] and feature-
Count [64].
The DESeq2 package comes with a detailed vignette,

which works through a number of example differential
expression analyses on real datasets, and the use of the
rlog transformation for quality assessment and visual-
ization. A single function, called DESeq, is used to run
the default analysis, while lower-level functions are also
available for advanced users.

Read alignment for the Bottomly et al. and Pickrell et al.
datasets
Reads were aligned using the TopHat2 aligner [65], and
assigned to genes using the summarizeOverlaps func-
tion of the GenomicRanges package [60]. The sequence
read archive fastq files of the Pickrell et al. [17] dataset
(accession number [SRA:SRP001540]) were aligned to
the Homo sapiens reference sequence GRCh37 down-
loaded in March 2013 from Illumina iGenomes. Reads
were counted in the genes defined by the Ensembl
GTF file, release 70, contained in the Illumina iGenome.
The sequence read archive fastq files of the Bottomly
et al. [16] dataset (accession number [SRA:SRP004777])
were aligned to the Mus musculus reference sequence
NCBIM37 downloaded in March 2013 from Illumina
iGenomes. Reads were counted in the genes defined by
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the Ensembl GTF file, release 66, contained in the Illumina
iGenome.

Reproducible code
Sweave vignettes for reproducing all figures and tables
in this paper, including data objects for the experiments
mentioned, and code for aligning reads and for bench-
marking, can be found in a package DESeq2paper [66].

Additional file

Additional file 1: Supplementary methods, tables and figures.
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