Skip to main content

In Vitro Analysis of CTLA-4-Mediated Transendocytosis by Regulatory T Cells

  • Protocol
  • First Online:
Regulatory T-Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2559))

Abstract

Regulatory T Cells (Tregs) constitutively express the inhibitory receptor CTLA-4, which is fundamental to their role in immune suppression. Mechanistically, CTLA-4 on Tregs can attenuate T cell activation by physically removing and internalizing costimulatory ligands CD80 and CD86 from the surface of antigen-presenting cells by transendocytosis. Therefore, the process of transendocytosis can be harnessed as a tool to study the molecular basis of CTLA-4 biology and a key aspect of Treg suppressive function. In this chapter, we describe a method of human Treg isolation and expansion resulting in high CTLA-4 expression. We then detail a transendocytosis assay using artificial antigen-presenting cells (DG-75 B Cell lines) expressing fluorescently tagged ligands mixed with the expanded Tregs. This methodology can be applied to testing of patients carrying CTLA-4 mutations, providing a robust model to assess the degree of functional disruption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
CHF 39.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 104.00
Price excludes VAT (Switzerland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 130.00
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
CHF 177.00
Price excludes VAT (Switzerland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yamaguchi T, Kishi A, Osaki M, Morikawa H, Prieto-Martin P, Wing K et al (2013) Construction of self-recognizing regulatory T cells from conventional T cells by controlling CTLA-4 and IL-2 expression. Proc Natl Acad Sci U S A 110:116–125

    Article  Google Scholar 

  2. Chambers CA, Sullivan TJ, Allison JP (1997) Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ T cells. Immunity 7:885–895

    Article  CAS  Google Scholar 

  3. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3:541–547

    Article  CAS  Google Scholar 

  4. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z et al (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science 322:271–275

    Article  CAS  Google Scholar 

  5. Tai X, van Laethem F, Sharpe AH, Singer A (2007) Induction of autoimmune disease in CTLA-4−/− mice depends on a specific CD28 motif that is required for in vivo costimulation. Proc Natl Acad Sci U S A 104:13756–13761

    Article  CAS  Google Scholar 

  6. Tivol EA, Boyd SD, McKeon S, Borriello F, Nickerson P, Strom TB et al (1997) CTLA4lg prevents lymphoproliferation and fatal multiorgan tissue destruction in CTLA-4-deficient mice. J Immunol 158:5091–5094

    CAS  PubMed  Google Scholar 

  7. Mandelbrot DA, McAdam AJ, Sharpe AH (1998) B7-1 or B7-2 is required to produce the lymphoproliferative phenotype in mice lacking CTLA-4. J Exp Med 189:435

    Article  Google Scholar 

  8. Verma N, Burns SO, Walker LSK, Sansom DM (2017) Immune deficiency and autoimmunity in patients with CTLA-4 (CD152) mutations. Clin Exp Immunol 190:1–7

    Article  CAS  Google Scholar 

  9. Schubert D, Bode C, Kenefeck R, Hou TZ, Wing JB, Kennedy A et al (2014) Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med 20:1410–1416

    Article  CAS  Google Scholar 

  10. Qiu F, Tang R, Zuo X, Shi X, Wei Y, Zheng X et al (2017) A genome-wide association study identifies six novel risk loci for primary biliary cholangitis. Nat Commun 8:1–8

    Article  Google Scholar 

  11. Wang J, Liu L, Ma J, Sun F, Zhao Z, Gu M (2014) Common variants on cytotoxic T lymphocyte antigen-4 polymorphisms contributes to type 1 diabetes susceptibility: evidence based on 58 studies. PLoS One 9:1–9

    Google Scholar 

  12. Eyre S, Bowes J, Diogo D, Lee A, Barton A, Martin P et al (2012) High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat Genet 44:1336–1340

    Article  CAS  Google Scholar 

  13. Martins F, Sofiya L, Sykiotis GP, Lamine F, Maillard M, Fraga M et al (2019) Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol 16:563–580

    Article  CAS  Google Scholar 

  14. Wang CJ, Kenefeck R, Wardzinski L, Attridge K, Manzotti C, Schmidt EM et al (2012) Cutting edge: cell-extrinsic immune regulation by CTLA-4 expressed on conventional T cells. J Immunol 189:1118–1122

    Article  CAS  Google Scholar 

  15. Corse E, Allison JP (2012) Cutting edge: CTLA-4 on effector T cells inhibits in trans. J Immunol 189:1123–1127

    Article  CAS  Google Scholar 

  16. Bachmann MF, Köhler G, Ecabert B, Mak TW, Kopf M (1999) Cutting edge: lymphoproliferative disease in the absence of CTLA-4 is not T cell autonomous. J Immunol 163:1128–1131

    CAS  PubMed  Google Scholar 

  17. Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM et al (2011) Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332:600–603

    Article  CAS  Google Scholar 

  18. Qureshi OS, Kaur S, Hou TZ, Jeffery LE, Poulter NS, Briggs Z et al (2012) Constitutive Clathrin-mediated endocytosis of CTLA-4 persists during T cell activation. J Biol Chem 287:9429–9440

    Article  CAS  Google Scholar 

  19. Sugár IP, Das J, Jayaprakash C, Sealfon SC (2017) Multiscale modeling of complex formation and CD80 depletion during immune synapse development. Biophys J 112:997–1009

    Article  Google Scholar 

  20. Khailaie S, Rowshanravan B, Robert PA, Waters E, Halliday N, Badillo Herrera JD et al (2018) Characterization of CTLA4 trafficking and implications for its function. Biophys J 115:1330–1343

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded in whole, or in part, by the Wellcome Trust (Grant 204798). For the purpose of Open Access, the author has applied a CC BY public copyright license to any author accepted manuscript version arising from this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Sansom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Waters, E., Williams, C., Kennedy, A., Sansom, D.M. (2023). In Vitro Analysis of CTLA-4-Mediated Transendocytosis by Regulatory T Cells. In: Ono, M. (eds) Regulatory T-Cells. Methods in Molecular Biology, vol 2559. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2647-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2647-4_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2646-7

  • Online ISBN: 978-1-0716-2647-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

  NODES
Association 1
INTERN 1