Abstract
Homomorphic universally composable (UC) commitments allow for the sender to reveal the result of additions and multiplications of values contained in commitments without revealing the values themselves while assuring the receiver of the correctness of such computation on committed values. In this work, we construct essentially optimal additively homomorphic UC commitments from any (not necessarily UC or homomorphic) extractable commitment, while the previous best constructions require oblivious transfer. We obtain amortized linear computational complexity in the length of the input messages and rate 1. Next, we show how to extend our scheme to also obtain multiplicative homomorphism at the cost of asymptotic optimality but retaining low concrete complexity for practical parameters. Moreover, our techniques yield public coin protocols, which are compatible with the Fiat-Shamir heuristic. These results come at the cost of realizing a restricted version of the homomorphic commitment functionality where the sender is allowed to perform any number of commitments and operations on committed messages but is only allowed to perform a single batch opening of a number of commitments. Although this functionality seems restrictive, we show that it can be used as a building block for more efficient instantiations of recent protocols for secure multiparty computation and zero knowledge non-interactive arguments of knowledge.
I. Cascudo—This work was done while Ignacio Cascudo was with Department of Mathematics, Aalborg University, Denmark.
I. Damgård and R. Dowsley—This project has received funding from the European Research Council (ERC) under the European Unions’ Horizon 2020 research and innovation programme under grant agreement No 669255 (MPCPRO).
B. David—This work was partially supported by DFF grant number 9040-00399B (TrA\(^{2}\)C).
I. Giacomelli—This work was done while Irene Giacomelli was with the ISI Foundation (Turin, Italy) and supported by Intesa Sanapolo Innovation Center.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
All this holds in an amortized sense, assuming we make enough commitments so that the cost of the setup phase is dwarfed.
- 2.
The scheme of [9] can be constructed from an extractable commitment and an equivocal commitment. However, it is intrinsically incompatible with homomorphic operations.
- 3.
This argument works, even if the prover did not choose a codeword at commit time. If we also want to have additive homomorphism, we need to check that the prover chose something that it at least close to a codeword. This can be done using, e.g., the interactive proximity testing from [16].
- 4.
Recall that erasure correction for linear codes can be performed efficiently via gaussian elimination.
- 5.
More precisely, the last share of each coordinate of \(\mathsf {C}(\mathbf {y})\) is added with the corresponding (now public) coordinate of \(\mathsf {C}(\mathbf {a}*\mathbf {b}-\mathbf {y})\).
- 6.
One may think that the tighter lower bound \(\mathsf {dist}(\widetilde{\mathsf {C}})\ge \mathsf {dist}(\mathsf {C})+\mathsf {dist}(\mathsf {C}^{*2})\) holds, but this is not necessarily true if the dimension \(k'\) of \(\mathsf {C}^{*2}\) is larger than k, as in that case there will be codewords of the form \((\mathbf {0^k},\mathbf {0^{n-k}},\mathbf {0^k},\mathbf {c'})\) where \(\mathbf {c'}\ne \mathbf {0^{n-k}}\). Indeed take \((\mathbf {0^k},\mathbf {c'})\) to be the encoding by \(\mathsf {C}^{*2}\) of \((\mathbf {0^k}||\mathbf {z})\) for a nonzero \(\mathbf {z}\in \{0,1\}^{k'-k}\).
- 7.
And naturally from this one can also obtain a \([4095\cdot \ell ,338\cdot \ell ]\)-code with the same minimum distance of its square, by simply applying the [4095, 338] to each block of 338 bits of the message.
- 8.
In [31] they are referred to as multi-commitments.
References
Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sublinear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 2087–2104. ACM Press, October/November (2017)
Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multiparty computations on bitcoin. In: 2014 IEEE Symposium on Security and Privacy, pp. 443–458. IEEE Computer Society Press, May (2014)
Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger: a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_11
Baum, C., David, B., Dowsley, R.: Insured mpc: efficient secure multiparty computation with punishable abort. Cryptology ePrint Archive, Report 2018/942 (2018). https://eprint.iacr.org/2018/942
Ben-Or, M., Goldreich, O., Goldwasser, S., Håstad, J., Kilian, J., Micali, S., Rogaway, P.: Everything provable is provable in zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 37–56. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_4
Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_24
Bentov, I., Kumaresan, R., Miller, A.: instantaneous decentralized poker. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 410–440. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_15
Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: Analysis and Improvement of Lindell’s UC-Secure Commitment Schemes. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 534–551. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38980-1_34
Brandão, L.T.A.N.: Very-efficient simulatable flipping of many coins into a well. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 297–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49387-8_12
Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: 2018 IEEE Symposium on Security and Privacy, pp. 315–334. IEEE Computer Society Press, May (2018)
Camenisch, J., Drijvers, M., Gagliardoni, T., Lehmann, A., Neven, G.: The wonderful world of global random oracles. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 280–312. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_11
Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October (2001)
Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_2
Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: 34th ACM STOC, pp. 494–503. ACM Press, May (2002)
Cascudo, I.: On squares of cyclic codes. IEEE Trans. Inf. Theor. 65(2), 1034–1047 (2019)
Cascudo, I., Damgård, I., David, B., Döttling, N., Nielsen, J.B.: Rate-1, linear time and additively homomorphic UC commitments. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 179–207. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_7
Cascudo, I., Damgård, I., David, B., Giacomelli, I., Nielsen, J.B., Trifiletti, R.: Additively homomorphic uc commitments with optimal amortized overhead. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 495–515. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_22
Cascudo, I., Damgård, I., David, B., Döttling, N., Dowsley, R., Giacomelli, I.: Efficient UC commitment extension with homomorphism for free (and applications) [full version]. Cryptology ePrint Archive, Report 2018/983 (2018). https://eprint.iacr.org/2018/983
Damgård, I., David, B., Giacomelli, I., Nielsen, J.B.: Compact VSS and efficient homomorphic UC commitments. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 213–232. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_12
Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Frederiksen, T.K., Pinkas, B., Yanai, A.: Committed MPC. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 587–619. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5_20
Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Trifiletti, R.: On the complexity of additively homomorphic UC commitments. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 542–565. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9_23
Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Nordholt, P.S., Orlandi, C.: MiniLEGO: efficient secure two-party computation from general assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 537–556. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_32
Garay, J.A., Ishai, Y., Kumaresan, R., Wee, H.: On the complexity of UC commitments. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 677–694. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_37
Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for muggles. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 113–122. ACM Press, May (2008)
Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using a global transaction ledger. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 705–734. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_25
Lindell, Y.: Highly-efficient universally-composable commitments based on the DDH assumption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 446–466. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_25
Randriambololona, H.: Asymptotically good binary linear codes with asymptotically good self-intersection spans. IEEE Trans. Inf. Theor. 59(5), 3038–3045 (2013)
Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs for delegating computation. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC, pp. 49–62. ACM Press, June (2016)
Vadhan, S.P., Zheng, C.J.: Characterizing pseudoentropy and simplifying pseudorandom generator constructions. In: Karloff, H.J., Pitassi, T. (eds) 44th ACM STOC, pp. 817–836. ACM Press, May (2012)
Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zkSNARKs without trusted setup. In: 2018 IEEE Symposium on Security and Privacy, pp. 926–943. IEEE Computer Society Press, May (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 International Association for Cryptologic Research
About this paper
Cite this paper
Cascudo, I., Damgård, I., David, B., Döttling, N., Dowsley, R., Giacomelli, I. (2019). Efficient UC Commitment Extension with Homomorphism for Free (and Applications). In: Galbraith, S., Moriai, S. (eds) Advances in Cryptology – ASIACRYPT 2019. ASIACRYPT 2019. Lecture Notes in Computer Science(), vol 11922. Springer, Cham. https://doi.org/10.1007/978-3-030-34621-8_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-34621-8_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34620-1
Online ISBN: 978-3-030-34621-8
eBook Packages: Computer ScienceComputer Science (R0)