Abstract
The paper presents a free and open source toolkit which aim is to quickly deploy web services handling distributed vector models of semantics. It fills in the gap between training such models (many tools are already available for this) and dissemination of the results to general public. Our toolkit, WebVectors, provides all the necessary routines for organizing online access to querying trained models via modern web interface. We also describe two demo installations of the toolkit, featuring several efficient models for English, Russian and Norwegian.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
As of now, WebVectors supports models in generic Word2vec format (which is essentially a simple list of word vectors, in text or binary form) and gensim format (it is always binary and retains much more technical data, including output vectors).
References
Turney, P.D., Pantel, P., et al.: From frequency to meaning: vector space models of semantics. J. Artif. Intell. Res. 37(1), 141–188 (2010)
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Adv. Neural Inf. Process. Syst. 26, 3111–3119 (2013)
Siencnik, S.K.: Adapting word2vec to named entity recognition. In: Nordic Conference of Computational Linguistics, NODALIDA 2015, p. 239 (2015)
Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 142–150. Association for Computational Linguistics (2011)
Zou, W.Y., Socher, R., Cer, D.M., Manning, C.D.: Bilingual word embeddings for phrase-based machine translation. In: EMNLP, pp. 1393–1398 (2013)
Kutuzov, A., Kuzmenko, E.: Comparing neural lexical models of a classic national corpus and a web corpus: the case for Russian. In: Gelbukh, A. (ed.) CICLing 2015. LNCS, vol. 9041, pp. 47–58. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18111-0_4
Baroni, M., Dinu, G., Kruszewski, G.: Don’t count, predict! a systematic comparison of context-counting vs. context-predicting semantic vectors. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, vol. 1 (2014)
Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, Valletta, Malta, ELRA, pp. 45–50, May 2010
Padró, L., Stanilovsky, E.: Freeling 3.0: towards wider multilinguality. In: Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC 2012), Istanbul, Turkey, European Language Resources Association (ELRA), May 2012
Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(2579–2605), 85 (2008)
Kutuzov, A., Andreev, I.: Texts in, meaning out: neural language models in semantic similarity task for Russian. In: Proceedings of the Dialog Conference, Moscow, RGGU (2015)
Mikolov, T., Le, Q., Sutskever, I.: Exploiting similarities among languages for machine translation. arXiv preprint arXiv:1309.4168 (2013)
Hofland, K.: A self-expanding corpus based on newspapers on the web. In: LREC (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Kutuzov, A., Kuzmenko, E. (2017). WebVectors: A Toolkit for Building Web Interfaces for Vector Semantic Models. In: Ignatov, D., et al. Analysis of Images, Social Networks and Texts. AIST 2016. Communications in Computer and Information Science, vol 661. Springer, Cham. https://doi.org/10.1007/978-3-319-52920-2_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-52920-2_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-52919-6
Online ISBN: 978-3-319-52920-2
eBook Packages: Computer ScienceComputer Science (R0)