Skip to main content

A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies

  • Conference paper
Financial Cryptography and Data Security (FC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10322))

Included in the following conference series:

  • 2882 Accesses

Abstract

We present the first general-purpose digital signature scheme based on supersingular elliptic curve isogenies secure against quantum adversaries in the quantum random oracle model with small key sizes. This scheme is an application of Unruh’s construction of non-interactive zero-knowledge proofs to an interactive zero-knowledge proof proposed by De Feo, Jao, and Plût. We implement our proposed scheme on an x86-64 PC platform as well as an ARM-powered device. We exploit the state-of-the-art techniques to speed up the computations for general C and assembly. Finally, we provide timing results for real world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
CHF 24.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 47.00
Price excludes VAT (Switzerland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 59.00
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Source code is available at https://github.com/yhyoo93/isogenysignature.

References

  1. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof systems: the hardness of quantum rewinding. In: 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, 18–21 October 2014, pp. 474–483 (2014)

    Google Scholar 

  2. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compression for isogeny-based cryptosystems. In: Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryptography, AsiaPKC 2016, pp. 1–10. ACM, New York (2016)

    Google Scholar 

  3. Barreto, P.S.L.M., Longa, P., Naehrig, M., Ricardini, J.E., Zanon, G.: Sharper ring-LWE signatures. Cryptology ePrint Archive, report 2016/1026 (2016)

    Google Scholar 

  4. Bernstein, D.J., Hopwood, D., Hülsing, A., Lange, T., Niederhagen, R., Papachristodoulou, L., Schneider, M., Schwabe, P., Wilcox-O’Hearn, Z.: SPHINCS: practical stateless hash-based signatures. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_15

  5. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryptosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 31–46. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88403-3_3

    Chapter  Google Scholar 

  6. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_21

    Chapter  MATH  Google Scholar 

  7. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient compression of SIDH public keys. Cryptology ePrint Archive, report 2016/963 (2016)

    Google Scholar 

  8. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 572–601. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_21

    Chapter  Google Scholar 

  9. Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–174. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_10

    Chapter  Google Scholar 

  10. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137_12

    Chapter  Google Scholar 

  11. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_3

    Chapter  Google Scholar 

  12. Feo, L.D., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  14. Galbraith, S.D., Petit, C., Silva, J.: Signature schemes based on supersingular isogeny problems. Cryptology ePrint Archive, report 2016/1154 (2016)

    Google Scholar 

  15. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC 1996, pp. 212–219. ACM, New York (1996)

    Google Scholar 

  16. Jao, D., Soukharev, V.: Isogeny-based quantum-resistant undeniable signatures. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 160–179. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11659-4_10

    Chapter  MATH  Google Scholar 

  17. Koziel, B., Jalali, A., Azarderakhsh, R., Jao, D., Kermani, M.M.: NEON-SIDH: Efficient implementation of supersingular isogeny Diffe-Hellman key exchange protocol on ARM. In: Cryptology and Network Security - 15th International Conference, CANS 2016, Milan, Italy, 14–16 November 2016, Proceedings, pp. 88–103 (2016)

    Google Scholar 

  18. Petzoldt, A., Bulygin, S., Buchmann, J.: Selecting parameters for the rainbow signature scheme. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 218–240. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12929-2_16

    Chapter  Google Scholar 

  19. Seshadri, S.M., Chandrasekaran, V.: Isogeny-based quantum-resistant undeniable blind signature scheme. Cryptology ePrint Archive, Report 2016/148 (2016)

    Google Scholar 

  20. Sun, X., Tian, H., Wang, Y.: Toward quantum-resistant strong designated verifier signature from isogenies. In: 2012 Fourth International Conference on Intelligent Networking and Collaborative Systems (2012)

    Google Scholar 

  21. Tani, S.: Claw finding algorithms using quantum walk. Theor. Comput. Sci. 410(50), 5285–5297 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tate, J.: Endomorphisms of Abelian varieties over finite fields. Inventiones Mathematicae 2(2), 134–144 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  23. Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_10

    Chapter  Google Scholar 

  24. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random Oracle model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_25

    Chapter  MATH  Google Scholar 

  25. Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput. 39(1), 25–58 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, S.: Promised and distributed quantum search. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 430–439. Springer, Heidelberg (2005). https://doi.org/10.1007/11533719_44

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank Steven Galbraith for helpful comments on an earlier version of this paper, and the anonymous reviewers for their constructive feedback. This work was partially supported by NSF grant no. CNS-1464118, NIST award 60NANB16D246, the CryptoWorks21 NSERC CREATE Training Program in Building a Workforce for the Cryptographic Infrastructure of the 21st Century, and InfoSec Global, Inc.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youngho Yoo , Reza Azarderakhsh or David Jao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 International Financial Cryptography Association

About this paper

Cite this paper

Yoo, Y., Azarderakhsh, R., Jalali, A., Jao, D., Soukharev, V. (2017). A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies. In: Kiayias, A. (eds) Financial Cryptography and Data Security. FC 2017. Lecture Notes in Computer Science(), vol 10322. Springer, Cham. https://doi.org/10.1007/978-3-319-70972-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70972-7_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70971-0

  • Online ISBN: 978-3-319-70972-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

  NODES
Association 1
INTERN 5
Note 3
todo 1