Summary
The NMRPipe system is a UNIX software environment of processing, graphics, and analysis tools designed to meet current routine and research-oriented multidimensional processing requirements, and to anticipate and accommodate future demands and developments. The system is based on UNIX pipes, which allow programs running simultaneously to exchange streams of data under user control. In an NMRPipe processing scheme, a stream of spectral data flows through a pipeline of processing programs, each of which performs one component of the overall scheme, such as Fourier transformation or linear prediction. Complete multidimensional processing schemes are constructed as simple UNIX shell scripts. The processing modules themselves maintain and exploit accurate records of data sizes, detection modes, and calibration information in all dimensions, so that schemes can be constructed without the need to explicitly define or anticipate data sizes or storage details of real and imaginary channels during processing. The asynchronous pipeline scheme provides other substantial advantages, including high flexibility, favorable processing speeds, choice of both all-in-memory and disk-bound processing, easy adaptation to different data formats, simpler software development and maintenance, and the ability to distribute processing tasks on multi-CPU computers and computer networks.
Similar content being viewed by others
Abbreviations
- 1D, 2D, 3D:
-
one-, two-, three-dimensional
- nD:
-
multidimensional
- CPU:
-
central processing unit
- FID:
-
free induction decay
- I/O:
-
input/output
- LP:
-
linear prediction
- MEM:
-
maximum entropy method
- Mb:
-
megabyte
- NOE:
-
nuclear Overhauser effect
References
Barkhuijsen H., De Beer R., Bovée W.M.M.J. and VanOrmondt D. (1985) J. Magn. Reson., 61, 465–481.
Barkhuijsen H., DeBeer R. and VanOrmondt D. (1987) J. Magn. Reson., 73, 553–557.
Bax A. and Grzesiek S. (1993) Acc. Chem. Res., 26, 131–138.
Callaghan P.T., MacKay A.L., Pauls K.P., Soderman O. and Bloom M. (1984) J. Magn. Reson., 56, 101–109.
Cavanagh J., Palmer A.G., Wright P.E. and Rance M. (1991) J. Magn. Reson., 91, 429–436.
Delsuc M.A., Ni F. and Levy G.C. (1987) J. Magn. Reson., 73, 548–552.
Delsuc M.A. (1989) Maximum Entropy and Bayesian Methods, Kluwer, Amsterdam.
Friedrichs M.S. (1995) J. Biomol. NMR, 5, 147–153.
Garrett D.S., Powers R., Gronenborn A.M. and Clore G.M. (1991) J. Magn. Reson., 94, 214–220.
Gull S.F. and Daniell G.J. (1978) Nature, 272, 686–690.
Güntert P., Doetsch V., Wider G. and Wüthrich K. (1992) J. Biomol. NMR, 2, 619–629.
Heller D. and VanRaalte T. (1993) XView Programming Manual, O'Reilly and Associates, Inc., Sebastopol, CA.
Hoch J.C. (1985) Rowland Institute for Science Technical Memorandum RIS-18t, Rowland Institute, Cambridge, MA.
Hoch J.C. (1989) Methods Enzymol., 176, 216–241.
Hoch J.C., Stern A.S., Donoho D.L. and Johnstone I.M. (1990) J. Magn. Reson., 86, 236–246.
Hore P.J. (1985) J. Magn. Reson., 62, 561–567.
Johnson B. and Blevins R.A. (1994) J. Biomol. NMR, 4, 603–614.
Johnson S. (1986) In UNIX Programmers Manual: Supplementary Documents 1, University of California, Berkeley, CA.
Kauppinen J. and Saario E.K. (1993) Appl. Spectrosc., 47, 1123–1127.
Kay L.E., Marion D. and Bax A. (1989) J. Magn. Reson., 84, 72–84.
Kay L.E., Ikura M., Zhu G. and Bax A. (1991) J. Magn. Reson., 91, 422–428.
Kay L.E., Keifer P. and Saarinen T. (1992) J. Am. Chem. Soc., 114, 10663–10666.
Kernighan B.W. and Pike R. (1984) The UNIX Programming Environment, Prentice-Hall, Englewood Cliffs, NJ.
Kernighan B.W. and Ritchie D.M. (1988) The C Programming Language, Prentice-Hall, Englewood Cliffs, NJ.
Kjaer M., Andersen K.V. and Poulsen F.M. (1994) Methods Enzymol., 239, 288–307.
Kraulis P.J. (1989) J. Magn. Reson., 84, 627–633.
Kraulis P.J., Domaille P.J., Campbell-Burk S.L., VanAken T. and Laue E.D. (1994) Biochemistry, 33, 3515–3531.
Kumaresan R. and Tufts D.W. (1982) IEEE Trans. Acoust. Speech Signal Process. 30, 833–840.
Laue E.D., Skilling J. and Staunton J. (1985a) J. Magn. Reson., 63, 418–424.
Laue E.D., Skilling J., Staunton J., Sibisi S. and Brereton R. (1985b) J. Magn. Reson., 62, 437–452.
Laue E.D., Mayger M.R., Skilling J. and Staunton J. (1986) J. Magn. Reson., 68, 14–29.
Levy G.C., Delaglio F., Macur A. and Begemann J. (1986) Comput. Enhanced Spectrosc., 3, 1–12.
Marion D. and Wüthrich K. (1983) Biochem. Biophys. Res. Commun., 113, 967–974.
Marion D., Ikura M. and Bax A. (1989a) J. Magn. Reson., 84, 425–430.
Marion D., Ikura M., Tschudin R. and Bax A. (1989b) J. Magn. Reson., 85, 393–399.
Mazzeo A.R., Delsuc M.A., Kumar A. and Levy G.C. (1989) J. Magn. Reson., 81, 512–519.
Meadows R.P., Olejniczak E.T. and Fesik S.W. (1994) J. Biomol. NMR, 4, 79–96.
Ni F. and Scheraga H.A. (1986) J. Magn. Reson., 70, 506–511.
Ni F., Levy G.C. and Scheraga H.A. (1986) J. Magn. Reson., 66, 385–390.
Olejniczak E.T. and Eaton H.L. (1990) J. Magn. Reson., 87, 628–632.
Ousterhout J.K. (1994) TCL and the Tk Toolkit, Addison-Wesley, Reading, MA.
Palmer A.G., Cavanagh J., Wright P.E. and Rance M. (1991) J. Magn. Reson., 93, 151–170.
Parks S.I. and Johannesen R.B. (1976) J. Magn. Reson., 22, 265–267.
Pelczer I. and Szalma S. (1991) Chem. Rev., 91, 1507–1524.
Redfield A.G. and Kunz S.D. (1975) J. Magn. Reson., 19, 250–254.
Schmieder P., Stern A.S., Wagner G. and Hoch J.C. (1994) J. Biomol. NMR, 4, 483–490.
Sibisi S. (1983) Nature, 301, 134–136.
Skilling J. and Bryan R.K. (1984) Mon. Not. R. Astr. Soc., 211, 111–124.
States D.J., Haberkorn R.A. and Ruben D.J. (1982) J. Magn. Reson., 48, 286–292.
Stephenson M. (1988) Prog. NMR Spectrosc., 20, 515–626.
Stevens W.R. (1992) Advanced Programming in the UNIX Environment, Addison-Wesley, Reading, MA, pp. 428–434.
Wu N.L. (1984) Astron. Astrophys., 139, 555–557.
Zhu G. and Bax A. (1990) J. Magn. Reson., 90, 405–410.
Zhu G. and Bax A. (1992a) J. Magn. Reson., 98, 192–199.
Zhu G. and Bax A. (1992b) J. Magn. Reson., 100, 202–207.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Delaglio, F., Grzesiek, S., Vuister, G.W. et al. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6, 277–293 (1995). https://doi.org/10.1007/BF00197809
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF00197809