Abstract
Purpose
This study aimed at the investigation of the impact of aqueous solubility and dose manipulation on the pharmacokinetics of resveratrol.
Methods
Water soluble intravenous and oral formulations of resveratrol were prepared with hydroxypropyl-β-cyclodextrin (HP-β-CD) and randomly methylated-β-cyclodextrin (RM-β-CD), respectively. Sodium salt and suspension of resveratrol in carboxymethyl cellulose (CMC) were used as the reference intravenous and oral formulations, respectively. The pharmacokinetics of resveratrol was assessed in Sprague–Dawley rats. Plasma resveratrol concentrations were measured by high performance liquid chromatography (HPLC).
Results
Both HP-β-CD and RM-β-CD enhanced the aqueous solubility of resveratrol. After intravenous administration, rapid elimination of resveratrol was observed at all tested doses (5, 10, and 25 mg kg−1) regardless of formulation types; with non-linear elimination occurring at the dose of 25 mg kg−1. RM-β-CD significantly increased the maximal plasma concentration of orally administered resveratrol, but, it did not increase the oral bioavailability in comparison with the CMC suspension. Furthermore, the oral bioavailability remained unchanged among all tested doses (15, 25, and 50 mg kg−1).
Conclusions
Aqueous solubility barrier might affect the speed but not the extent of resveratrol absorption. Further, dose manipulation (up to 50 mg kg−1) did not have a significant impact on the oral bioavailability of resveratrol.
Similar content being viewed by others
Abbreviations
- AUC:
-
area under curve
- C max :
-
maximum plasma concentration
- CD:
-
cyclodextrin
- Cl:
-
clearance
- CMC:
-
carboxy methyl cellulose
- F :
-
bioavailability
- HP-β-CD:
-
hydroxypropyl-β-cyclodextrin
- HPLC:
-
high performance liquid chromatography
- LOQ:
-
limit of quantitation
- PBS:
-
phosphate buffer solution
- RM-β-CD:
-
randomly methylated-β-cyclodextrin
- SGF:
-
simulated gastric fluid
- SIF:
-
simulated intestinal fluid
- T max :
-
time to reach C max
- t 1/2 :
-
half life
- V :
-
volume of distribution
References
J. A. Baur, and D.A. Sinclair. Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. Drug. Discov. 5:493–506 (2006).
J. A. Baur, K. J. Pearson, N. L. Price, H. A. Jamieson, C. Lerin, A. Kalra, V. V. Prabhu, J. S. Allard, G. Lopez-Lluch, K. Lewis, P. J. Pistell, S. Poosala, K. G. Becker, O. Boss, D. Gwinn, M. Wang, S. Ramaswamy, K. W. Fishbein, R. G. Spencer, E. G. Lakatta, D. Le Couteur, R. J. Shaw, P. Navas, P. Puigserver, D. K. Ingram, R. de Cabo, and D. A. Sinclair. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 444:337–342 (2006) doi:10.1038/nature05354.
M. Jang, L. Cai, G. O. Udeani, K. V. Slowing, C. F. Thomas, C. W. Beecher, H. H. Fong, N. R. Farnsworth, A. D. Kinghorn, R. G. Mehta, R. C. Moon, and J. M. Pezzuto. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science. 275:218–220 (1997) doi:10.1126/science.275.5297.218.
ClinicalTrial.gov. A service of the U.S. National Institutes of Health. http://www.clinicaltrial.gov/ct2/results?term=resveratrol.
D. Delmas, A. Lancon, D. Colin, B. Jannin, and N. Latruffe. Resveratrol as a chemopreventive agent: a promising molecule for fighting cancer. Curr. Drug _targets. 7:423–442 (2006) doi:10.2174/138945006776359331.
D. M. Goldberg, J. Yan, and G. J. Soleas. Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clin. Biochem. 36:79–87 (2003) doi:10.1016/S0009-9120(02)00397-1.
T. Walle, F. Hsieh, M. H. DeLegge, J. E. Oatis Jr., and U. K. Walle. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. 32:1377–1382 (2004) doi:10.1124/dmd.104.000885.
D. J. Boocock, G. E. Faust, K. R. Patel, A. M. Schinas, V. A. Brown, M. P. Ducharme, T. D. Booth, J. A. Crowell, M. Perloff, A. J. Gescher, W. P. Steward, and D. E. Brenner. Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiol. Biomarkers Prev. 16:1246–1252 (2007) doi:10.1158/1055-9965.EPI-07-0022.
S. Hurst, C.M. Loi, J. Brodfuehrer, and A. El-Kattan. Impact of physiological, physicochemical and biopharmaceutical factors in absorption and metabolism mechanisms on the drug oral bioavailability of rats and humans. Expert Opin. Drug Metab. Toxicol. 3:469–489 (2007) doi:10.1517/17425255.3.4.469.
O. H. Chan, and B. H. Stewart. Physicochemical and drug-delivery considerations for oral drug bioavailability. Drug Discov. Today. 1:461–473 (1996) doi:10.1016/1359-6446(96)10039-8.
M. I. Kaldas, U. K. Walle, and T. Walle. Resveratrol transport and metabolism by human intestinal Caco-2 cells. J. Pharm. Pharmacol. 55:307–312 (2003) doi:10.1211/002235702612.
A. Maier-Salamon, B. Hagenauer, M. Wirth, F. Gabor, T. Szekeres, and W. Jager. Increased transport of resveratrol across monolayers of the human intestinal Caco-2 cells is mediated by inhibition and saturation of metabolites. Pharm. Res. 23:2107–2115 (2006) doi:10.1007/s11095-006-9060-z.
V. Bertacche, N. Lorenzi, D. Nava, E. Pini, and C. Sinico. Host–guest interaction study of resveratrol with natural and modified cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 55:279–287 (2006) doi:10.1007/s10847-006-9047-8.
J. F. Marier, P. Vachon, A. Gritsas, J. Zhang, J. P. Moreau, and M. P. Ducharme. Metabolism and disposition of resveratrol in rats: extent of absorption, glucuronidation, and enterohepatic recirculation evidenced by a linked-rat model. J. Pharmacol. Exp. Ther. 302:369–373 (2002) doi:10.1124/jpet.102.033340.
C. Yu, Y. G. Shin, A. Chow, Y. Li, J. W. Kosmeder, Y. S. Lee, W. H. Hirschelman, J. M. Pezzuto, R. G. Mehta, and R. B. van Breemen. Human, rat, and mouse metabolism of resveratrol. Pharm. Res. 19:1907–1914 (2002) doi:10.1023/A:1021414129280.
A. J. Gescher, and W. P. Steward. Relationship between mechanisms, bioavailibility, and preclinical chemopreventive efficacy of resveratrol: a conundrum. Cancer Epidemiol. Biomarkers Prev. 12:953–957 (2003).
M. E. Davis, and M. E. Brewster. Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Discov. 3:1023–1035 (2004) doi:10.1038/nrd1576.
A. Katsagonis, J. Atta-Politou, and M. A. Koupparis. HPLC method with UV detection for the determination of trans-resveratrol in plasma. J. Liq. Chromatogr. Relat. Technol. 28:1393–1405 (2005) doi:10.1081/JLC-200054884.
H. S. Lin, C. S. Chean, Y. Y. Ng, S. Y. Chan, and P. C. Ho. 2-hydroxypropyl-beta-cyclodextrin increases aqueous solubility and photostability of all-trans-retinoic acid. J. Clin. Pharm. Ther. 25:265–269 (2000) doi:10.1046/j.1365-2710.2000.00285.x.
T. Higuchi, and K. A. Connors. Phase-solubility techniques. Advan. Anal. Chem. Instr. 4:117–212 (1965).
H. S. Lin, S. Y. Chan, K. S. Low, M. L. Shoon, and P. C. Ho. Kinetic study of a 2-hydroxypropyl-beta-cyclodextrin-based formulation of all-trans-retinoic acid in Sprague–Dawley rats after oral or intravenous administration. J. Pharm. Sci. 89:260–267 (2000) doi:10.1002/(SICI)1520-6017(200002)89:2<260::AID-JPS13>3.0.CO;2-Q.
H. S. Lin, W. W. Leong, J. A. Yang, P. Lee, S. Y. Chan, and P. C. Ho. Biopharmaceutics of 13-cis-retinoic acid (isotretinoin) formulated with modified beta-cyclodextrins. Int. J. Pharm. 341:238–245 (2007) doi:10.1016/j.ijpharm.2007.03.050.
H. S. Lin, A. B. Barua, J. A. Olson, K. S. Low, S. Y. Chan, M. L. Shoon, and P. C. Ho. Pharmacokinetic study of all-trans-retinoyl-beta-d-glucuronide in Sprague–Dawley rats after single and multiple intravenous administration(s). J. Pharm. Sci. 90:2023–2031 (2001) doi:10.1002/jps.1153.
K. Uekama, and M. Otagiri. Cyclodextrins in drug carrier systems. Crit. Rev. Ther. Drug Carr. Syst. 3:1–40 (1987).
C. F. Hung, Y. K. Lin, Z. R. Huang, and J. Y. Fang. Delivery of resveratrol, a red wine polyphenol, from solutions and hydrogels via the skin. Biol. Pharm. Bull. 31:955–962 (2008) doi:10.1248/bpb.31.955.
G. Piel, B. Evrard, T. Van Hees, and L. Delattre. Comparison of the IV pharmacokinetics in sheep of miconazole–cyclodextrin solutions and a micellar solution. Int. J. Pharm. 180:41–45 (1999) doi:10.1016/S0378-5173(98)00403-7.
V. J. Stella, V. M. Rao, E. A. Zannou, and V. V. Zia. Mechanisms of drug release from cyclodextrin complexes. Adv. Drug Deliv. Rev. 36:3–16 (1999) doi:10.1016/S0169-409X(98)00052-0.
Z. Lu, Y. Zhang, H. Liu, J. Yuan, Z. Zheng, and G. Zou. Transport of a cancer chemopreventive polyphenol, resveratrol: interaction with serum albumin and hemoglobin. J. Fluoresc. 17:580–587 (2007) doi:10.1007/s10895-007-0220-2.
O. H. Chan, and B. H. Stewart. Physicochemical and drug delivery considerations for oral drug bioavailability. Drug Discov. Today. 1:461–473 (1996) doi:10.1016/1359-6446(96)10039-8.
C. De Santi, A. Pietrabissa, R. Spisni, F. Mosca, and G. M. Pacifici. Sulphation of resveratrol, a natural product present in grapes and wine, in the human liver and duodenum. Xenobiotica. 30:609–617 (2000) doi:10.1080/004982500406435.
W. Andlauer, J. Kolb, K. Siebert, and P. Furst. Assessment of resveratrol bioavailability in the perfused small intestine of the rat. Drugs Exp. Clin. Res. 26:47–55 (2000).
G. Kuhnle, J. P. Spencer, G. Chowrimootoo, H. Schroeter, E. S. Debnam, S. K. Srai, C. Rice-Evans, and U. Hahn. Resveratrol is absorbed in the small intestine as resveratrol glucuronide. Biochem. Biophys. Res. Commun. 272:212–217 (2000) doi:10.1006/bbrc.2000.2750.
Acknowledgments
This work was partially supported through a National University of Singapore Academic Research Fund R148-050-068-101 and R148-050-068-133 (K. Ng) and NIH grant R21 CA 115269 (K. Ng).
Author information
Authors and Affiliations
Corresponding author
Additional information
An erratum to this article can be found at http://dx.doi.org/10.1007/s11095-008-9701-5
Rights and permissions
About this article
Cite this article
Das, S., Lin, HS., Ho, P.C. et al. The Impact of Aqueous Solubility and Dose on the Pharmacokinetic Profiles of Resveratrol. Pharm Res 25, 2593–2600 (2008). https://doi.org/10.1007/s11095-008-9677-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11095-008-9677-1