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Abstract 

Background The intake of dietary antioxidants and glycolipid metabolism are closely related to chronic kidney 
disease (CKD), particularly among individuals with abdominal obesity. Nevertheless, the cumulative effect of multiple 
comorbid risk factors on the progression and complications of CKD remains inadequately characterized.

Methods This study analyzed data from the National Health and Nutrition Examination Survey (NHANES) dat abase 
(2005–2018), to examine potential factors related to CKD, including glycolipid metabolism, dietary antioxidant intake, 
and pertinent medical history. To explore the associations between these variables and CKD, the present study used 
a multivariable-adjusted least absolute shrinkage and selection operator (LASSO) regression model, along with a 
restricted cubic spline (RCS) model. Furthermore, an optimal predictive model was developed for CKD using ten 
machine learning algorithms and enhanced model interpretability with the Shapley Additive Explanations (SHAP) 
method.

Results A cohort comprising 8,764 eligible individuals (52% male, including 1,839 CKD patients) with abdominal obe-
sity aged 20–85 years were included. The findings revealed significant positive correlations in patients with abdomi-
nal obesity between the presence of CKD and age, a history of heart failure, hypertension, diabetes, elevated lipid 
accumulation product (LAP) and triglyceride glucose-waist circumference (TyG-WC) levels. Conversely, negative cor-
relations were identified between CKD and variables such as sex, high-density lipoprotein cholesterol (HDL-C) levels, 
and the composite dietary antioxidant index (CDAI). In parallel, RCS regression analysis revealed significant nonlinear 
associations between the CDAI, HDL-C, TyG-WC, and CKD among patients with abdominal obesity aged 60–80 years. 
The development of predictive models demonstrated that the CatBoost model surpassed other models, achieving 
an accuracy of 86.74% on the validation set. The model’s area under the receiver operator curve (AUC) and F1 score 
were 0.938 and 0.889, respectively. The SHAP values revealed that age was the most significant predictor, followed 
by diabetes history, hypertension, HDL-C levels, CDAI index, TyG-WC, and LAP.
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Conclusion CatBoost models, along with glycolipid metabolism indexes and dietary antioxidant intake, are effective 
for early CKD detection in patients with abdominal obesity.

Keywords Chronic kidney disease, Machine learning, Triglyceride glucose-waist circumference, Composite dietary 
antioxidant index, Abdominal obesity

Introduction
Chronic kidney disease (CKD) has garnered significant 
attention as the sole non-communicable disease with a 
consistently rising age-adjusted mortality rate, increas-
ing from 813,000 in 2000 to 1.3 million in 2019 [1]. The 
consequences of CKD include premature mortality, dis-
ability, diminished quality of life, and various psychoso-
cial impacts, resulting in substantial financial burdens on 
governments, healthcare systems, and families [2]. As a 
result, efforts to identify and mitigate avoidable risk fac-
tors for the onset and progression of CKD have been 
ongoing.

A high body mass index (BMI) is a well-established 
and significant risk factor for kidney impairment in the 
general population [3, 4]. However, individuals with 
CKD constitute a unique group for studying the inter-
play between obesity and kidney function. Merely defin-
ing obesity based on BMI alone no longer accurately 
captures the connection between obesity and CKD [5]. 
Recent studies have highlighted that abdominal obesity 
in middle-aged and young adults is recognized as one of 
the most influential risk factors for CKD, with evidence 
suggesting that it may also lead to higher mortality rates 
among CKD patients [6, 7]. Additionally, anthropomet-
ric indices that assess obesity and metabolism have been 
developed to help predict CKD, such as the visceral adi-
posity index (VAI), lipid accumulation product (LAP), 
and triglyceride glucose (TyG) [8–10]. These indices pro-
vide a more precise assessment of an unhealthy meta-
bolic phenotype. Whereas, existing research on the TyG 
index in relation to CKD has primarily focused on the 
general population rather than specifically on individuals 
with abdominal obesity.

However, obesity can directly predispose individuals to 
CKD through its association with obesity-related glomer-
ulopathy, as well as indirectly through its well-established 
complications including hypertension, and type 2 diabe-
tes. Additionally, measures of abdominal fat, like waist 
circumference, are often associated with higher morbid-
ity and mortality in people on maintenance hemodialysis 
[3]. Thus, addressing obesity is vital for preventing and 
slowing the progression of CKD.

Studies have demonstrated that modifications in life-
style habits, such as poor dietary choices and sedentary 
behaviors, have varying impacts on improvements in 
obesity, blood pressure, and renal function in individuals 

with CKD [11–14]. Previous studies have shown that 
an antioxidant-rich diet is beneficial for various health 
outcomes, including lung function, cardiovascular func-
tion, and mental health [15–17], and can offer protec-
tion against both CKD and obesity, with the composite 
dietary antioxidant index (CDAI) demonstrating a posi-
tive correlation with a reduced prevalence of CKD in 
the adult population in the United States [18]. In other 
words, reducing lifestyle-related risk factors can assist in 
the prevention of CKD and its complications.

Multiple contributory factors require the consideration 
of comprehensive models, which is why machine learn-
ing (ML) for predicting chronic diseases has received 
widespread attention in recent years [19, 20]. Hence, this 
study was to find the factors linked to CKD in individu-
als with abdominal obesity through the application of ML 
techniques, considering obesity indices, overall pro- and 
antioxidant exposure status, and other relevant factors. 
Such a comprehensive model is relatively uncommon 
in existing literature, highlighting the distinctiveness of 
this study. This study aimed to improve understanding 
of CKD risk factors in individuals with abdominal obe-
sity by developing predictive ML models using cross-
sectional data from the National Health and Nutrition 
Examination Survey (NHANES) database.

Methods
Study design and subjects
The study analyzed data from the NHANES data-
base spanning 2005–2018 (https:// www. cdc. gov/ nchs/ 
nhanes/). All methods adhered to relevant guidelines and 
regulations, ensuring no use of personally identifiable 
information. Publicly accessible interview questionnaires 
and test response rates are documented in sources [21, 
22]. The exclusion criteria include: (1) subjects < 18 years 
of age, with missing waist circumference and BMI data; 
(2) incomplete renal function indexes, triglyceride-glu-
cose index data, CDAI information, and medical history 
details (such as asthma, hypertension, diabetes, cancer, 
stroke, heart failure, etc.); and (3) incomplete informa-
tion on covariates (race, marital status, education, etc.), 
and body weight data. A total of 8,764 patients with 
abdominal obesity were included. The study procedure 
is illustrated in Fig.  1. All participants provided written 
informed consent in accordance with the NHANES study 
protocol, which received approval from the Research 

https://www.cdc.gov/nchs/nhanes/
https://www.cdc.gov/nchs/nhanes/
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Fig. 1 Eelection flowchart of study participants in NHANES, 2005–2018
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Ethics Review Board of the National Center for Health 
Statistics (NCHS).

Definitions of CKD, Abdominal Obesity
The maximum urinary albumin-to-creatinine ratio 
(ACR) of 30 mg/g was classified as albuminuria. The esti-
mated glomerular filtration rate (eGFR) was determined 
using the 2021 Chronic Kidney Disease Epidemiology 
Collaboration equation based on standardized serum 
creatinine levels across survey cycles [23]. A decreased 
eGFR was considered to be ≤ 60 mL/min/1.73  m2 [24]. 
CKD was defined as the presence of albuminuria or 
decreased eGFR. Abdominal obesity was defined by an 
absolute waist circumference (WC) of more than 102 cm 
in males and 88 cm in females, respectively [25].

Measurement of TyG, TyG‑WC, VAI, LAP, CDAI
The TyG index is a measure of insulin resistance. 
Serum fasting plasma glucose (FPG), high-density 
lipoprotein cholesterol (HDL-C) levels, and triglycer-
ide (TG) were assessed at baseline. TyG = ln [TG(mg/
dl) × FPG(mg/dl)/2], TyG-WC = TyG × WC [26], VAI 
(male) = WC/(39.68 + 1.88 × BMI) × TG/1.03 × 1.31/HDL-
C, VAI (female) = WC/ (36.58 + 1.89 × BMI) × TG/0.81 
× 1.52/HDL-C [27], LAP (male) = (WC-65) × TG, LAP 
(female) = (WC-58) × TG [28].

To measure dietary antioxidant intake, the present 
study utilized a modified CDAI based on the method of 
Wright et al. [29]. In this approach, each individual’s anti-
oxidant intake was normalized by determining how far it 
differed from the average intake of different antioxidants, 
including β-carotene, vitamin A, selenium, vitamin C, 
vitamin E, zinc, copper, and iron. These standardized val-
ues were then combined to create the CDAI score [30]. 
Importantly, antioxidants from supplements, medica-
tions, or water alone were not considered in this calcula-
tion. The formula is presented below:

Covariates
At the commencement of the study, standardized ques-
tionnaires were employed to gather demographic data 
(including age, sex, race/ethnicity, educational attain-
ment, and marital status), lifestyle factors, and self-
reported medical history (encompassing conditions 
such as stroke, heart failure, hypertension, diabetes, 
insulin usage, liver disorders, and cancer). The baseline 
laboratory test results included glycosylated hemoglobin 
(HbAlc), total cholesterol (TC), TG, HDL-C, serum cre-
atinine (Scr), and urine creatinine levels. Further details 

CDAI =
n=8

i=1

(IndividualIntake −Mean)

SD

on the variable assessment and categories can be found 
in Supplementary Table 1.

Statistical analysis
Continuous variables are presented as medians (Q1‒
Q3) and were compared using either the independ-
ent samples t-test or the Kruskal–Wallis rank sum test. 
Categorical variables are represented as percentages, 
and intergroup differences were evaluated using the chi-
square test or Fisher’s exact test. All values were adjusted 
using the sampling weights provided by the NHANES to 
ensure representativeness for the general U.S. popula-
tion. A two-sided P-value of less than 0.05 was deemed 
statistically significant. To address potential issues related 
to high dimensionality impacting ML algorithms, a mul-
tivariable-adjusted least absolute shrinkage and selection 
operator (LASSO) regression model [31] was utilized to 
identify potential factors that were most strongly associ-
ated with CKD risk. Moreover, a subgroup analysis based 
on multiple logistic regression was used to explore the 
impact of other variables on different stages of CKD. GFR 
categories (G1–G5) and albuminuria categories (A1–A3) 
are used to classify CKD [32], as shown in Supplementary 
Table 2. A restricted cubic spline (RCS) model was con-
ducted to find the dose–response relationship between 
CKD risk and other variables. The synthetic minority 
over-sampling technique (SMOTE) is an oversampling 
method that is widely used in medicine to handle class 
imbalances in datasets [33, 34]. In the present study, the 
SMOTE combined with the edited nearest neighbors 
(SMOTE-ENN) technique was utilized to increase the 
sensitivity of classifiers to minority groups.

Construction of the ML model
Ten ML algorithms were then applied to predict CKD 
in patients with abdominal obesity using the training 
set: AdaBoost, CatBoost, decision tree (DT), gradient 
boosting decision tree (GBDT), light gradient boost-
ing machine (LightGBM), logistic regression (LR), naive 
bayes (NB), random forest (RF), support vector machine 
(SVM), and eXtreme gradient boosting (XG). These mod-
els were implemented using the DecisionLinnc1.0 soft-
ware [35]. Furthermore, Supplementary Table 3 provides 
details on hyperparameter configurations.

Evaluation of ML model
Different evaluation metrics were used to evaluate the 
model, including accuracy, receiver operating character-
istic (ROC) curves, AUC, sensitivity/recall, specificity, 
the Matthews correlation coefficient (MCC) and the F1 
score. To evaluate the robustness of the predictive mod-
el’s performance, a sensitivity analysis utilizing k-fold 
cross-validation was performed.
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SHAP method
To enhance the comprehensibility of our models, the 
SHAP method was used to assess the relative significance 
of predictor variables [36]. In the model, a predicted 
value is produced for each anticipated sample. The SHAP 
Summary plot graphically displays the SHAP value asso-
ciated with each feature across all samples, with purple 
and yellow dots indicating higher or lower feature values 
separately.

Results
Baseline characteristics
In this study, 8,764 individuals with abdominal obesity 
aged 20–85 years were included, comprising 4,532 (52%) 
males and 4,232 (48%) females. The patients were divided 
into CKD patients (n = 1839) and non-CKD patients 
(n = 6925) as shown in Table  1. Table  1 shows a signifi-
cant association between abdominal obesity in patients 
with CKD and older age in females compared with those 
of the non-CKD group, as evidenced by higher values of 
various anthropometric and metabolic markers such as 
WC, HbAlc, FPG, TG, Scr, TyG, TyG-WC, VAI, and LAP 
(P < 0.05). Additionally, a greater proportion of partici-
pants in the CKD group reported a history of smoking, 
stroke, heart failure, hypertension, liver conditions, dia-
betes, and insulin use (P < 0.05).

Association of candidate predictive variables with CKD 
in patients with abdominal obesity.
Supplementary Fig. 1A illustrates the link between cross-
validation error variability and the log-transformed pen-
alty parameter (λ) in LASSO regression for identifying 
key variables related to CKD in patients with abdominal 
obesity. Within the optimal LASSO regression model, a 
total of nine variables (age, sex, TyG-WC, HDL-C, LAP, 
CDAI, and a history of heart failure, hypertension, and 
diabetes) with non-zero coefficients were determined to 
be more significant in relation to CKD, as illustrated in 
Supplementary Fig.  1B. The study revealed significant 
positive correlations between age (Coeff se = 0.0435), 
history of heart failure (Coeff se = 0.8327), hypertension 
(Coeff se = 0.3326), diabetes (Coeff se = 0.2440), LAP 
(Coeff se = 0.0001), and TyG-WC (Coeff se = 0.0008) with 
CKD in patients with abdominal obesity. Conversely, a 
negative correlation was observed between sex (Coeff 
se = −0.3341), HDL-C level (Coeff se = −0.0157), and 
CDAI score (Coeff se = −0.0012) and CKD in the study 
participants.

Subgroup analysis of the influence of various variables 
on different stages of CKD
The subgroup analysis revealed that age significantly 
influences CKD risk levels. Specifically, individuals 

aged > 60 years are markedly more likely to develop CKD 
than those aged 40–60. For individuals over 60 years, the 
odds ratio (OR) for a moderately increased risk of CKD 
was 3.83 (95% CI: 3.16–4.64, P < 0.001), whereas in the 
40–60 years age group, the OR was 1.55 (95% CI: 1.28–
1.87, P < 0.001). Furthermore, the OR for a high risk of 
CKD was 5.59 (95% CI: 3.59–8.70, P < 0.001) versus 1.49 
(95% CI: 0.93–2.36, P = 0.094), and for a very high risk of 
CKD, the OR was 13.30 (95% CI: 5.66–31.29, P < 0.001) 
compared with 1.57 (95% CI: 0.62–3.97, P = 0.341) in 
the younger cohort. The severity of abdominal obesity is 
closely associated with the risk level of CKD. Similarly, a 
history of diabetes, hypertension, and heart failure sig-
nificantly elevates the risk of CKD. For comprehensive 
results, please consult Supplementary Table 2.

Association of the CDAI, LAP, TyG‑WC and HDL‑C with CKD 
in patients with abdominal obesity
RCS regression analysis was employed to investigate the 
relationship between CDAI, LAP, TyG-WC, and HDL-C 
and CKD in patients with abdominal obesity. A signifi-
cant nonlinear association was observed between the 
CDAI score, HDL-C level, and CKD in obese abdominal 
patients of both genders (Fig. 2 A-D). However, sex dif-
ferences had been found in the nonlinear relationships 
between LAP, TyG-WC and CKD, with females exhib-
iting a significant association with LAP and males with 
TyG-WC (Fig.  2  E–H). The present study investigated 
potential age-related variations in the impact of various 
factors on CKD in individuals with abdominal obesity. 
These findings indicate a nonlinear correlation between 
LAP and CKD in the 18–40 years age group (Fig. 2 I-L). 
Interestingly, no correlations were detected between each 
of the four factors and CKD in obese abdominal patients 
aged 40–60 years (Fig. 2 M-P). However, significant non-
linear correlations between the CDAI, HDL-C, and TyG-
WC and CKD in patients with abdominal obesity were 
maintained in the 60–80 years age group (Fig. 2 Q-T).

Evaluation of the model
Figure  3 illustrates the ROC curves for the ten models 
analyzed in this study. Specifically, AdaBoost (Fig.  3 A), 
CatBoost (Fig. 3 B), DT (Fig. 3 C), GBDT (Fig. 3 D), Light-
GBM (Fig. 3 E), LR (Fig. 3 F), NB (Fig. 3 G), RF (Fig. 3 H), 
SVM (Fig.  3  I) and XG (Fig.  3  J) models achieved AUC 
values of 0.838, 0.938, 0.863, 0.869, 0.783, 0.886, 0.823, 
0.891, 0.882, and 0.923, respectively. The SMOTE-ENN 
technique balanced the classes in the training dataset 
to avoid model bias, as shown in Table 2 with a detailed 
summary of the performance metrics for each model. 
Notably, the CatBoost algorithm achieved superior pre-
diction performance, with an accuracy of 86.74% and 
an F1 score of 0.889. Therefore, the CatBoost-based 
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Table 1 Baseline characteristics of the abdominal obesity participants grouped by CKD status

Characteristic Overall N = (8,764) Non‑CKD (N = 6,925) CKD (N = 1,839) P

Age (years) 51.0 (37.0—64.0) 47.0 (35.0—60.0) 65.0 (51.5—75.0)  < 0.001

Gender

 Female 4,232 (48.0%) 3,212 (46.0%) 1,020 (55.0%)  < 0.001

 Male 4,532 (52.0%) 3,713 (54.0%) 819 (45.0%)

Race

 Mexican American 1,559 (17.8%) 1,304 (18.8%)  255 (13.9%)  < 0.001

 Other Hispanic 928 (10.6%) 780 (11.3%) 148 (8.1%)

 Non-Hispanic White 3,735 (42.6%) 2,918 (42.1%) 817 (44.4%)

 Non-Hispanic Black 1,848 (21.1%) 1,343 (19.4%) 505 (27.5%)

 Other Race—Including Multi-Racial 694 (7.9%) 580 (8.4%) 114 (6.2%)

Education

 Less Than 9th Grade 959 (10.9%) 712 (10.3%) 247 (13.4%)  < 0.001

 9-11th Grade 1,252 (14.3%) 966 (14.0%) 286 (15.6%)

 High School Grad/GED or Equivalent 2,026 (23.1%) 1,548 (22.3%) 478 (26.0%)

 Some College or AA degree 2,606 (29.7%) 2,107 (30.4%) 499 (27.1%)

 College Graduate or above 1,921 (21.9%) 1,592 (23.0%) 329 (17.9%)

Marital

 Married 4,793 (54.7%) 3,820 (55.2%) 973 (53.0%)  < 0.001

 Widowed 665 (7.6%) 368 (5.3%) 297 (16.2%)

 Divorced 989 (11.3%) 774 (11.2%) 215 (11.7%)

 Separated 302 (3.5%) 238 (3.4%) 64 (3.5%)

 Never married 1,289 (14.7%) 1,108 (16.0%) 181 (9.8%)

 Living with partner 726 (8.3%) 617 (8.9%) 109 (5.9%)

Smoke history

 No 4,764 (54.0%) 3,860 (56.0%) 904 (49.0%) 0.011

 Yes 4,000 (46.0%) 3,065 (44.0%) 935 (51.0%)

Alcohol

 No 7,806 (89.1%) 6,147 (88.8%) 1,659 (90.2%) 0.14

 Yes 958 (10.9%) 778 (11.2%) 180 (9.8%)

 BMI 29.8 (26.9—33.6) 29.8 (26.9—33.6) 29.9 (26.8—34.0) 0.265

 WC 102.3 (95.2—111.2) 101.7 (94.8—110.4) 104.9 (96.7—114.1)  < 0.001

 HbAlc (%) 5.6 (5.3—6.0) 5.5 (5.2—5.8) 5.8 (5.4—6.5)  < 0.001

 Fasting Glucose (mmol/L) 5.66 (5.3—6.3) 5.6 (5.2—6.1) 6.0 (5.5—7.2)  < 0.001

 TC (mmol/L) 5.0 (4.3—5.7) 5.0 (4.3—5.7) 4.8 (4.1—5.6)  < 0.001

 TG (mmol/L) 1.3 (0.9—1.9) 1.3 (0.9—1.9) 1.4 (1.0—2.0)  < 0.001

 HDL-C (mmol/L) 1.3 (1.1—1.6) 1.3 (1.1—1.6) 1.2 (1.06—1.5) 0.0024

 Scr (umol/L) 0.9 (0.7—1.0) 0.8 (0.7—1.0) 1.1 (0.8—1.3)  < 0.001

 Urine creatinine (umol/L) 7.0 (4.5—14.0) 6.2 (4.3—9.9) 38.6 (9.1—88.6)  < 0.001

 Serum creatinine (umol/L) 75.1 (62.8—88.4) 72.5 (61.0—84.0) 93.7 (71.6—113.2)  < 0.001

 eGFR 91.3 (73.4—107.9) 95.1 (80.6—109.9) 59.1 (50.1—89.3)  < 0.001

 TyG 8.7 (8.3—9.1) 8.7 (8.3—9.1) 8.9 (8.4—9.3)  < 0.001

 TyG_WC 894.7 (812.8—995.5) 887.8 (806.7—984.4) 927.4 (840.8—1,039.5)  < 0.001

 VAI 1.6 (1.0—2.7) 1.6 (1.0—2.6) 1.9 (1.2—3.1)  < 0.001

 LAP 53.2 (34.6—83.1) 51.2 (33.2—80.4) 59.9 (39.4—95.2)  < 0.001

 CDAI −0.9 (−4.0—2.9) −0.7 (−3.9—3.0) −1.7 (−4.8—2.0)  < 0.001

 Vitamin A (mg/d) 495.5 (271.0—708.5) 461.0 (273.5—709.5) 453.5 (260.3—701.8) 0.547

 Vitamin E (mg/d) 6.7 (4.6—9.4) 6.8 (4.8—9.5) 6.1 (4.1—8.8)  < 0.001

 Beta-carotene (mcg) 1,050.0 (439.0—2,620.6) 1,052.5 (443.0—2,642.5) 1,030.0 (424.3—2,595.0) 0.84

 Vitamin C (mg/d) 62.3 (29.8—112.4) 63.2 (30.4—113.6) 58.3 (27.6—106.8) 0.004
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prediction model was ultimately selected for the subse-
quent analysis.

The outcomes of the tenfold cross-validation indi-
cated that the CatBoost-based prediction model 

exhibited robust performance, achieving an average 
AUC of 0.938, a mean accuracy of 86.41%, and an F1 
score of 0.885. The ROC curve corresponding to the 
cross-validation is presented in Supplementary Fig. 2.

Table 1 (continued)

Characteristic Overall N = (8,764) Non‑CKD (N = 6,925) CKD (N = 1,839) P

 Zinc (mg/d) 10.0 (7.3—13.4) 10.2 (7.5—13.6) 9.2 (6.6—12.7)  < 0.001

 Selenium (mcg/d) 103.1 (75.5—134.8) 105.0 (77.8—136.6) 96.5 (69.1—126.3)  < 0.001

 Copper 1.1 (0.8—1.4) 1.1 (0.9—1.5) 1.0 (0.8—1.4)  < 0.001

 iron 13.2 (9.7—17.7) 13.4 (9.9—17.9) 12.5 (9.0—16.9)  < 0.001

Stroke

 No 8,448 (96.4%) 6,765 (97.7%) 1,683 (91.5%)  < 0.001

 Yes 316 (3.6%) 160 (2.3%) 156 (8.5%)

Heart failure

 No 8,487 (96.8%) 6,821 (98.5%) 1,666 (90.6%)  < 0.001

 Yes 277 (3.2%) 104 (1.5%) 173 (9.4%)

Hypertension

 No 5,312 (60.6%) 4,607 (66.5%) 705 (38.3%)  < 0.001

 Yes 3,452 (39.4%) 2,318 (33.5%) 1,134 (61.7%)

Insulin

 No 8,420 (96.1%) 6,767 (97.7%)  1,653 (89.9%)  < 0.001

 Yes 344 (3.9%) 158 (2.3%) 186 (10.1%)

Liver condition

 No 8,390 (95.7%) 6,651 (96.0%) 1,739 (94.6%) 0.002

 Yes 374 (4.3%) 274 (4.0%) 100 (5.4%)

Diabetes

 No 7,306 (83.4%) 6,057 (87.5%)  1,249 (67.9%)  < 0.001

 Borderline 212 (2.4%) 160 (2.3%) 52 (2.8%)

 Yes 1,246 (14.2%) 708 (10.2%) 538 (29.3%)

Abbreviations: Data are presented as frequencies (percentages) or median (Q1-Q3); GED General Educational Development, AA degree Associate of Arts Degree, BMI 
body-mass index, WC circumference waist, HbAlc glycosylated hemoglobin, TG triglycerides, TC total cholesterol, HDL-C high density lipoproteincholesterol, Scr serum 
creatinine, eGFR estimated glomerular filtration, VAI visceral adiposity index, LAP lipid accumulation product, TyG triglyceride-glucose index, TyG-WCTriglyceride 
Glucose-Waist Circumference, CDAI composite dietary antioxidant index, CKD chronic kidney disease

Fig. 2 The study examines the Restricted Cubic Spline (RCS) modeling of the relationship between composite dietary antioxidant index (CDAI), 
HDL-C (mmol/L), Lipid accumulation product (LAP), triglyceride glucose-waist circumference (TyG-WC) and the prevalence of CKD in abdominal 
obesity patients. A The RCS curve of the association between CDAI (male) and CKD with abdominal obesity. B The RCS curve of the association 
between CDAI (female) and CKD with abdominal obesity. C The RCS curve of the association between HDL-C (male) and CKD with abdominal 
obesity. D The RCS curve of the association between HDL-C (female) and CKD with abdominal obesity. E The RCS curve of the association 
between LAP (male) and CKD with abdominal obesity. F The RCS curve of the association between LAP (female) and CKD with abdominal obesity. 
G The RCS curve of the association between TyG-WC (male) and CKD with abdominal obesity. H The RCS curve of the association between TyG-WC 
(female) and CKD with abdominal obesity. I The RCS curve of the association between CDAI and CKD with abdominal obesity at age 18–40. J The 
RCS curve of the association between HDL-C and CKD with abdominal obesity at age 18–40. K The RCS curve of the association between LAP 
and CKD with abdominal obesity at age 18–40. L The RCS curve of the association between TyG-WC and CKD with abdominal obesity at age 
18–40. M The RCS curve of the association between CDAI and CKD with abdominal obesity at age 40–60. N The RCS curve of the association 
between HDL-C and CKD with abdominal obesity at age 40–60. O The RCS curve of the association between LAP and CKD with abdominal 
obesity at age 40–60. P The RCS curve of the association between TyG-WC and CKD with abdominal obesity at age 40–60. Q The RCS curve 
of the association between CDAI and CKD with abdominal obesity at age 60–80. R The RCS curve of the association between HDL-C and CKD 
with abdominal obesity at age 60–80. S The RCS curve of the association between LAP and CKD with abdominal obesity at age 60–80. T The RCS 
curve of the association between TyG-WC and CKD with abdominal obesity at age 60–80

(See figure on next page.)
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Fig. 2 (See legend on previous page.)



Page 9 of 14Deng et al. Lipids in Health and Disease          (2024) 23:390  

Model decision of SHAP
The SHAP plot of the CatBoost model, as depicted in 
Fig.  4, illustrates the profiles of patients at varying lev-
els of risk for developing CKD. This visualization offers 

insight into individualized care planning strategies 
informed by the predictive capabilities of the CatBoost 
model. In Fig. 4, the impact of each feature on the model 
output is quantified by calculating the average of the 

Fig. 3 The ROC of the ten machine learning models. Machine learning model was utilized to fit the prediction between composite dietary 
antioxidant index (CDAI), HDL-C (mmol/L), Lipid accumulation product (LAP), triglyceride glucose-waist circumference (TyG-WC) and the prevalence 
of CKD in abdominal obesity patients. The plots show the ROC of (A) AdaBoost; (B) CatBoost; (C) Decision Tree; (D) Gradient Boosting Decision Tree; 
(E) LightGBM; (F) Logistic regression; (G) Naive Bayes; (H) Random Forest; (I) Support Vector machine; (J) XGBoost Machine. These curves depict 
the performance of the models on both the training set and the testing set

Table 2 Comparison of discrimination characteristics among ten machine learning models

Abbreviations: MCC Matthews correlation coefficient, AUC  Area under the receiver operator curve

Model name Training Recall Accuracy F1‑Score MCC AUC 

AdaBoost Imbalance 0.376325 0.729278 0.374341 0.201620 1.000

CatBoost Imbalance 0.298587 0.806844 0.399527 0.326193 0.875

Decision Tree Imbalance 0.287986 0.806844 0.390887 0.322116 0.754

Gradient Boosting Decision Tree Imbalance 0.362191 0.730798 0.366726 0.195853 1.000

LightGBM Imbalance 0.280919 0.800000 0.376777 0.298428 0.944

Logistic regression Imbalance 0.266784 0.806844 0.37284 0.314087 0.768

Naive Bayes Imbalance 0.613074 0.660456 0.437303 0.241620 0.714

Random forest Imbalance 0.286219 0.805703 0.388024 0.317875 0.780

Support vetor machine Imbalance 0.000000 0.784791 NA NA 0.646

XGBoost Imbalance 0.323322 0.801521 0.412162 0.320935 0.990

AdaBoost Balance 0.887827 0.848218 0.875550 0.681574 0.838

CatBoost Balance 0.886552 0.867382 0.889386 0.723863 0.938

Decision Tree Balance 0.768005 0.793024 0.816949 0.587348 0.863

Gradient Boosting Decision Tree Balance 0.891013 0.853200 0.879522 0.692142 0.869

LightGBM Balance 0.852135 0.728248 0.790423 0.418553 0.783

Logistic regression Balance 0.873168 0.811422 0.847772 0.602344 0.886

Naive Bayes Balance 0.698534 0.666922 0.716106 0.314429 0.823

Random Forest Balance 0.787126 0.803756 0.828303 0.605274 0.891

Support vetor machine Balance 0.876992 0.804140 0.843396 0.586093 0.882

XGBoost Balance 0.825420 0.846691 0.843834 0.694092 0.923
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absolute SHAP values across all samples. Age emerged 
as the most influential predictor, followed by a history of 
diabetes, hypertension, sex, HDL-C levels, CDAI, TyG-
WC, and LAP. The SHAP summary plot illustrates that 
the color gradient of the horizontal bars corresponds to 
the variable magnitude, ranging from purple (high) to 
yellow (low). The width of the horizontal bars indicates 
the impact on model predictions, with wider bars sug-
gesting a greater effect.

Discussion
This study provides a comprehensive analysis of ML 
models related to various factors in abdominal obesity 
individuals combined CKD. ML, a widely used statistical 
method, utilizes clinical data to create predictive models 
and evaluate their accuracy. The current research uti-
lizes ML in combination with the NHANES database to 
explore potential factors related to CKD in individuals 
with abdominal obesity and their predictive capabilities. 
In particular, this study examined LAP and TyG-WC as 
significant risk factors, as well as HDL-C and CDAI as 
protective factors associated with CKD.

The clinical diagnosis of CKD relies predominantly 
on the assessment of GFR or albuminuria, necessitating 
repeated measurements over a period exceeding three 
months [37]. Diagnosing CKD can be challenging, par-
ticularly in its initial stages, as certain renal functions 
may be compromised prior to the onset of symptoms 
[38]. Timely identification of CKD is imperative for pre-
dicting its prognosis. Diabetes, hypertension, and obesity 
continue to be significant contributors to the prevalence 
of CKD risk factors [2, 39].

The concept of LAP as a predictor of cardiovascular 
risk was introduced by Kahn et  al. as a mathematical 
model incorporating WC and TG levels [40]. LAP has 
since been recognized as a valuable non-imaging indica-
tor of visceral obesity and metabolic syndrome [41–43]. 
According to this study, LAP may also lend insight into 
the presence of abdominal obesity in patients with CKD.

The relationship between LAP and CKD in individu-
als with abdominal obesity may be attributed to the 
interaction between adipokines and CKD, suggesting a 
potential mechanism of action. Initially, dysregulation of 
adipokine levels has the potential to disrupt the glomer-
ular filtration barrier, resulting in a decline in GFR [44]. 
Subsequently, adipokines may contribute to renal injury 
through the mediation of endothelial dysfunction, pro-
motion of oxidative stress, development of atherosclero-
sis, and induction of inflammation [45–47].

The equilibrium between glucose metabolism and lipid 
metabolism plays a critical role in preserving optimal 
kidney function. In instances of pathology, disruptions 
in glucose-lipid metabolism can result in compromised 
cellular structure and inflammatory reactions within the 
kidneys [48–50]. The excessive buildup of visceral fat can 
hinder insulin clearance and signaling pathways within 
the pancreatic islets, thereby impacting renal energy pro-
vision and potentially causing kidney damage [51, 52]. 
Both HDL-C and TyG-WC are acknowledged as emerg-
ing and reliable markers for evaluating insulin resistance 
[53, 54]. Triglyceride glucose-waist circumference has 
garnered increased attention as a potential predictor of 
fatty liver disease and cardiovascular disease in recent 
research [55–57]. This study suggests that HDL-C and 

Fig. 4 Importance ranking of SHAP variables based on the CatBoost model. The SHAP summary plot illustrates that the color gradient 
of the horizontal bars corresponds to the variable magnitude, ranging from purple (high) to yellow (low). The width of the horizontal bars indicates 
the impact on model predictions, with wider bars suggesting a greater effect
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TyG-WC may serve as equally effective markers in indi-
viduals with CKD and abdominal obesity.

Insulin resistance, a common feature in disorders of 
fat metabolism, can also contribute to kidney injury by 
inducing hyperglycemia, metabolic acidosis, and the 
overproduction of endothelin-1 and aldosterone, ulti-
mately leading to renal tubulointerstitial injury. A further 
consequence of insulin resistance is the excessive produc-
tion of reactive oxidative stress, which results in fibrosis 
of the renal tissue [35]. Additionally, hyperinsulinemia 
may promote renal vasodilation, causing glomerular 
hyperfiltration and compromised endothelial function, 
thereby exacerbating proteinuria excretion [58–60].

The CDAI score is derived by normalizing and com-
bining the intake levels of various antioxidants, includ-
ing beta-carotene, selenium, vitamins A, C, and E, as well 
as zinc, copper, and iron [61]. In this study, a nonlinear 
relationship was found between the CDAI and CKD in 
patients with abdominal obesity, which is consistent with 
the findings of Wang et al. [18]. The underlying mecha-
nism between the CDAI and CKD is unclear, but it may 
be that oxidative stress and inflammation pathways cause 
kidney injury, which further contributes to the devel-
opment of CKD. The CDAI score is strongly correlated 
with the level of oxidative stress. Oxidative stress leads 
to the infiltration of neutrophils, an increase in protease 
secretion, and the generation of substantial quantities of 
oxidative intermediates, contributing to inflammatory 
processes. First, the overproduction of reactive oxygen 
species (ROS) impairs cellular structure and function, 
leading to tissue damage. CKD is accompanied by sig-
nificant protein, carbohydrate, and lipid oxidation, and 
these processes lead to lipid peroxidation and the accu-
mulation of advanced glycosylation end products, further 
exacerbating tissue damage. Oxidative stress can affect a 
variety of renal functions, including glomerular filtration 
rate, fluid electrolyte disturbances, elevated blood pres-
sure, and renal sympathetic nerve activity. Second, the 
activation of the renin–angiotensin–aldosterone system 
(RAAS) is linked to oxidative stress. RAAS blockers may 
be renoprotective through mechanisms that attenuate 
the inflammatory response and resist renal fibrosis [62]. 
The CDAI functions as an extrinsic modulator of plasma 
redox balance, inhibiting the generation of ROS and 
reactive nitrogen species. This inhibition consequently 
mitigates oxidative stress and decelerates the onset and 
progression of CKD [63, 64].

Diets with a high dietary antioxidant index tend to be 
rich in these antioxidants and are therefore able to reduce 
the level of oxidative stress in the body, which in turn 
reduces the release of inflammatory factors. Pathogen-
esis of CKD is heavily influenced by inflammatory fac-
tors. When the kidneys are damaged, inflammatory cells 

infiltrate renal tissues and release inflammatory factors, 
leading to renal tubular atrophy, tubulointerstitial fibro-
sis and glomerulosclerosis. These pathological changes 
gradually destroy the normal structure and function of 
the kidneys and eventually lead to renal failure. In addi-
tion, inflammatory factors are involved in the pathologi-
cal processes of renal arteriolar sclerosis and ischemia, 
glomerular hyperperfusion and increased intracapsular 
pressure, which further exacerbate renal injury [29, 65].

According to the findings of the RCS study and sub-
group analysis, the predictive signature had a pro-
nounced impact on the demographics of individuals aged 
60–80 years. This predictive signature holds promise in 
assisting healthcare professionals in tailoring personal-
ized care plans for individuals with chronic kidney dis-
ease and abdominal obesity, particularly among elderly 
patients, by considering dietary and endocrine factors.

The current research underscores the advantages of 
combining ML methodologies with SHAP techniques to 
analyze the diverse effects of glucose and lipid metabo-
lism factors on CKD outcomes in individuals with 
abdominal obesity. Machine learning techniques offer a 
significant advantage in managing intricate, multidimen-
sional data and identifying nonlinear connections among 
various variables. This capability is particularly advanta-
geous in the context of CKD, where the progression of 
the disease is influenced by a multitude of factors, such 
as age, comorbidities, metabolic disorders, and environ-
mental influences. Conventional risk prediction models 
frequently encounter difficulties in accommodating these 
complex interactions, resulting in suboptimal perfor-
mance [66]. Moreover, the predictive model established 
in this research may offer effective management strate-
gies for CKD in elderly patients with abdominal obesity.

Study strengths and limitations
This study represents a highly representative and inno-
vative cross-sectional analysis encompassing the entire 
United States, focusing on the prevalence and sever-
ity of CKD in individuals with abdominal obesity. The 
research utilizes a sophisticated predictive model that 
incorporates various factors and applies ten different ML 
algorithms. The ultimate CatBoost model indicates that 
for males > 60 years of age with diabetes, hypertension, 
and a history of cardiovascular disease, it is advisable to 
promote a reduction in waist circumference, decrease fat 
intake, and enhance the intake of antioxidant-rich diets, 
alongside effective management of blood glucose levels. 
This strategy is advantageous for preventing CKD and 
decelerating its progression. Nevertheless, this study is 
subject to certain limitations. First, the predictive model 
utilized in this research was developed using cross-sec-
tional data, implying that the model’s predictions do not 
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establish causal relationships and necessitate further 
investigation through prospective studies or external 
validation. Second, all data utilized in this study were 
sourced from the NHANES database, which is represent-
ative of the U.S. population and may not be generalizable 
to populations in other countries.

Conclusion
This nationally representative study investigated the 
association of TyG-WC, LAP, HDL-C, and CADI with 
CKD risk in patients with abdominal obesity, particularly 
those over the age of 60 years. The study utilized Cat-
Boost models to develop a predictive tool for identifying 
CKD risk in this population. These findings may facilitate 
early detection of CKD in patients with abdominal obe-
sity and support informed decision-making by healthcare 
providers.
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