Number |
LaTex |
MathML |
Notes
|
1 |
x^2y^2 |
|
|
2 |
{ }_2F_3 |
|
|
3 |
\frac{x+y^2}{k+1} |
|
|
3b |
{x+y^2 \over k + 1} |
|
|
4 |
x + y^{\frac{2}{k+1} } |
|
|
5 |
\frac{a}{b/2} |
|
T375337
|
6 |
a_0 + \frac{1}{\displaystyle a_1 + \frac{1}{\displaystyle a_2 + \frac{1}{\displaystyle a_3 + \frac{1}{a_4} } } } |
|
|
7 |
a_0 + \tfrac{1}{a_1+\tfrac{1}{a_2+\tfrac{1}{a_3+\tfrac{1}{4} } } } |
|
|
8 |
\binom{n}{k/2} |
|
|
9 |
\binom{p}{2}x^2y^{p-2}-\frac{1}{1-x}\frac{1}{1-x^2} |
|
|
10a |
\sum_\substack{0 \le i \le m \\ 0 < j < n} P(i,j) }} |
|
Not currently supported T318784. See [1]
|
10b |
\sum_{{}^{0 \le i \le m}_{0 < j < n}} P(i,j) |
|
|
11 |
x^{2y} |
|
|
12 |
x^2 |
|
|
13 |
\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+x} } } } } } } |
|
|
14 |
\left( \frac{\partial}{\partial x^2}+\frac{\partial}{\partial x^2} \right) \left|\varphi(x+i y)\right|^2 = 0 |
|
|
15 |
2^{2^{2^x} } |
|
|
16 |
\int_1^x \frac{dt}{t} |
|
|
17 |
\iint_D dx dy |
|
|
18 |
f(x) = \begin{cases} 1/3 & \text{if } 0 \le x \le 1 \\ 2/3 & \text{if } 3 \le x \le 4 \\ 0 & \text{elsewhere} \end{cases} |
|
|
19 |
\overbrace{ x+\cdots+x }^{k\text{ times} } |
|
|
20 |
y_{x^2} |
|
|
21 |
\sum_{p\text{ prime} } f(p) = \int_{t>1} f(t) d\pi(t) |
|
|
22 |
\underbrace{ \overbrace{a,\ldots,a}^{k\,a\text{'s} }, \overbrace{b,\ldots,b}^{l\ b\text{'s} } }_{k+l\text{ elements} } |
|
|
23 |
\begin{pmatrix} \begin{pmatrix}a&b\\c&d\end{pmatrix} & \begin{pmatrix}e&f\\g&h\end{pmatrix} \\ 0 & \begin{pmatrix}i&j\\k&l\end{pmatrix} \end{pmatrix} |
|
T375346 Lots of space around the cells in matrix evironments in MathML mode
|
24 |
\det\begin{vmatrix} c_0 & c_1 & c_2 & \ldots & c_n \\ c_1 & c_2 & c_3 & \ldots & c_{n+1} \\ c_2 & c_3 & c_4 & \ldots & c_{n+2} \\ \vdots & \vdots & \vdots & & \vdots \\ c_n & c_{n+1} & c_{n+2} & \ldots & c_{2n} \end{vmatrix}>0 |
|
|
25 |
y_{x_2} |
|
|
26 |
x^{31415}_{92} |
|
|
27 |
x^{z^d_c}_{y^a_b} |
|
|
28 |
y^{\prime\prime\prime}_3 |
|
|