The Math extension uses a subset of TeX markup, including some extensions from LaTeX and AMS-LaTeX, to display mathematical formulas. It either generates SVG, MathML markup, or uses MathJax to render math on the client side, depending on user preferences and the complexity of the expression.

MathML and MathJax are planned to be used more in the future, with the SVG images becoming deprecated.

More precisely, MediaWiki filters the markup through Texvc, which in turn passes the commands to TeX for the actual rendering. Thus, only a limited part of the full TeX language is supported; see below for details.

Top-level syntax

edit

Traditionally, math markup goes inside the XML-style tag math: ‎<math>...‎</math>.

As with all XML-style tags, one can use the function #tag: {{#tag:math|...}}; this is more versatile: the wikitext at the dots is first expanded before interpreting the result as TeX code. Thus it can contain parameters, variables, parser functions and templates. Note however that with this syntax double braces in the TeX code must have a space in between, to avoid confusion with their use in template calls etc. Also, to produce the character "|" inside the TeX code, use {{!}}.

In TeX, as in HTML, extra spaces and newlines are ignored.

Rendering

edit

The alt text of the images, which is displayed to visually impaired and other readers who cannot see the images, and is also used when the text is selected and copied, is equivalent to the TeX code that produced the image.

Apart from function and operator names, as is customary in mathematics for variables, letters are in italics; digits are not. For other text, (like variable labels) to avoid being rendered in italics like variables, use \text, \mbox, or \mathrm. You can also define new function names using \operatorname{...}. For example, <math>\text{abc}</math> gives abc. You can also define new function names using \operatorname{...}.

Special characters

edit

The following symbols are reserved characters that either have a special meaning under LaTeX or are unavailable in all the fonts.

# $ % ^ & _ { } ~ \

Some of these can be entered with a backslash in front:

<math>\# \$ \% \& \_ \{ \} </math>#$%&_{}

Others have special names:

<math> \hat{} \quad \tilde{} \quad \backslash </math>^~

TeX and HTML

edit

Before introducing TeX markup for producing special characters, it should be noted that, as this comparison table shows, sometimes similar results can be achieved in HTML (see help about special characters).

TeX Syntax (forcing PNG) TeX Rendering HTML Syntax HTML Rendering
<math>\alpha</math> α {{math|<var>&alpha;</var>}} α
<math> f(x) = x^2\,</math> f(x)=x2 {{math|''f''(<var>x</var>) {{=}} <var>x</var><sup>2</sup>}} f(x) = x2
<math>\sqrt{2}</math> 2 {{math|{{radical|2}}}} 2
<math>\sqrt{1-e^2}</math> 1e2 {{math|{{radical|1 &minus; ''e''&sup2;}}}} 1 − e²

The codes on the left produce the symbols on the right, but the latter can also be put directly in the wikitext, except for ‘=’.

Syntax Rendering
&alpha; &beta; &gamma; &delta; &epsilon; &zeta;
&eta; &theta; &iota; &kappa; &lambda; &mu; &nu;
&xi; &omicron; &pi; &rho; &sigma; &sigmaf;
&tau; &upsilon; &phi; &chi; &psi; &omega;
&Gamma; &Delta; &Theta; &Lambda; &Xi; &Pi;
&Sigma; &Phi; &Psi; &Omega;
α β γ δ ε ζ
η θ ι κ λ μ ν
ξ ο π ρ σ ς
τ υ φ χ ψ ω
Γ Δ Θ Λ Ξ Π
Σ Φ Ψ Ω
&int; &sum; &prod; &radic; &minus; &plusmn; &infty;
&asymp; &prop; {{=}} &equiv; &ne; &le; &ge; 
&times; &sdot; &divide; &part; &prime; &Prime;
&nabla; &permil; &deg; &there4; &Oslash; &oslash;
&isin; &notin; 
&cap; &cup; &sub; &sup; &sube; &supe;
&not; &and; &or; &exist; &forall; 
&rArr; &hArr; &rarr; &harr; &uarr; 
&alefsym; - &ndash; &mdash; 
∫ ∑ ∏ √ − ± ∞
≈ ∝ = ≡ ≠ ≤ ≥
× ⋅ ÷ ∂ ′ ″
∇ ‰ ° ∴ Ø ø
∈ ∉ ∩ ∪ ⊂ ⊃ ⊆ ⊇
¬ ∧ ∨ ∃ ∀
⇒ ⇔ → ↔ ↑
ℵ - – —

Both HTML and TeX have advantages in some situations.

Pros of HTML

edit
  1. Formulas in HTML behave more like regular text.
  2. The formula’s background and font size match the rest of HTML contents (this can be fixed on TeX formulas by using the commands \pagecolor and \definecolor) and the appearance respects CSS and browser settings while the typeface is conveniently altered to help you identify formulae.
  3. Formulae typeset with HTML code will be accessible to client-side script links (a.k.a. scriptlets).
  4. The display of a formula entered using mathematical templates can be conveniently altered by modifying the templates involved; this modification will affect all relevant formulae without any manual intervention.
  5. The HTML code, if entered diligently, will contain all semantic information to transform the equation back to TeX or any other code as needed. It can even contain differences TeX does not normally catch, e.g. {{math|''i''}} for the imaginary unit and {{math|<var>i</var>}} for an arbitrary index variable.
  6. Formulae using HTML code will render as sharp as possible no matter what device is used to render them.

Pros of TeX

edit
  1. TeX is semantically more precise than HTML.
    1. In TeX, "<math>x</math>" means "mathematical variable x", whereas in HTML "x" is generic and somewhat ambiguous.
    2. On the other hand, if you encode the same formula as "{{math|<var>x</var>}}", you get the same visual result x and no information is lost. This requires diligence and more typing that could make the formula harder to understand as you type it.
  2. One consequence of point 1 is that TeX code can be transformed into HTML, but not vice-versa (unless your wikitext follows the style of point 1.2). This means that on the server side we can always transform a formula, based on its complexity and location within the text, user preferences, type of browser, etc. Therefore, where possible, all the benefits of HTML can be retained, together with the benefits of TeX.
  3. Another consequence of point 1 is that TeX can be converted to MathML (e.g. by MathJax) for browsers which support it, thus keeping its semantics and allowing the rendering to be better suited for the reader’s graphic device.
  4. TeX is the preferred text formatting language of most professional mathematicians, scientists, and engineers writing in English. It is easier to persuade them to contribute if they can write in TeX.
  5. TeX has been specifically designed for typesetting formulae, so input is easier and more natural if you are accustomed to it, and output is more aesthetically pleasing if you focus on a single formula rather than on the whole containing page.
  6. Once a formula is done correctly in TeX, it will render reliably, whereas the success of HTML formulae is somewhat dependent on browsers or versions of browsers. Another aspect of this dependency is fonts: the serif font used for rendering formulae is browser-dependent and it may be missing some important glyphs. While the browser generally capable to substitute a matching glyph from a different font family, it need not be the case for combined glyphs (compare ‘  ’ and ‘  ’).
  7. When writing in TeX, editors need not worry about whether this or that version of this or that browser supports this or that HTML entity. The burden of these decisions is put on the software. This does not hold for HTML formulae, which can easily end up being rendered wrongly or differently from the editor’s intentions on a different browser.
  8. TeX formulae, by default, render larger and are usually more readable than HTML formulae and are not dependent on client-side browser resources, such as fonts, and so the results are more reliably WYSIWYG.
  9. While TeX does not assist you in finding HTML codes or Unicode values (which you can obtain by viewing the HTML source in your browser), cutting and pasting from a TeX PNG in Wikipedia into simple text will return the LaTeX source.

In some cases it may be the best choice to use neither TeX nor the html-substitutes, but instead the simple ASCII symbols of a standard keyboard (see below, for an example).

Functions, symbols, special characters

edit

Accents/diacritics

edit
\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a} a´a`a^a~a˘
\check{a} \bar{a} \ddot{a} \dot{a} aˇa¯a¨a˙

Standard functions

edit
\sin a \cos b \tan c sinacosbtanc
\sec d \csc e \cot f secdcscecotf
\arcsin h \arccos i \arctan j arcsinharccosiarctanj
\sinh k \cosh l \tanh m \coth n sinhkcoshltanhmcothn
\operatorname{sh}o\,\operatorname{ch}p\,\operatorname{th}q shochpthq
\operatorname{arsinh}r\,\operatorname{arcosh}s\,\operatorname{artanh}t arsinhrarcoshsartanht
\lim u \limsup v \liminf w \min x \max y limulim supvlim infwminxmaxy
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g infzsupaexpblnclgdlogelog10fkerg
\deg h \gcd i \Pr j \det k \hom l \arg m \dim n deghgcdiPrjdetkhomlargmdimn

Modular arithmetic

edit
s_k \equiv 0 \pmod{m} sk0(modm)
a\,\bmod\,b amodb

Derivatives

edit
\nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2} xdxx˙y¨dy/dxdydx2yx1x2

Sets

edit
\forall \exists \empty \emptyset \varnothing
\in \ni \not\in \notin \not\ni \subset \subseteq \supset \supseteq ∉∌
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup

Operators

edit
+ \oplus \bigoplus \pm \mp - +±
\times \otimes \bigotimes \cdot \circ \bullet \bigodot ×
\star * / \div \frac{1}{2} */÷12

Logic

edit
\land (or \and) \wedge \bigwedge \bar{q} \to p q¯p
\lor \vee \bigvee \lnot \neg q \And ¬¬q&

Root

edit
\sqrt{2} \sqrt[n]{x} 2xn

Relations

edit
\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=} =˙=def
< \le \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto <>≢or
\lessapprox \lesssim \eqslantless \leqslant \leqq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox

Geometric

edit
\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ 45

Arrows

edit
\leftarrow (or \gets) \rightarrow (or \to) \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow
\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow (or \impliedby) \Longrightarrow (or \implies) \Longleftrightarrow (or \iff)
\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow
\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons
\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright
\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft
\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow

Special

edit
\And \eth \S \P \% \dagger \ddagger \ldots \cdots \colon &ð§%:
\smile \frown \wr \triangleleft \triangleright \infty \bot \top
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar ı
\ell \mho \Finv \Re \Im \wp \complement
\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp

Unsorted (new stuff)

edit
\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown k
\square \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge
\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes
\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant
\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq
\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft
\Vvdash \bumpeq \Bumpeq \eqsim \gtrdot
\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq
\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \between \shortparallel \pitchfork
\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq
\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid
\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr
\subsetneq
\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq
\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq
\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq
\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus ȷ
\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq ⨿
\dashv \asymp \doteq \parallel
\ulcorner \urcorner \llcorner \lrcorner
\Coppa\coppa\Digamma\Koppa\koppa\Sampi\sampi\Stigma\stigma\varstigma ϘϙϜϞϟϠϡϚϛϛ

Larger expressions

edit

Subscripts, superscripts, integrals

edit
Feature Syntax How it looks rendered
Superscript a^2 a2
Subscript a_2 a2
Grouping a^{2+2} a2+2
a_{i,j} ai,j
Combining sub & super without and with horizontal separation x_2^3 x23
{x_2}^3 x23
Super super 10^{10^{8}} 10108
Preceding and/or Additional sub & super _nP_k nPk
\sideset{_1^2}{_3^4}\prod_a^b 3412ab
{}_1^2\!\Omega_3^4 12Ω34
Stacking \overset{\alpha}{\omega} ωα
\underset{\alpha}{\omega} ωα
\overset{\alpha}{\underset{\gamma}{\omega}} ωγα
\stackrel{\alpha}{\omega} ωα
Derivatives x', y'', f', f'' x,y,f,f
x^\prime, y^{\prime\prime} x,y
Derivative dots \dot{x}, \ddot{x} x˙,x¨
Underlines, overlines, vectors \hat a \ \bar b \ \vec c a^b¯c
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} abcddef^
\overline{g h i} \ \underline{j k l} ghijkl_
\not 1 \ \cancel{123} 1123
Arrows A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C An+μ1BTn±i1C
Overbraces \overbrace{ 1+2+\cdots+100 }^{\text{sum}\,=\,5050} 1+2++100sum=5050
Underbraces \underbrace{ a+b+\cdots+z }_{26\text{ terms}} a+b++z26 terms
Sum \sum_{k=1}^N k^2 k=1Nk2
Sum (force \textstyle) \textstyle \sum_{k=1}^N k^2 k=1Nk2
Product \prod_{i=1}^N x_i i=1Nxi
Product (force \textstyle) \textstyle \prod_{i=1}^N x_i i=1Nxi
Coproduct \coprod_{i=1}^N x_i i=1Nxi
Coproduct (force \textstyle) \textstyle \coprod_{i=1}^N x_i i=1Nxi
Limit \lim_{n \to \infty}x_n limnxn
Limit (force \textstyle) \textstyle \lim_{n \to \infty}x_n limnxn
Integral \int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx 13e3/xx2dx
Integral (alternate limits style) \int_{1}^{3}\frac{e^3/x}{x^2}\, dx 13e3/xx2dx
Integral (force \textstyle) \textstyle \int\limits_{-N}^{N} e^x\, dx NNexdx
Integral (force \textstyle, alternate limits style) \textstyle \int_{-N}^{N} e^x\, dx NNexdx
Double integral \iint\limits_D \, dx\,dy Ddxdy
Triple integral \iiint\limits_E \, dx\,dy\,dz Edxdydz
Quadruple integral \iiiint\limits_F \, dx\,dy\,dz\,dt Fdxdydzdt
Line or path integral \int_C x^3\, dx + 4y^2\, dy Cx3dx+4y2dy
Closed line or path integral \oint_C x^3\, dx + 4y^2\, dy Cx3dx+4y2dy
Intersections \bigcap_1^n p 1np
Unions \bigcup_1^k p 1kp

Fractions, matrices, multilines

edit
Feature Syntax How it looks rendered
Fractions \frac{1}{2}=0.5 12=0.5
Small ("text style") fractions \tfrac{1}{2} = 0.5 12=0.5
Large ("display style") fractions \dfrac{k}{k-1} = 0.5 kk1=0.5
Mixture of large and small fractions \dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] }{ 1-\tfrac{1}{2} } = s_n 12[1(12)n]112=sn
Continued fractions (note the difference in formatting)
\cfrac{2}{ c + \cfrac{2}{ d + \cfrac{1}{2} } } = a
\qquad
\dfrac{2}{ c + \dfrac{2}{ d + \dfrac{1}{2} } } = a
2c+2d+12=a2c+2d+12=a
Binomial coefficients \binom{n}{k} (nk)
Small ("text style") binomial coefficients \tbinom{n}{k} (nk)
Large ("display style") binomial coefficients \dbinom{n}{k} (nk)
Matrices
\begin{matrix}
x & y \\
z & v 
\end{matrix}
xyzv
\begin{vmatrix}
x & y \\
z & v 
\end{vmatrix}
|xyzv|
\begin{Vmatrix}
x & y \\
z & v
\end{Vmatrix}
xyzv
\begin{bmatrix}
0      & \cdots & 0      \\
\vdots & \ddots & \vdots \\ 
0      & \cdots & 0
\end{bmatrix}
[0000]
\begin{Bmatrix}
x & y \\
z & v
\end{Bmatrix}
{xyzv}
\begin{pmatrix}
x & y \\
z & v 
\end{pmatrix}
(xyzv)
\bigl( \begin{smallmatrix}
a&b\\ c&d
\end{smallmatrix} \bigr)
(abcd)
Arrays
\begin{array}{|c|c||c|} a & b & S \\
\hline
0&0&1\\
0&1&1\\
1&0&1\\
1&1&0
\end{array}
abS001011101110
Cases
f(n) = 
\begin{cases} 
n/2,  & \mbox{if }n\mbox{ is even} \\
3n+1, & \mbox{if }n\mbox{ is odd} 
\end{cases}
f(n)={n/2,if n is even3n+1,if n is odd
System of equations
\begin{cases}
3x + 5y +  z &= 1 \\
7x - 2y + 4z &= 2 \\
-6x + 3y + 2z &= 3
\end{cases}
{3x+5y+z=17x2y+4z=26x+3y+2z=3
Breaking up a long expression so it wraps when necessary
<math>f(x) = \sum_{n=0}^\infty a_n x^n</math>
<math>= a_0 + a_1x + a_2x^2 + \cdots</math>
f(x)=n=0anxn =a0+a1x+a2x2+
Multiline equations
\begin{align}
f(x) & = (a+b)^2 \\
& = a^2+2ab+b^2
\end{align}
f(x)=(a+b)2=a2+2ab+b2
\begin{alignat}{2}
f(x) & = (a-b)^2 \\
& = a^2-2ab+b^2
\end{alignat}
f(x)=(ab)2=a22ab+b2
Multiline equations with aligment specified (left, center, right)
\begin{array}{lcl}
z        & = & a \\
f(x,y,z) & = & x + y + z  
\end{array}
z=af(x,y,z)=x+y+z
\begin{array}{lcr}
z        & = & a \\
f(x,y,z) & = & x + y + z     
\end{array}
z=af(x,y,z)=x+y+z

Parenthesizing big expressions, brackets, bars

edit
Feature Syntax How it looks rendered
Bad ( \frac{1}{2} ) (12)
Good \left ( \frac{1}{2} \right ) (12)

You can use various delimiters with \left and \right:

Feature Syntax How it looks rendered
Parentheses \left ( \frac{a}{b} \right ) (ab)
Brackets \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack [ab][ab]
Braces (note the backslash before the braces in the code) \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace {ab}{ab}
Angle brackets \left \langle \frac{a}{b} \right \rangle ab
Bars and double bars (note: "bars" provide the absolute value function) \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \| |ab|cd
Floor and ceiling functions: \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil abcd
Slashes and backslashes \left / \frac{a}{b} \right \backslash /ab\
Up, down and up-down arrows \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow ababab
Delimiters can be mixed, as long as \left and \right are both used \left [ 0,1 \right )
\left \langle \psi \right |
[0,1)
ψ|
Use \left. or \right. if you don't want a delimiter to appear: \left . \frac{A}{B} \right \} \to X AB}X
Size of the delimiters \big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big] ((((]]]]
\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle {{{{
\big| \Big| \bigg| \Bigg| \dots \Bigg\| \bigg\| \Big\| \big\| ||||
\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil
\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow
\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow
\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash ////\\\\

Alphabets and typefaces

edit

Texvc cannot render arbitrary Unicode characters. Those it can handle can be entered by the expressions below. For others, such as Cyrillic, they can be entered as Unicode or HTML entities in running text, but cannot be used in displayed formulas.

Greek alphabet
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta ABΓΔEZ
\Eta \Theta \Iota \Kappa \Lambda \Mu HΘIKΛM
\Nu \Xi \Omicron \Pi \Rho \Sigma \Tau NΞOΠPΣT
\Upsilon \Phi \Chi \Psi \Omega ΥΦXΨΩ
\alpha \beta \gamma \delta \epsilon \zeta αβγδϵζ
\eta \theta \iota \kappa \lambda \mu ηθικλμ
\nu \xi \omicron \pi \rho \sigma \tau νξoπρστ
\upsilon \phi \chi \psi \omega υϕχψω
\varepsilon \digamma \vartheta \varkappa εϝϑϰ
\varpi \varrho \varsigma \varphi ϖϱςφ
Blackboard Bold/Scripts
\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} 𝔸𝔹𝔻𝔼𝔽𝔾
\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} 𝕀𝕁𝕂𝕃𝕄
\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} 𝕆𝕊𝕋
\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z} 𝕌𝕍𝕎𝕏𝕐
\C \N \Q \R \Z
boldface (vectors)
\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} ABCDEFG
\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} HIJKLM
\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} NOPQRST
\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} UVWXYZ
\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} abcdefg
\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} hijklm
\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} nopqrst
\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} uvwxyz
\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} 01234
\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9} 56789
Boldface (greek)
\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} ABΓΔEZ
\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu} HΘIKΛM
\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Omicron} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau} NΞOΠPΣT
\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega} ΥΦXΨΩ
\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta} αβγδϵζ
\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu} ηθικλμ
\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\omicron} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau} νξoπρστ
\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega} υϕχψω
\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} εϝϑϰ
\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi} ϖϱςφ
Italics
\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} ABCDEFG
\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} HIJKLM
\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} NOPQRST
\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} UVWXYZ
\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} abcdefg
\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} hijklm
\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} nopqrst
\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} uvwxyz
\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} 01234
\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9} 56789
Roman typeface
\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} ABCDEFG
\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} HIJKLM
\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} NOPQRST
\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} UVWXYZ
\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g} abcdefg
\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} hijklm
\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} nopqrst
\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} uvwxyz
\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} 01234
\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9} 56789
Fraktur typeface
\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} 𝔄𝔅𝔇𝔈𝔉𝔊
\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} 𝔍𝔎𝔏𝔐
\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} 𝔑𝔒𝔓𝔔𝔖𝔗
\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} 𝔘𝔙𝔚𝔛𝔜
\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} 𝔞𝔟𝔠𝔡𝔢𝔣𝔤
\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} 𝔥𝔦𝔧𝔨𝔩𝔪
\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} 𝔫𝔬𝔭𝔮𝔯𝔰𝔱
\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} 𝔲𝔳𝔴𝔵𝔶𝔷
\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} 01234
\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9} 56789
Calligraphy/Script
\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} 𝒜𝒞𝒟𝒢
\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} 𝒥𝒦
\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} 𝒩𝒪𝒫𝒬𝒮𝒯
\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z} 𝒰𝒱𝒲𝒳𝒴𝒵
Hebrew
\aleph \beth \gimel \daleth
Feature Syntax How it looks rendered
non-italicised characters \mbox{abc} abc
mixed italics (bad) \mbox{if} n \mbox{is even} ifnis even
mixed italics (good) \mbox{if }n\mbox{ is even} if n is even
mixed italics (more legible: ~ is a non-breaking space, while "\ " forces a space) \mbox{if}~n\ \mbox{is even} ifnis even

Color

edit

Equations can use color:

  • {\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}
    x2+2x1
  • x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}
    x1,2=b±b24ac2a

See here for all named colors (archived) supported by LaTeX.

Note that color should not be used as the only way to identify something, because it will become meaningless on black-and-white media or for color-blind people.

Formatting issues

edit

Spacing

edit

Note that TeX handles most spacing automatically, but you may sometimes want manual control.

Feature Syntax How it looks rendered
double quad space a \qquad b ab
quad space a \quad b ab
text space a\ b ab
text space without PNG conversion a \mbox{ } b a b
large space a\;b ab
medium space a\>b [not supported]
small space a\,b ab
no space ab ab
small negative space a\!b ab

Automatic spacing may be broken in very long expressions (because they produce an overfull hbox in TeX):

<math>0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots</math>
0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+

This can be remedied by putting a pair of braces { } around the whole expression:

<math>{0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots}</math>
0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+

Empty horizontal or vertical spacing

edit

The phantom commands create empty horizontal and/or vertical space the same height and/or width of the argument.

Feature Syntax How it looks rendered
Empty horizontal and vertical spacing \Gamma^{\phantom{i}j}_{i\phantom{j}k} Γijkij
Empty vertical spacing -e\sqrt{\vphantom{p'}p},\; -e'\sqrt{p'},\; \ldots epp,ep,
Empty horizontal spacing \int u^2\,du=\underline{\hphantom{(2/3)u^3+C}} u2du=(2/3)u3+C_


Alignment with normal text flow

edit

Due to the default css

img.tex { vertical-align: middle; }

an inline expression like NNexdx should look good.

If you need to align it otherwise, use <math style="vertical-align:-100%;">...</math> and play with the vertical-align argument until you get it right; however, how it looks may depend on the browser and the browser settings.

Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all.

Chemistry

edit

There are two ways to render chemical sum formulae as used in chemical equations:

  • <math chem>
  • <chem>

<chem>X</chem> is short for <math chem>\ce{X}</math>.

(where X is a chemical sum formula)

Technically, <math chem> is a math tag with the extension mhchem enabled, according to the mathjax documentation.

Note, that the commands \cee and \cf are disabled, because they are marked as deprecated in the mhchem LaTeX package documentation.

If the formula reaches a certain "complexity", spaces might be ignored (<chem>A + B</chem> might be rendered as if it were <chem>A+B</chem> with a positive charge). In that case, write <chem>A{} + B</chem> (and not <chem>{A} + {B}</chem> as was previously suggested). This will allow auto-cleaning of formulae once the bug will be fixed and/or a newer mhchem version will be used.

See examples below.

Examples

edit

Chemistry

edit
<chem>C6H5-CHO</chem>
CA6HA5CHO
<chem>\mathit{A} ->[\ce{+H2O}] \mathit{B}</chem>
A+HA2OB
<math chem>A \ce{->[\ce{+H2O}]} B</math>
A+HA2OB
<chem>SO4^2- + Ba^2+ -> BaSO4 v</chem>
SOA4A2+BaA2+BaSOA4
<chem>H2NCO2- + H2O <=> NH4+ + CO3^2-</chem>
HA2NCOA2A+HA2ONHA4A++COA3A2
<chem>H2O</chem>
HA2O
<chem>Sb2O3</chem>
SbA2OA3
<chem>H+</chem>
HA+
<chem>CrO4^2-</chem>
CrOA4A2
<chem>AgCl2-</chem>
AgClA2A
<chem>[AgCl2]-</chem>
[AgClA2]A
<chem>Y^{99}+</chem>
YA99+
<chem>Y^{99+}</chem>
YA99+
<chem>H2_{(aq)}</chem>
HA2A(aq)
<chem>NO3-</chem>
NOA3A
<chem>(NH4)2S</chem>
(NHA4)A2S

Quadratic Polynomial

edit
ax2+bx+c=0

<math>ax^2 + bx + c = 0</math>

Quadratic Polynomial (Force PNG Rendering)

edit
ax2+bx+c=0

<math>ax^2 + bx + c = 0\,</math>

Quadratic Formula

edit
x=b±b24ac2a

<math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>

Tall Parentheses and Fractions

edit
2=((3x)×23x)

<math>2 = \left(
 \frac{\left(3-x\right) \times 2}{3-x}
 \right)</math>

Snew=Sold(5T)22

 <math>S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}</math>
 

Integrals

edit
axasf(y)dyds=axf(y)(xy)dy

<math>\int_a^x \!\!\!\int_a^s f(y)\,dy\,ds
 = \int_a^x f(y)(x-y)\,dy</math>

Summation

edit
m=1n=1m2n3m(m3n+n3m)

<math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}
 {3^m\left(m\,3^n+n\,3^m\right)}</math>

Differential Equation

edit
u+p(x)u+q(x)u=f(x),x>a

<math>u'' + p(x)u' + q(x)u=f(x),\quad x>a</math>

Complex numbers

edit
|z¯|=|z|,|(z¯)n|=|z|n,arg(zn)=narg(z)

<math>|\bar{z}| = |z|,
 |(\bar{z})^n| = |z|^n,
 \arg(z^n) = n \arg(z)</math>

Limits

edit
limzz0f(z)=f(z0)

<math>\lim_{z\rightarrow z_0} f(z)=f(z_0)</math>

Integral Equation

edit
ϕn(κ)=14π2κ20sin(κR)κRR[R2Dn(R)R]dR

<math>\phi_n(\kappa) =
 \frac{1}{4\pi^2\kappa^2} \int_0^\infty
 \frac{\sin(\kappa R)}{\kappa R}
 \frac{\partial}{\partial R}
 \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math>

Example

edit
ϕn(κ)=0.033Cn2κ11/3,1L0κ1l0

<math>\phi_n(\kappa) = 
 0.033C_n^2\kappa^{-11/3},\quad
 \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}</math>

Continuation and cases

edit
f(x)={11x<012x=01x2otherwise

<math>
 f(x) =
 \begin{cases}
 1 & -1 \le x < 0 \\
 \frac{1}{2} & x = 0 \\
 1 - x^2 & \mbox{otherwise}
 \end{cases}
 </math>

Prefixed subscript

edit
pFq(a1,,ap;c1,,cq;z)=n=0(a1)n(ap)n(c1)n(cq)nznn!

 <math>{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z)
 = \sum_{n=0}^\infty
 \frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n}
 \frac{z^n}{n!}</math>

Fraction and small fraction

edit
abab
<math> \frac {a}{b}\  \tfrac {a}{b} </math>

Bug reports

edit

Bug reports and feature requests should be reported on Phabricator with the tag Math.

See also

edit
edit
  NODES
Note 9