Advertisement

Espacio métrico

En matemática, un espacio métrico es un tipo particular de espacio topológico donde una distancia entre puntos está definida. Corresponde al caso muy común en que se dispone de una noción de distancia sobre el espacio.

Contenido [ocultar] 1 Definición Formal 2 Otras definiciones 3 Topología de un espacio métrico 4 Sistemas axiomáticos alternativos 5 Ejemplos 6 Un análisis lógico 7 Espacios metrizables. 7.1 Teorema de metrización de Urysohn. 7.2 Teorema de metrización de Nagata-Smirnov (condición suficiente). 7.3 Teorema de metrización de Nagata-Smirnov (condición suficiente). 7.4 Teorema de metrización de Stone. 7.5 Teorema de metrización de Smirnov. 7.6 Teorema de metrización de espacios completamente separables. 8 Véase también


Definición Formal  [editar]Formalmente, un espacio métrico es un conjunto M (a cuyos elementos se les denomina puntos) con una función distancia asociada (también llamada una métrica)  (donde R es el conjunto de los números reales). Para todo x, y, z en M, esta función debe satisfacer las siguientes condiciones:

d(x, y) ≥ 0 d(x, x) = 0 (reflexividad) si d(x, y) = 0 entonces x = y (identidad de los indiscernibles) d(x, y) = d(y, x) (simetría) d(x, z) ≤ d(x, y) + d(y, z) (desigualdad triangular).

Otras definiciones  [editar]Se llama bola (abierta) centrada en  y de radio , al conjunto . Se denota usualmente como B(a,r). 

Se llama bola cerrada centrada en y de radio , al conjunto . Se denota usualmente como Bc(a,r) o por . En análisis funcional la terminología puede llevar un poco a confusión, pues a la bola abierta de radio r y centro a se la suele denotar por U(a,r) o por Ur(a), mientras -y aquí viene la posible confusión- a la bola cerrada de centro a y radio r se la denota por B(a,r) o por Br(a). Algunos autores utilizan la expresión disco en lugar de bola, así es que se puede hablar en términos de disco abierto y disco cerrado. En particular, esta terminología se utiliza en Variable Compleja, y cuando se considera la distancia euclídea sobre el conjunto .

Topología de un espacio métrico  [editar]La distancia dota a M de una topología, definiendo un subconjunto o parte U como abierta cuando: . A dicha topología se la denomina topología inducida por d en M.

Podemos entonces interpretar intuitivamente que un conjunto abierto es entonces una parte que tiene un cierto "espesor" alrededor de cada uno de sus puntos.

Un subespacio métrico de un espacio métrico es subespacio topológico del espacio topológico , donde es la topología en inducida por d. Es decir, hereda de la topología inducida por d.

Un entorno V de un punto a de un espacio métrico M no es más que un subconjunto de forma que exista un r > 0 tal que la bola abierta . El conjunto es base de la topología inducida por d, y también es base de entornos de dicha topología. Como es denso en , resulta entonces que también es base de entornos de la topología inducida por d. En consecuencia, todo espacio métrico cumple el Primer Axioma de Numerabilidad.

Todo espacio métrico es espacio de Hausdorff. Además, al igual que ocurre en espacios pseudométricos, para los espacios métricos son equivalentes las siguientes propiedades: ser espacio de Lindelöf, cumplir el Primer Axioma de Numerabilidad y ser separable.


Sistemas axiomáticos alternativos  [editar]La propiedad 1 (d(x, y) ≥ 0) se sigue de la 4 y la 5. Algunos autores usan la recta real extendida y admiten que la distancia tome el valor ∞. Cualquier métrica tal puede ser reescalada a una métrica finita (usando d'(x, y) = d(x, y) / (1 + d(x, y)) o d(x, y) = min(1, d(x, y))) y los dos conceptos de espacio métrico son equivalentes en lo que a topología se refiere. Una métrica es llamada ultramétrica si satisface la siguiente versión, más fuerte, de la desigualdad triangular.

. Si se elimina la propiedad 3, se obtiene un espacio pseudométrico. Sacando, en cambio, la propiedad 4, se obtiene un espacio quasimétrico. No obstante, perdiéndose simetría en este caso, se cambia, usualmente, la propiedad 3 tal que ambas d(x,y)=0 y d(y,x)=0 son necesarias para que x y y se identifiquen. Todas las combinaciones de lo anterior son posibles y referidas por sus nomenclaturas respectivas (por ejemplo como quasi-pseudo-ultramétrico).


Ejemplos  [editar]La distancia trivial: d(x,y) = 0 si x = y, caso contrario, 1. 

Los números reales con la función distancia d(x, y) = |y - x| dada por el valor absoluto, y más generalmente n-espacio euclídeo con la distancia euclídea, son espacios métricos completos. Más generalmente aun, cualquier espacio vectorial normado es un espacio métrico definiendo d(x, y) = ||y - x||. Si tal espacio es completo, lo llamamos espacio de Banach. Si X es un conjunto y M es un espacio métrico, entonces el conjunto de todas las funciones acotadas f : X -> M (i.e. aquellas funciones cuya imagen es un subconjunto acotado de M) puede ser convertido en un espacio métrico definiendo d(f, g) = supx en X d(f(x), g(x)) para cualesquiera funciones acotadas f y g. Si M es completo, entonces este espacio es completo también. Si X es un espacio topológico y M es un espacio métrico, entonces el conjunto de todas las funciones continuas acotadas de X a M forma un espacio métrico si definimos la métrica como antes: d(f, g) = supx en X d(f(x), g(x)) para cualesquiera funciones continuas acotadas f y g. Si M es completo, entonces este espacio es completo también. Si M es un espacio métrico, podemos convertir al conjunto K(M) de todos los subconjuntos compactos de M en un espacio métrico definiendo distancia de Hausdorff d(X, Y) = inf{r: para cada x en X existe un y en Y con d(x, y) < r y para cada y en Y existe un x en X con d(x, y) < r). En este métrica, dos elementos están cerca uno de otro si cada elemento de un conjunto está cerca de un cierto elemento del otro conjunto. Se puede demostrar que K(M) es completo si M es completo.

El contenido de la comunidad está disponible bajo CC-BY-SA a menos que se indique lo contrario.
  NODES
todo 4