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Let σ be the usual sum-of-divisors function. We say that a and b form a harmonious pair

if a
σ(a)

+ b
σ(b)

= 1; equivalently, the harmonic mean of
σ(a)
a

and
σ(b)
b

is 2. For example,

4 and 12 form a harmonious pair, since 4
σ(4)

= 4
7

and 12
σ(12)

= 3
7

. Every amicable pair is

harmonious, but there are many others. We show that the count of numbers that belong

to a harmonious pair having both members in [1, x] is at most x/ exp((log x)
1
12

+o(1)), as

x→∞.
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1. Introduction

Let �(n) denote the sum of the divisors of the natural number n. Recall that m and

n are said to form an amicable pair if �(m) = �(n) = m+n. The study of amicable

pairs dates back to antiquity, with the smallest such pair | 220 and 284 | known

already to Pythagoras.

While amicable pairs have been of interest for 2500 years, many of the most

natural questions remain unsolved. For example, although we know about 12 million

amicable pairs, we have no proof that there are in�nitely many. In the opposite

direction, there has been some success in showing that amicable pairs are not so

numerous. In 1955, Erd}os showed that the set of n belonging to an amicable pair

has asymptotic density zero [4]. This result has been subject to steady improvement

over the past 60 years [11,5,8,9,10]. We now know that the count of numbers not

exceeding x that belong to an amicable pair is smaller than

x= exp((log x)1/2) (1.1)

for all large x.

If m and n form an amicable pair, then �(m) = �(n) = m + n. From this, one

sees immediately that m
σ(m) + n

σ(n) = 1. In this paper, we study solutions to this

latter equation.

De�nition 1.1. We say a and b form a harmonious pair if a
σ(a) + b

σ(b) = 1.

The terminology here stems from the following simple observation: a and b form

a harmonious pair precisely when �(a)=a and �(b)=b have harmonic mean 2. While

every amicable pair is harmonious, there are many examples not of this kind, for

instance 2 and 120, or 3 and 45532800.

Our main theorem is an upper bound on the count of numbers belonging to

a harmonious pair. While harmonious pairs certainly appear to be more thick on

the ground than amicable pairs, we are able to get an upper estimate of the same

general shape as (1.1).

Theorem 1.1. Let � > 0. The number of integers belonging to a harmonious pair

a; b with max{a; b} ≤ x is at most x= exp((log x)
1
12−ε), for all x > x0(�).

As a corollary of Theorem 1.1, the reciprocal sum of those integers that are the

larger member of a harmonious pair is convergent. Note that Theorem 1.1 does not

give a reasonable bound on the number of harmonious pairs lying in [1; x].

We are not aware of any previous work on harmonious pairs, as such. However,

the following result can be read out of a paper of Borho [2]: If a; b form a harmonious

pair and 
(ab) = K, then ab ≤ K2K . Borho states this for amicable pairs, but only

the harmonious property of the pair is used in the proof.

We also discuss discordant numbers, being those numbers that are not a member

of a harmonious pair. We show there are in�nitely many discordant numbers, in fact,

more than x=(log x)ε of them in [1; x], when � > 0 is �xed and x is su�ciently large.



2. January 4, 2015 1:10 WSPC/INSTRUCTION FILE KozekLucaPol-
lackPomeranceIJNTv4

Harmonious pairs 3

Probably a positive proportion of numbers are discordant, but we have not been

able to prove this. A weaker assertion that seems to escape us: it is not the case

that the numbers that belong to some harmonious pair form a set of asymptotic

density 1.

At the end of the paper we use harmonious pairs to disprove a conjecture in [7].

Notation

Throughout this paper, we use the Bachmann{Landau symbols O and o as well

as the Vinogradov symbols � and � with their regular meanings. Recall that

A = O(B) and A� B are both equivalent to the fact that the inequality |A| < cB

holds with some constant c > 0. Further, A � B is equivalent to B � A, while

A = o(B) means that A=B → 0. We write logk x for the iteration of the natural log

function, with the understanding that x will be big enough to have logk x ≥ 1. We

let P+(n) denote the largest prime factor of n, with the convention that P+(1) = 1.

We write s(n) for the sum of the proper divisors of n, so that s(n) = �(n)− n. If p

is prime, we write vp(n) for the exponent of p appearing in the prime factorization

of n. We let �(n) denote the number of positive divisors of n and let !(n) denote

the number of these divisors which are prime.

2. Proof of Theorem 1.1

The following proposition, whose proof constitutes the main part of the argument,

establishes ‘half’ of Theorem 1.1. This proof largely follows the plan in [9,10], though

here we have more cases.

Prop 2.1. The number of integers b ≤ x that are members of a harmonious pair

a; b with max{a; b} ≤ x and P+(b) ≥ P+(a) is

� x= exp((log x)
1
12 )

for all x ≥ 3.

Proof. We may assume that x > x0 where x0 is some large, absolute constant.

For � in (0; 1) and x ≥ 3 we put Lα = exp((log x)α). We aim to bound the count

of b-values by O(x=Lα) with some �xed � ∈ (0; 1), whose size we will detect from

our arguments. We will pile various conditions on b and keep track of the counting

function of those b ≤ x failing the given conditions.

1. We eliminate numbers b ≤ x having a square full divisor d > 1
2L

2
α. The counting

functions of those is bounded above by∑
d≥L2

α/2
d squarefull

x

d
� x

Lα
;

where the above estimate follows from the Abel summation formula using the fact

that the counting function of the number of square full numbers m ≤ t is O(t1/2).
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We eliminate numbers b ≤ x for which P+(b) ≤ L1−α. Putting y = L1−α, we

have u := log x= log y = (log x)α. By known estimates from the theory of smooth

numbers (e.g., [3]), we have that the number of integers b ≤ x with P+(b) ≤ x1/u is

≤ x

exp((1 + o(1))u log u)
as x→∞; (2.1)

when u < (log x)1−ε, so certainly the above count is < x=Lα once x is su�ciently

large.

3. We assume that � < 1=2. We eliminate numbers b ≤ x having a divisor d > L2α

with P+(d) ≤ L2
α. Put y = L2

α. For each t ≥ L2α, we have u = log t= log y ≥
0:5(log x)α. Thus, u log u� (log x)α log2 x, and in particular u log u > 3(log x)α for

x > x0. So the number of such d ≤ t is at most t=L2
α, uniformly for t ∈ [L2α; x],

assuming x > x0. Fixing d, the number of b ≤ x divisible by d is ≤ x=d. Using the

Abel summation formula to sum the reciprocals of such d, we get that the number

of such b ≤ x is bounded by

∑
L2α<d≤x
P+(d)≤L2

α

x

d
� x

L2
α

∫ x

L2α

dt

t
� x log x

L2
α

� x

Lα
:

4. We eliminate numbers b ≤ x having a prime factor p > L2
α such that p |

gcd(b; �(b)). Let us take a closer look at such numbers. Suppose that p > L2
α and

p | �(b). Then there is a prime power q` dividing b such that p | �(q`). If ‘ ≥ 2, then

2q` > �(q`) ≥ p > L2
α, so q` > L2

α=2 and q` | b with ‘ ≥ 2, but such b’s have been

eliminated at 1. So, ‘ = 1, therefore q ≡ −1 (mod p). Thus, b is divisible by pq for

some prime q ≡ −1 (mod p). The number of such numbers up to x is at most x
pq .

Summing up the above bound over all primes q ≤ x with q ≡ −1 (mod p) while

keeping p �xed, then over all primes p ∈ (L2
α; x] gives us a count of

∑
L2
α<p≤x

∑
q≡−1(mod p)

q≤x

x

pq
� x(log2 x)

∑
L2
α<p≤x

1

p2
� x

L2
α

� x

Lα
:

5. We eliminate the numbers b ≤ x=Lα, since obviously there are only at most

x=Lα such values of b.

Let

d = gcd(b; �(b)):

Then P+(d) ≤ L2
α by 4, so by 3 we have d ≤ L2α. Write b = P1m1, where P1 =

P+(b). By 2, we can assume that P1 > L1−α.



January 4, 2015 1:10 WSPC/INSTRUCTION FILE KozekLucaPollack-
PomeranceIJNTv4

Harmonious pairs 5

6. We eliminate b ≤ x corresponding to some a ≤ x=L2
2α. Indeed, let b have

a corresponding a with the above property. With c = gcd(a; �(a)), we have an

equality of reduced fractions

b=d

�(b)=d
=

(�(a)− a)=c

�(a)=c
:

Notice that c is determined uniquely in terms of a. Thus, b=d = (�(a) − a)=c is

also determined by a. Since d ≤ L2α, the number b is determined in at most L2α

ways from a. So the number of b corresponding to some a ≤ x=L2
2α is at most

x=L2α < x=Lα.

7. Similar to 6, we eliminate a bounded number of subsets of b ≤ x which have

some corresponding a ≤ x with a counting function of size O(x=L2
2α).

In particular, by an argument similar to the one at 1, we may assume that a has

no divisor which is squarefull and larger than L4
2α=2. In particular, if p2 | a, then

p < L2
2α. We may further assume that P+(a) > L1−2α by an argument similar to

the one at 2, and that if d1 is the largest divisor of a such that P+(d1) ≤ L4
2α, then

d1 ≤ L4α, again by an argument similar to the one used at 3. Assuming � ≤ 1
6 , we

then have

P+(a) > L1−2α ≥ L4α ≥ d1:

Further, P+(a) > L1−2α > L2
2α. Hence, P+(a)2 - a. Thus, a = Q1n1, where Q1 =

P+(a) and Q1 - n1.

8. Recall that c = gcd(a; �(a)). By an argument similar to 4, we may eliminate

numbers b ≤ x with some corresponding a having the property that there exists a

prime factor p | c such that p > L4
2α. Indeed, in this case p | a. Further, p | �(a)

so there is a prime power q` dividing a such that p | �(q`). If ‘ ≥ 2, then 2q` >

�(q`) ≥ p > L4
2α, contradicting 7. So, ‘ = 1, q ≡ −1 (mod p), and pq divides a,

so the number of such a ≤ x is at most x=pq. Summing up the above bound over

all primes q ≡ −1 (mod p) with q ≤ x, then over all primes p ∈ (L4
2α; x], we get a

count on the number of such a of∑
L4

2α<p≤x

∑
q≡−1 (mod p)

q≤x

x

pq
� x(log2 x)

∑
L4

2α<p≤x

1

p2
� x

L2
2α

;

and we are in a situation described at the beginning of 7.

By 8, we have that if p | c, then p ≤ L4
2α. So from 7, c ≤ d1 ≤ L4α.

9. We eliminate b ≤ x for which P+(P1 + 1) ≤ L1−2α. Assume that b satis�es this

condition. Then P1 + 1 ≤ x=m1 + 1 ≤ 2x=m1 is a number having P+(P1 + 1) ≤ y =

L1−2α, and P1 + 1 > P1 > L1−α, by 2. Thus, u := log(2x=m1)= log y ≥ (log x)α,



January 4, 2015 1:10 WSPC/INSTRUCTION FILE KozekLucaPollack-
PomeranceIJNTv4

6 Mark Kozek, Florian Luca, Paul Pollack, and Carl Pomerance

so that u log u > 3(log x)α for x > x0. Fixing m1, the number of such P1 (even

ignoring the fact that they are prime) is, again by (2.1), at most

x

L2
αm1

:

Summing over all m1 ≤ x, we get at most O(x(log x)=L2
α) = O(x=Lα) such b.

10. We may eliminate those b ≤ x corresponding to an a with P+(Q1+1) ≤ L1−4α.

Indeed, assume that b satis�es the above property. Then Q1+1 ≤ x=n1+1 ≤ 2x=n1.

Further, Q1 + 1 > Q1 > L1−2α by 7 and P+(Q1 + 1) ≤ L1−4α, so that with

y = L1−4α, we have u := log(2x=n1)= log y > (log x)2α. This shows that u log u >

4(log x)2α for x > x0. Thus, the number of possible numbers of the form Q1 + 1

(even ignoring the fact that Q1 is prime), is, again by (2.1), at most

x

L3
2αn1:

Summing up the above bound for n1 ≤ x, we see there are at most O(x(log x)=L3
2α)

possible a. So we are in the situation described at the beginning of 7.

11. Reducing the left and right-hand sides of the equation a
σ(a) = σ(b)−b

σ(b) gives

that a=c = (�(b)− b)=d. Hence,

Q1n1 = a = (c=d)(�(b)− b) = (c=d)(P1s(m1) + �(m1)); (2.2)

and so

Q1n1d = c(P1s(m1) + �(m1)):

Since c ≤ L4α and Q1 > L1−2α, it follows that Q1 - c. (Recall our assumption that

� ≤ 1
6 .) Hence, gcd(Q1; c) = 1, and c | n1d. Thus,

P1s(m1) + �(m1) = Q1�1;

where �1 = n1d=c. Further, since d ≤ L2α < Q1 and Q1 - n1, it follows that Q1 - �1.

We now break symmetry and make crucial use of our assumption that P1 ≥ Q1.

We claim that P1 - a. Assume for a contradiction that P1 | a. Recalling (2.2),

and using the fact that P1 > L1−α > max{c; d}, we get that P1 | �(b)− b, therefore

P1 | �(b), so P1 | d, which is false.

Let R1 = P+(P1+1). We note that R1 - a. Indeed, the argument is similar to the

argument that P1 - a. To see the details, assume that R1 | a. Since R1 > L1−2α ≥
max{c; d}, it follows from (2.2) that R1 | �(b)− b. But R1 | P1 + 1 | �(b), therefore

R1 | b. Thus, R1 | d, which is impossible since R1 > d. Now R1 | �(b)=d = �(a)=c.

Thus, there is some prime power Q`2 dividing a such that R1 | �(Q`2). Hence,

L1−2α < R1 ≤ �(Q`2) < 2Q`2. If ‘ ≥ 2, we then get L1−2α < 2Q`2 ≤ L4
2α by 7,

which is false for x > x0. Thus, ‘ = 1, and we have that R1 | Q2 + 1. In particular,





January 4, 2015 1:10 WSPC/INSTRUCTION FILE KozekLucaPollack-
PomeranceIJNTv4

8 Mark Kozek, Florian Luca, Paul Pollack, and Carl Pomerance

15. Now we put R2 = P+(P2 + 1). Then R2 > d if � < 1
10 , because R2 > L1−8α.

Thus, R2 | �(b)=d = �(a)=c, therefore there exists Q`3 dividing a such that R2 |
�(Q`3
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P2 = P1, in other words, R2 | P1 + 1. Suppose otherwise. Then R2 | σ(b)P1+1 = �(m1).

However, since m1 fails (2.5), �(m1) ≤ m2
1 ≤ (L1−6α)1/2 < R2.

Hence, R1 | P1 + 1 and R2 | P1 + 1.

18. Consider the case when R1 = R2. Then a = Q2Q3n3 and both Q2 and Q3

are congruent to −1 modulo R1. Fixing Q2; Q3, the number of such a is at most

x=Q2Q3. Summing this bound over all pairs of distinct primes Q2; Q3 up to x and

congruent to −1 modulo R1, we get a bound of O(x(log2 x)2=R2
1). Now summing

over all primes R1 ∈ (L1−2α; x], we get a count that is < x=L1−2α < x=L2
2α for

x > x0, and we are �ne by 7.

From now on, we assume that R1 6= R2, so that P1 ≡ −1 (mod R1R2).

19. We eliminate numbers b ≤ x such that either m1Q2R1 ≤ x or m1Q3R2 ≤ x.

Suppose we are in the �rst case. Then P1 ≡ −1 (mod R1), and

P1s(m1) + �(m1) ≡ 0 (mod Q2):

Since Q2 - s(m1), this puts P1 into an arithmetic progression modulo Q2. By the

Chinese remainder theorem, P1 ≤ x=m1 is in an arithmetic progression modulo

Q2R1, and the number of such numbers (ignoring the condition that P1 is prime) is

at most 1 +x=(m1Q2R1) ≤ 2x=(m1Q2R1). Here is where we use the condition that

m1Q2R1 ≤ x. We keep R1 �xed and sum over all m1 ≤ x, and primes Q2 ≡ −1

(mod R1), getting a count of O(x(log x)(log2 x)=R2
1). Then we sum over all primes

R1 ∈ (L1−2α; x], getting a count of O(x(log x)(log2 x)=L1−2α). This count of b values

is < x=Lα once x > x0.

The same applies when m1Q3R2 ≤ x. There, P1 ≡ −1 (mod R2) and the con-

gruence P1s(m1) + �(m1) ≡ 0 (mod Q3) together with the fact that Q3 does not

divide s(m1) puts P1 ≤ x=m1 in an arithmetic progression modulo Q3. By the Chi-

nese remainder theorem, P1 ≤ x=m1 is in an arithmetic progression modulo Q3R2,

and the number of such possibilities (ignoring the fact that P1 is prime) is at most

1 + x=(m1Q3R2) ≤ 2x=(m1Q3R2). Here we used that m1Q3R2 ≤ x. Summing up

the above bound over all m1 ≤ x and primes Q3 ≤ x in the arithmetic progression

−1 (mod R2), we get a count of O(x(log x)(log2 x)=R2
2). Summing up the above

bound over all R2 > L1−6α, we get a count of O(x(log x)(log2 x)=L1−6α). So the

number of these b is smaller than x=Lα for x > x0.

20. We now look at the instance m1Q2R1 > x and m1Q3R2 > x. We will show

that this set is empty for x > x0. Indeed, write Q2 = R1‘1 − 1; Q3 = R2‘2 − 1 for

some even integers ‘1; ‘2 > 0. The inequalities

m1Q2R1 > x and m1Q3R2 > x
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yield m1

√
Q2Q3R1R2 > x. Since R1R2 = (Q2 + 1)(Q3 + 1)=(‘1‘2) � Q2Q3=‘1‘2,

we get

m1Q2Q3√
‘1‘2

� x: (2.6)

Now

P1s(m1) + �(m1) = �(b)− b = a(d=c) = Q2Q3(n3d=c):

Since min{Q2; Q3} > max{d; c}, we have c | n3d. Put ‘3 = n3d=c. Then Q2Q3‘3 =

�(b)− b < �(b)� x log2 x. Thus, Q2Q3 � x(log2 x)=‘3. Hence, using (2.6),

xm1 log2 x

‘3
√
‘1‘2

� m1Q1Q2√
‘1‘2

� x giving ‘3
√
‘1‘2 � m1 log2 x:

In particular,

‘1 � m2
1(log2 x)2; ‘2 � m2

1(log2 x)2; ‘3 � m1 log2 x: (2.7)

Write P1 = R1R2‘− 1. We then have

(R1R2‘− 1)s(m1) + �(m1) = (R1‘1 − 1)(R2‘2 − 1)‘3;

which is equivalent to

(‘s(m1)− ‘1‘2‘3)R1R2 +m1 = −R1‘1‘3 −R2‘2‘3 + ‘3: (2.8)

Moving m1 to the other side, dividing by R1R2 and using (2.7), we get

|‘s(m1)− ‘1‘2‘3| = O

(
m1

R1R2
+
‘1‘3
R2

+
‘2‘3
R1

)
= O

(
m3

1(log2 x)3

L1−6α

)
= o(1);

as x → ∞, where the last estimate above comes from the fact that m1 fails (2.5).

Since the left{hand side above is an integer, it must be 0 for x > x0. Returning to

(2.8), we get

m1 = −R1‘1‘3 −R2‘2‘3 + ‘3 < 0;

a contradiction. Hence, this case cannot occur once x > x0.

Denouement Glancing back through the argument, we �nd that every step

can be carried out with � = 1
12 . Hence, the total count of b-values is

O(x= exp((log x)1/12)).

To count values of a paired with b having P+(a) ≤ P+(b), we use a method

introduced by Wirsing [16]. Wirsing showed that the number of solutions n ≤ x to

an equation of the form �(n)=n = � is at most exp(O(log x= log log x)), uniformly

in �. The next lemma provides a sharper bound if the number of primes dividing n

is not too large.

Lemma 2.2. Let k be a positive integer and let x ≥ 105. Let � ≥ 1 be a rational

number. The number of integers n ≤ x with !(n) ≤ k and σ(n)
n = � is at most

(2 log x)3k.
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Proof. Write � = �=�, where the right-hand fraction is in lowest terms. If �(n)=n =

�=�, then � | n. So we may assume that !(�) ≤ k. Given an n with �(n)=n = �,

put P = {p ≤ 2k} ∪ {p | �}, and write

n = AB; where A =
∏
p 6∈P

pvp(n); B =
∏
p∈P

pvp(n):

Note that � | B. The main idea of the proof is to show that B nearly determines

its cofactor A. Speci�cally, we will show that for any given B, the number of corre-

sponding A is at most (log x)k.

Since gcd(A;B) = 1, we have

�(A)�(B) =
�

�
AB: (2.9)

Moreover,

1 ≥ A=�(A) >
∏
p|A

(1− 1=p) ≥ 1−
∑
p|A

1

p
≥ 1− k

2k + 1
>

1

2
:

As a consequence,

1

2

(
�

�
B

)
< �(B) =

A

�(A)

(
�

�
B

)
≤ �

�
B: (2.10)

Thus, �(B) - λ
µB unless the �nal inequality is an equality, which occurs only if

A = 1 and �(B) = λ
µB.

Suppose that �(B) - λµB. Then there is a prime dividing �(B) to a higher power

than λ
µB. Let p1 be the least such prime and observe that p1 is entirely determined

by � and B. By (2.9), p1 | A. Suppose that pe11 ‖ A. Set A1 = A=pe11 and B1 = Bpe11 .

Then (2.9){(2.10) hold with A and B replaced by A1 and B1, respectively. From

the analogue of (2.10), we �nd that if �(B1) | λµB1, then A1 = 1, so that A = pe11 .

Suppose that �(B1) - λµB1. There is a prime dividing �(B1) to a higher power

than it divides λ
µB1. Let p2 be the smallest such prime. Then p2 is entirely deter-

mined by �;B, and e1, and p2 | A1. If pe22 ‖ A1, we set A2 = A1=p
e2
2 and B2 = B1p

e2
1 .

If �(B2) | λµB2, then A = pe21 p
e2
2 . If not, there is a prime dividing B2 to a higher

power than λ
µB2, which allows us to continue the argument.

We carry out this process until Ar = 1, which happens in r ≤ k steps. Then A =

pe11 · · · perr . Here each prime pi+1 is entirely determined by �;B, and e1; : : : ; ei. Thus,

A is entirely determined by �;B, and the exponent sequence e1; : : : ; er. Clearly,

3ei ≤ (2k + 1)ei ≤
r∏
i=1

peii = A ≤ x;

and so each ei ∈ [1; log x= log 3]. Extend e1; : : : ; er to a sequence e1; : : : ; ek by putting

ei = 0 for r < i ≤ k. Since each ei ∈ [0; log xlog 3 ], the number of possibilities for

e1; : : : ; er is at most (1 + log x
log 3 )k ≤ (log x)k, using in the last step that x ≥ 105.
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To bound the number of possibilities for n = AB, it now su�ces to estimate the

number of possibilities for B. We have B =
∏
p∈P pfp , where each fp ∈ [0; log xlog 2 ].

Thus, B belongs to a set of size at most(
1 +

log x

log 2

)#P

≤ (2 log x)#P ≤ (2 log x)π(2k)+ω(µ) ≤ (2 log x)k+k = (2 log x)2k:

Putting everything together gives a �nal upper bound of (log x)k · (2 log x)2k ≤
(2 log x)3k.

Proof of Theorem 1.1. In view of Proposition 2.1, it is enough to estimate the

number of a involved in a pair a; b with max{a; b} ≤ x and P+(b) ≥ P+(a). With

K ≥ 1 to be speci�ed shortly, we partition these a according to whether or not

!(a) ≤ K. Since σ(a)
a is determined by b, Lemma 2.2 and Proposition 2.1 show that

the number of a with !(a) ≤ K is

� (2 log x)3K · x= exp((log x)1/12):

On the other hand, since �(a) ≥ 2ω(a), we have that the number of a with !(a) > K

is

�
∑
n≤x

�(n)

2K
� x log x

2K
:

Adding these two estimates and taking K = (log x)1/12(log log x)−2 �nishes the

proof.

Remark 2.3. We have shown that there are not many integers which are the mem-

ber of some harmonious pair contained in [1; x]. It would be interesting to show

that there are not too many such harmonious pairs. Note that the upper bound

x exp(O(log x= log log x)) follows trivially from Wirsing’s theorem. One cannot im-

mediately derive a sharper estimate from Theorem 1.1, since a single integer may be

shared among many pairs. However, Theorem 1.1 and Lemma 2.2 imply (arguing

similarly to the proof just given) that the number of pairs with max{a; b} ≤ x and

min{!(a); !(b)} ≤ (log x)
1
12−δ is at most x= exp((log x)

1
12+o(1)), for any �xed � > 0.

3. Discordant numbers

Given a number a, is there a number b for which the pair a; b is harmonious? If not,

we say that a is discordant. Since a and b form a harmonious pair exactly when

�(b)=b = �(a)=s(a), deciding whether a is discordant amounts to solving a special

case of the following problem:

Problem 3.1 (Recognition problem for �(n)=n). Decide whether a given

rational number belongs to the image of the function �(n)=n.

Rational numbers not in the range of �(n)=n have been termed abundancy out-

laws. In the early 1970s, C.W. Anderson [1] conjectured that the set {�(n)=n} is



January 4, 2015 1:10 WSPC/INSTRUCTION FILE KozekLucaPollack-
PomeranceIJNTv4

Harmonious pairs 13

recursive: In other words, an algorithm exists for deciding whether or not a given

rational number is an outlaw. This conjecture is still open, but some partial results

can be found in [8]. See also [15,12,6,14].

Di�culties arise when trying to decide discordance even for small values of a.

The smallest number whose status is unresolved seems to be a = 11; to answer this,

we would need to know whether or not 12 is an abundancy outlaw. Anderson noted

that σ(b)
b = 5

3 if and only if 5b is an odd perfect number with 5 - b. Since σ(24)
s(24) = 5

3 ,

it follows that a = 24 is a member of a harmonious pair if and only if there is an

odd perfect number precisely divisible by 5.

It is perhaps not immediately clear that there are in�nitely many discordant

numbers. Here we prove the following modest lower bound.

Prop 3.2. The number of discordant integers n ≤ x is at least

x=(log x)(e
−γ+o(1))/ log3 x as x→∞.

The following simple lemma can be found in [1] and [15].

Lemma 3.3. Suppose v and u are coprime positive integers. If v < �(u), then v=u

is an abundancy outlaw.

Proof. Suppose v
u = σ(n)

n . Then u | n, so that v
u = σ(n)

n ≥ σ(u)
u . Hence, v ≥ �(u).

Lemma 3.3 implies the following criterion for discordance.

Lemma 3.4. If n; u; v are positive integers with s(n)=�(n) = u=v, gcd(u; v) = 1,

and

n

�(n)
+

u

�(u)
< 1; (3.1)

then n is discordant.

Proof. Our assumptions imply that u
σ(u) < 1− n

σ(n) = s(n)
σ(n) = u

v , so that v < �(u).

From Lemma 3.3, �(n)=s(n) is an outlaw; hence, n is discordant.

We now are ready to prove Proposition 3.2.

Proof. Let � > 0 be arbitrary but �xed and let � be the largest prime num-

ber smaller than eγ−ε log3 x. Thus, for large enough x we have � ≥ 5. Let

B = (log2 x)=(log3 x)2 and let A0 denote the least common multiple of integers

in [1; B] coprime to �. Further, let A be the product of A0 and all primes r with

the property that � | �(rvr(A0)). That is, if r is a prime and rα ‖ A0 with � | �(rα),

we multiply by r. We have

� - A�(A); A = exp((1 + o(1))B); �(A)=A = (eγ + o(1)) log3 x;

as x→∞.
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Let k run over integers to x1/4 such that A | k and � - k�(k). We would like a

lower bound for
∑

1=k. For this, we restrict our attention to numbers of the form

Aj, where j ≤ x1/5 is squarefree with no prime factors below B and no prime factors

in the residue class −1 (mod �). Let i0 = b3 log log(x1/5)c and let S denote the set

of primes r in (B; x1/5i0 ] with r 6≡ −1 (mod �). For an integer i ≤ i0, the sum Si
of reciprocals of squarefree numbers j ≤ x1/5 which have exactly i prime factors all

in S satis�es

Si ≥
1

i!

(∑
r∈S

1

r

)i
− 1

(i− 2)!

∑
r∈S

1

r2

(∑
r∈S

1

r

)i−2

>
1

(i− 2)!

(∑
r∈S

1

r

)i−2 1

i2

(∑
r∈S

1

r

)2

−
∑
r∈S

1

r2

 :

By the prime number theorem for residue classes (cf. [8, Theorem 1]),∑
r∈S

1

r
=

(
1− 1

� − 1

)
log

log(x1/5i0)

logB
+O(1)

=

(
1− 1

� − 1

)
log log x+O(log3 x): (3.2)

Thus, since
∑
r∈S 1=r2 � 1=B, this sum is small compared with (1=i2)(

∑
r∈S 1=r)2,

so that∑
k

1

k
≥ 1

A

∑
j

1

j
≥ 1

A

∑
i≤i0

Si �
1

A

∑
i≤i0

1

i!

(∑
r∈S

1

r

)i

=
1

A
e
∑
r∈S

1
r − 1

A

∑
i>i0

1

i!

(∑
r∈S

1

r

)i
= T1 − T2;

say. By (3.2), T1 � (log x)1−1/(π−1)=(A · (log log x)O(1)). Also note that by (3.2),

T2 ≤
∑
i>i0

1

i!

(∑
r∈S

1

r

)i
� 1

i0!

(∑
r∈S

1

r

)i0
≤

(
e

i0

∑
r∈S

1

r

)i0
= o(1)

as x→∞. Thus,∑
k

1

k
≥ 1

A · (log log x)O(1)
(log x)1−1/(π−1) = (log x)1−(1+o(1))/π; x→∞:

Next, for each k chosen, let q run over primes to x1/2=k, with q - k, � - q(q+ 1),

and

� - qs(k) + �(k) = s(qk):

To arrange for this last condition, note that if � | s(k), it is true automatically, and

if � - s(k), then there are at least � − 3 allowable residue classes for q modulo �
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(we discard the classes 0; 1;−�(k)=s(k)). For m = qk so chosen, we have A | m,

� - ms(m)�(m), and by the prime number theorem for residue classes,∑
m

1

m
=
∑
k

1

k

∑
q

1

q
�
∑
k

1

k
≥ (log x)1−(1+o(1))/π; x→∞:

Finally, for each m, we let p run over primes to x=m where p - m and

� | ps(m) + �(m) = s(pm): (3.3)

For (3.3), we take p in the residue class −�(m)=s(m) modulo �. Since � - �(m)s(m),

this is a nonzero residue class. Further, it is not the class −1 since � - m implies

that �(m) 6≡ s(m) (mod �). Thus, if we choose p satisfying (3.3), then � - p + 1.

For n = pm so chosen we have by the prime number theorem for residue classes∑
n≤x

1 =
∑
m

∑
p

1�
∑
m

x=m

� log(x=m)
� x

� log x

∑
m

1

m
≥ x

(log x)(1+o(1))/π
(3.4)

as x→∞.

It remains to note that for each number n constructed we have n ≤ x, A | n,

and if s(n)=�(n) = u=v with u; v coprime, then � | u. Thus, as x→∞,

n

�(n)
+

u

�(u)
≤ A

�(A)
+

�

� + 1
≤ 1

(eγ + o(1)) log3 x
+ 1− 1

eγ−ε log3 x+ 1
;

and this expression is smaller than 1 for all large x. Thus, by (3.1), n is discordant.

Since � > 0 is arbitrary, (3.4) implies the proposition.

The criterion (3.1) is su�cient for discordance but not necessary; there are

abundancy outlaws of the form �(a)=s(a) not captured by Lemma 3.3. In order

to detect (some of) these, we combine Lemma 5 with a bootstrapping procedure

described in the following result.

Lemma 3.5 (Recursive criterion for outlaws). Let v and u be coprime positive

integers. Let P be the product of any finite set of primes p for which pvp(u)

σ(pvp(u))
· vu is

known to be an outlaw. If σ(uP )
uP > v

u , then v
u is an outlaw.

Proof. If �(n)=n = v=u, then u | n. Let p be a prime dividing P . If pvp(u) ‖ n, then

�(n=pvp(u))

n=pvp(u)
=

pvp(u)

�(pvp(u))
· v
u
;

contradicting that the right-hand side is an outlaw. Thus, pvp(u)+1 | n for all p

dividing P , and so uP | n. Hence, v
u = σ(n)

n ≥ σ(uP )
uP , contrary to assumption.

Example 3.6. As an illustration, let us show that 888 is discordant. We have
σ(888)
s(888) = 95

58 . Then 2 ‖ 58, and 2
σ(2) ·

95
58 = 95

87 . Since �(87) = 120 > 95, the fractional
95
87 is a known outlaw by Lemma 3.3. Moreover, σ(2·58)2·58 = 105

58 > 95
58 . So Lemma 3.5,

with P = p = 2, implies that 95
58 is an outlaw.
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211 212 213 214 215 216 217 218 219

108 594 944 1456 2227 3310 4838 6823 9493 13035

109 657 1057 1663 2601 3962 5972 8701 12539 17792

1010 682 1126 1823 2888 4497 6936 10429 15457 22586

1011 715 1207 1978 3176 5009 7831 12076 18307 27393

1012 732 1254 2075 3390 5397 8599 13516 20895 31939

1013 745 1295 2157 3567 5742 9269 14755 23139 36008

1014 755 1322 2221 3704 6028 9796 15758 25025 39631

1015 765 1348 2273 3805 6254 10280 16674 26715 42844

1016 774 1362 2305 3895 6463 10684 17483 28223 45660

1017 787 1381 2339 3964 6616 11019 18139 29580 48190

1018 796 1398 2368 4031 6757 11275 18663 30640 50291

220 221 222 223 224 225 226

108 17600 23294 30445 39200 49779 62363 77374

109 24835 33953 45853 60956 79901 103318 131954

1010 32500 45843 63695 87100 117548 156567 205675

1011 40371 58276 83122 116711 161754 221399 298577

1012 47994 70793 103288 148490 210543 294805 406975

1013 55037 82861 123112 180642 261391 373696 526878

1014 61539 94240 142449 212625 313250 455894 655103

1015 67456 104686 160569 243473 364106 538838 787186

1016 72740 114179 177347 272600 413431 620475 920261

1017 77413 122830 192819 299822 460478 700065 1051622

1018 81454 130287 206485 324537 504113 775476 1179215

Table 1. Number of positive integers up to 2k belonging to a harmonious pair with other member

at most 10j .

Table 1 displays the counts of numbers up to 2k, for k = 11; 12; : : : ; 26, that

belong to a harmonious pair with other member at most 10j , where j = 8; 9; : : : ; 18.

To collect these data, we modi�ed a gp script of Michel Marcus (based on an earlier

program of Jan Munch Pedersen); see [13]. Given a rational number v
u and a search

limit L, the script (provably) �nds all b ≤ L with σ(b)
b = v

u . For each 1 < a ≤ 2k,

we used this script to determine whether or not the equation σ(b)
b = σ(a)

s(a) has any

solutions b ≤ 10j .

Table 2 summarizes three counts: Numbers known to be harmonious because

they are members of a pair contained in [1; 1018], numbers proved to be discordant,

and numbers which fall into neither camp. The count of discordant numbers was

obtained by tallying those a > 1 for which �(a)=s(a) could be determined to be an

abundancy outlaw by at most �ve iterations of Lemma 3.5. (Here the 0th iteration
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215 216 217 218 219 220 221

Harmonious 6757 11275 18663 30640 50291 81454 130287

Discordant 822 1598 3154 6114 11849 22985 44710

Not classi�ed 25189 52663 109255 225390 462148 944137 1922155

222 223 224 225 226

Harmonious 206485 324537 504113 775476 1179215

Discordant 87056 169084 329189 641109 1250156

Not classi�ed 3900763 7894987 15943914 32137847 64679493

Table 2. Counts up to various heights of numbers belonging to a harmonious pair in [1, 1018],

numbers known to be discordant, and numbers �tting neither classi�cation.

corresponds to outlaws detected by Lemma 3.3.) We then added 1 to the counts,

since 1 is discordant but not detected in this fashion.

It would be interesting to prove (or disprove) that the set of discordant integers

has positive lower density. It seems possible that we could detect further classes of

discordant numbers by developing some of the ideas introduced in [14] for �nding

abundancy outlaws; this deserves further study. In the opposite direction, we do

not know how to show that there are in�nitely many non-discordant integers, i.e.,

that there are in�nitely many harmonious pairs.

4. Concluding remarks

Harmonious pairs have a surprising connection with a di�erent generalization of

amicable pairs recently studied by two of us [7]. Say that m and n form a �-amicable

pair if �(m) = �(n) = m + n + �. When � = 0, this reduces to the usual notion of

an amicable pair. It was shown in [7] that for each �xed � 6= 0, the set of numbers

in [1; x] belonging to a �-amicable pair has size Oδ(x(log2 x)4=(log x)1/2). The same

authors conjectured that for arbitrary B, this count is

�δ,B x=(log x)B : (4.1)

The conjectured upper bound (4.1) turns out to be too optimistic. To explain

why, we �rst describe how to associate to a harmonious pair a; b a family of �-

amicable numbers with � = a + b. Since a=�(a) + b=�(b) = 1, the fractions a=�(a)

and b=�(b) have the same denominator in lowest terms, say d. Thus, we can write

a=�(a) = u=d and b=�(b) = v=d;

where both right-hand fractions are reduced and u+ v = d. Write

a = ua0; b = vb0; �(a) = da0; �(b) = db0:

Put n = ap and m = bq, where p - a, q - b are primes. Then the equation �(n) =

�(m) amounts to requiring �(a)(p + 1) = �(b)(q + 1), or equivalently, a0(p + 1) =
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b0(q + 1). This holds precisely when

p =
b0

(a0; b0)
t− 1 and q =

a0
(a0; b0)

t− 1 (4.2)

for some positive integer t. In that case,

n+m+ � = ap+ bq + � = ua0

(
b0

(a0; b0)
t− 1

)
+ vb0

(
a0

(a0; b0)
t− 1

)
+ (a+ b)

=
a0b0t

(a0; b0)
(u+ v) =

da0b0t

(a0; b0)
:

But this last fraction is equal to both �(m) and �(n), and thus m and n form a

�-amicable pair.

210 211 212 213 214 215 216 217 218 219

Hsingle(x) 93 170 251 379 584 897 1323 1965 2909 4377

Hpair(x) 56 99 146 222 336 515 764 1130 1666 2500

�(x) 46 74 118 187 285 432 651 979 1449 2181

220 221 222 223 224 225 226

Hsingle(x) 6630 9865 14689 21537 31961 47311 69798

Hpair(x) 3787 5631 8383 12310 18279 27067 39934

�(x) 3320 4934 7378 10959 16215 24055 35605

Table 3. Values of Hsingle(x) = # of n involved in a harmonious pair a ≤ b ≤ x, Hpair(x) = # of

pairs a ≤ b ≤ x, and �(x) = # of values of δ = a+ b ≤ x.

We have constructed a pair of �-amicable numbers from each pair of primes

p; q satisfying (4.2), as long as p - a and q - b. One expects that there are always

in�nitely many such pairs. When b0 = a0, which corresponds to the case when a; b

form an amicable pair, this follows immediately from the prime number theorem for

arithmetic progressions. In that case, the above construction produces � x= log x

members of a �-amicable pair not exceeding x, which is much larger than allowed by

(4.1). If b0 6= a0, we cannot rigorously prove the existence of in�nitely many prime

pairs satisfying (4.2), but this follows from the prime k-tuples conjecture. Here we

expect the construction to produce � x=(log x)2 numbers in [1; x] that belong to a

�-amicable pair. Again, this contradicts the conjectured bound (4.1).

The following related questions seem attractive but di�cult.

Question 4.1. Does the bound (4.1) hold if � cannot be written as a + b for any

harmonious pair a; b?

Question 4.2. Let �(x) be the number of � ≤ x that can be written as a sum of

two members of a harmonious pair. Can one show that �(x) = o(x), as x → ∞?



January 4, 2015 1:10 WSPC/INSTRUCTION FILE KozekLucaPollack-
PomeranceIJNTv4

Harmonious pairs 19

Of course this would follow if we could show that the count Hpair(x) of harmonious

pairs in [1; x] is o(x). Perhaps �(x) ∼ Hpair(x) ∼ 1
2Hsingle(x), where Hsingle(x) is

the quantity bounded in Theorem 1.1. See Table 3.
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