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ABSTRACT. Let σ be the usual sum-of-divisors function. We say that a and b form a harmonious pair if
a

σ(a)
+ b

σ(b)
= 1; equivalently, the harmonic mean of σ(a)

a
and σ(b)

b
is 2. For example, 4 and 12 form a

harmonious pair, since 4
σ(4)

= 4
7

and 12
σ(12)

= 3
7

. Every amicable pair is harmonious, but there are many
others. We show that the count of numbers that belong to a harmonious pair having both members in [1, x] is
at most x/ exp((log x)

1
12

+o(1)), as x→∞.

1. INTRODUCTION

Let σ(n) denote the sum of the divisors of the natural number n. Recall that m and n are said to form
an amicable pair if σ(m) = σ(n) = m + n. The study of amicable pairs dates back to antiquity, with the
smallest such pair — 220 and 284 — known already to Pythagoras.

While amicable pairs have been of interest for 2500 years, many of the most natural questions remain
unsolved. For example, although we know about 12 million amicable pairs, we have no proof that there are
infinitely many. In the opposite direction, there has been some success in showing that amicable pairs are
not so numerous. In 1955, Erdős showed that the set of n belonging to an amicable pair has asymptotic
density zero [4]. This result has been subject to steady improvement over the past 60 years [11, 5, 8, 9, 10].
We now know that the count of numbers not exceeding x that belong to an amicable pair is smaller than

(1.1) x/ exp((log x)1/2)

for all large x.
If m and n form an amicable pair, then σ(m) = σ(n) = m + n. From this, one sees immediately that
m

σ(m) + n
σ(n) = 1. In this paper, we study solutions to this latter equation.

Definition. We say a and b form a harmonious pair if a
σ(a) + b

σ(b) = 1.

The terminology here stems from the following simple observation: a and b form a harmonious pair
precisely when σ(a)/a and σ(b)/b have harmonic mean 2. While every amicable pair is harmonious, there
are many examples not of this kind, for instance 2 and 120, or 3 and 45532800.

Our main theorem is an upper bound on the count of numbers belonging to a harmonious pair. While
harmonious pairs certainly appear to be more thick on the ground than amicable pairs, we are able to get an
upper estimate of the same general shape as (1.1).

Theorem 1. Let ε > 0. The number of integers belonging to a harmonious pair a, b with max{a, b} ≤ x is
at most x/ exp((log x)

1
12
−ε), for all x > x0(ε).

As a corollary of Theorem 1, the reciprocal sum of those integers that are the larger member of a har-
monious pair is convergent. Note that Theorem 1 does not give a reasonable bound on the number of
harmonious pairs lying in [1, x].
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We are not aware of any previous work on harmonious pairs, as such. However, the following result can
be read out of a paper of Borho [2]: If a, b form a harmonious pair and Ω(ab) = K, then ab ≤ K2K . Borho
states this for amicable pairs, but only the harmonious property of the pair is used in the proof.

We also discuss discordant numbers, being those numbers that are not a member of a harmonious pair.
We show there are infinitely many discordant numbers, in fact, more than x/(log x)ε of them in [1, x], when
ε > 0 is fixed and x is sufficiently large. Probably a positive proportion of numbers are discordant, but
we have not been able to prove this. A weaker assertion that seems to escape us: it is not the case that the
numbers that belong to some harmonious pair form a set of asymptotic density 1.

At the end of the paper we use harmonious pairs to disprove a conjecture in [7].

Notation. Throughout this paper, we use the Bachmann–Landau symbolsO and o as well as the Vinogradov
symbols � and � with their regular meanings. Recall that A = O(B) and A � B are both equivalent
to the fact that the inequality |A| < cB holds with some constant c > 0. Further, A � B is equivalent
to B � A, while A = o(B) means that A/B → 0. We write logk x for the iteration of the natural log
function, with the undertanding that x will be big enough to have logk x ≥ 1. We let P+(n) denote the
largest prime factor of n, with the convention that P+(1) = 1. We write s(n) for the sum of the proper
divisors of n, so that s(n) = σ(n)− n. If p is prime, we write vp(n) for the exponent of p appearing in the
prime factorization of n. We let τ(n) denote the number of positive divisors of n and let ω(n) denote the
number of these divisors which are prime.

2. PROOF OF THEOREM 1

The following proposition, whose proof constitutes the main part of the argument, establishes ‘half’ of
Theorem 1. This proof largely follows the plan in [9, 10], though here we have more cases.

Proposition 2. The number of integers b ≤ x that are members of a harmonious pair a, b with max{a, b} ≤
x and P+(b) ≥ P+(a) is

� x/ exp((log x)
1
12 )

for all x ≥ 3.

Proof. We may assume that x > x0 where x0 is some large, absolute constant. For α in (0, 1) and x ≥ 3 we
put Lα = exp((log x)α). We aim to bound the count of b-values by O(x/Lα) with some fixed α ∈ (0, 1),
whose size we will detect from our arguments. We will pile various conditions on b and keep track of the
counting function of those b ≤ x failing the given conditions.

1. We eliminate numbers b ≤ x having a square full divisor d > 1
2L

2
α. The counting functions of those is

bounded above by ∑
d≥L2α/2
d squarefull

x

d
� x

Lα
,

where the above estimate follows from the Abel summation formula using the fact that the counting function
of the number of square full numbers m ≤ t is O(t1/2).

2. We eliminate numbers b ≤ x for which P+(b) ≤ L1−α. Putting y = L1−α, we have u := log x/ log y =
(log x)α. By known estimates from the theory of smooth numbers (e.g., [3]), we have that the number of
integers b ≤ x with P+(b) ≤ x1/u is

(2.1) ≤ x

exp((1 + o(1))u log u)
as x→∞,

when u > (log x)1−ε, so certainly the above count is < x/Lα once x is sufficiently large.
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3. We assume that α < 1/2. We eliminate numbers b ≤ x having a divisor d > L2α with P+(d) ≤ L2α.
Put y = L2α. For each t ≥ L2α, we have u = log t/ log y ≥ 0.5(log x)α. Thus, u log u � (log x)α log2 x,
and in particular u log u > 3(log x)α for x > x0. So the number of such d ≤ t is at most t/L2α, uniformly
for t ∈ [L2α, x], assuming x > x0. Fixing d, the number of b ≤ x divisible by d is ≤ x/d. Using the Abel
summation formula to sum the reciprocals of such d, we get that the number of such b ≤ x is bounded by∑

L2α<d≤x
P+(d)≤L2α

x

d
� x

L2α

∫ x

L2α

dt

t
� x log x

L2α
� x

Lα
.

4. We eliminate numbers b ≤ x having a prime factor p > L2α such that p | gcd(b, σ(b)). Let us take a
closer look at such numbers. Suppose that p > L2α and p | σ(b). Then there is a prime power q` dividing b
such that p | σ(q`). If ` ≥ 2, then 2q` > σ(q`) ≥ p > L2α, so q` > L2α/2 and q` | b with ` ≥ 2, but such b’s
have been eliminated at 1. So, ` = 1, therefore q ≡ −1 (mod p). Thus, b is divisible by pq for some prime
q ≡ −1 (mod p). The number of such numbers up to x is at most x

pq . Summing up the above bound over
all primes q ≤ x with q ≡ −1 (mod p) while keeping p fixed, then over all primes p ∈ (L2α, x] gives us a
count of ∑

L2α<p≤x

∑
q≡−1(mod p)

q≤x

x

pq
� x(log2 x)

∑
L2α<p≤x

1

p2
� x

L2α
� x

Lα
.

5. We eliminate the numbers b ≤ x/Lα, since obviously there are only at most x/Lα such values of b.
Let

d = gcd(b, σ(b)).

Then P+(d) ≤ L2α by 4, so by 3 we have d ≤ L2α. Write b = P1m1, where P1 = P+(b). By 2, we can
assume that P1 > L1−α.

6. We eliminate b ≤ x corresponding to some a ≤ x/L22α. Indeed, let b have a corresponding a with the
above property. With c = gcd(a, σ(a)), we have an equality of reduced fractions

b/d

σ(b)/d
=

(σ(a)− a)/c

σ(a)/c
.

Notice that c is determined uniquely in terms of a. Thus, b/d = (σ(a)−a)/c is also determined by a. Since
d ≤ L2α, the number b is determined in at most L2α ways from a. So the number of b corresponding to
some a ≤ x/L22α is at most x/L2α < x/Lα.

7. Similar to 6, we eliminate a bounded number of subsets of b ≤ x which have some corresponding a ≤ x
with a counting function of size O(x/L22α).

In particular, by an argument similar to the one at 1, we may assume that a has no divisor which is
squarefull and larger than L42α/2. In particular, if p2 | a, then p < L22α. We may further assume that
P+(a) > L1−2α by an argument similar to the one at 2, and that if d1 is the largest divisor of a such that
P+(d1) ≤ L42α, then d1 ≤ L4α, again by an argument similar to the one used at 3. Assuming α ≤ 1

6 , we
then have

P+(a) > L1−2α ≥ L4α ≥ d1.

Further, P+(a) > L1−2α > L22α. Hence, P+(a)2 - a. Thus, a = Q1n1, where Q1 = P+(a) and Q1 - n1.
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8. Recall that c = gcd(a, σ(a)). By an argument similar to 4, we may eliminate numbers b ≤ x with some
corresponding a having the property that there exists a prime factor p | c such that p > L42α. Indeed, in this
case p | a. Further, p | σ(a) so there is a prime power q` dividing a such that p | σ(q`). If ` ≥ 2, then
2q` > σ(q`) ≥ p > L42α, contradicting 7. So, ` = 1, q ≡ −1 (mod p), and pq divides a, so the number of
such a ≤ x is at most x/pq. Summing up the above bound over all primes q ≡ −1 (mod p) with q ≤ x,
then over all primes p ∈ (L42α, x], we get a count on the number of such a of∑

L42α<p≤x

∑
q≡−1 (mod p)

q≤x

x

pq
� x(log2 x)

∑
L42α<p≤x

1

p2
� x

L22α
,

and we are in a situation described at the beginning of 7.

By 8, we have that if p | c, then p ≤ L42α. So from 7, c ≤ d1 ≤ L4α.

9. We eliminate b ≤ x for which P+(P1 + 1) ≤ L1−2α. Assume that b satisfies this condition. Then
P1 + 1 ≤ x/m1 + 1 ≤ 2x/m1 is a number having P+(P1 + 1) ≤ y = L1−2α, and P1 + 1 > P1 > L1−α,
by 2. Thus, u := log(2x/m1)/ log y ≥ (log x)α, so that u log u > 3(log x)α for x > x0. Fixing m1, the
number of such P1 (even ignoring the fact that they are prime) is, again by (2.1), at most

x

L2
αm1

.

Summing over all m1 ≤ x, we get at most O(x(log x)/L2α) = O(x/Lα) such b.

10. We may eliminate those b ≤ x corresponding to an a with P+(Q1 + 1) ≤ L1−4α. Indeed, assume that
b satisfies the above property. Then Q1 + 1 ≤ x/n1 + 1 ≤ 2x/n1. Further, Q1 + 1 > Q1 > L1−2α by 7
and P+(Q1 + 1) ≤ L1−4α, so that with y = L1−4α, we have u := log(2x/n1)/ log y > (log x)2α. This
shows that u log u > 4(log x)2α for x > x0. Thus, the number of possible numbers of the form Q1 + 1
(even ignoring the fact that Q1 is prime), is, again by (2.1), at most

x

L32αn1.
Summing up the above bound for n1 ≤ x, we see there are at most O(x(log x)/L32α) possible a. So we are
in the situation described at the beginning of 7.

11. Reducing the left and right-hand sides of the equation a
σ(a) = σ(b)−b

σ(b) gives that a/c = (σ(b) − b)/d.
Hence,

(2.2) Q1n1 = a = (c/d)(σ(b)− b) = (c/d)(P1s(m1) + σ(m1)),

and so
Q1n1d = c(P1s(m1) + σ(m1)).

Since c ≤ L4α and Q1 > L1−2α, it follows that Q1 - c. (Recall our assumption that α ≤ 1
6 .) Hence,

gcd(Q1, c) = 1, and c | n1d. Thus,

P1s(m1) + σ(m1) = Q1λ1,

where λ1 = n1d/c. Further, since d ≤ L2α < Q1 and Q1 - n1, it follows that Q1 - λ1.

We now break symmetry and make crucial use of our assumption that P1 ≥ Q1.
We claim that P1 - a. Assume for a contradiction that P1 | a. Recalling (2.2), and using the fact that

P1 > L1−α > max{c, d}, we get that P1 | σ(b)− b, therefore P1 | σ(b), so P1 | d, which is false.
Let R1 = P+(P1 + 1). We note that R1 - a. Indeed, the argument is similar to the argument that

P1 - a. To see the details, assume that R1 | a. Since R1 > L1−2α ≥ max{c, d}, it follows from (2.2) that
R1 | σ(b) − b. But R1 | P1 + 1 | σ(b), therefore R1 | b. Thus, R1 | d, which is impossible since R1 > d.
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Now R1 | σ(b)/d = σ(a)/c. Thus, there is some prime power Q`2 dividing a such that R1 | σ(Q`2). Hence,
L1−2α < R1 ≤ σ(Q`2) < 2Q`2. If ` ≥ 2, we then get L1−2α < 2Q`2 ≤ L42α by 7, which is false for x > x0.
Thus, ` = 1, and we have that R1 | Q2 + 1. In particular, Q2 > R1 > L1−2α. Since Q2 ≤ Q1 (the case
Q2 = Q1 is possible), it follows that Q2 ≤ P1. We write a = Q2n2 and going back to relation (2.2), we get

σ(b)− b = Q2
n2d

c
.

Note that Q2 > L1−2α ≥ max{c, d}, so indeed c | n2d. Write λ2 = n2d/c. We then have

(2.3) P1s(m1) + σ(m1) = σ(b)− b = Q2λ2.

Note that Q2 - s(m1), for if not, then we would also get that Q2 | σ(m1). Thus, Q2 | m1 | b and
Q2 | σ(m1) | σ(b), therefore Q2 | d, which is false since Q2 > d.

Reduce now equation (2.3) with respect to R1, using P1 ≡ Q2 ≡ −1 (mod R1), to get that

m1 + λ2 ≡ 0 (mod R1).

This shows that

(2.4) either m1 ≥ R1/2 or λ2 ≥ R1/2.

So the situation splits into two cases. We treat an instance a bit stronger then the first case above throughout
steps 12–15, and the second situation in the subsequent steps 16–20.

We first assume that

(2.5) m1 > L1/41−6α.

Note that the left inequality (2.4) implies (2.5) for x > x0. (The negation of the weak inequality (2.5) will
be useful in 17.)

12. We eliminate the numbers b ≤ x for which P+(m1) ≤ L1−7α. Fix P1 and count the number of
corresponding m1 ∈ (L1/41−6α, x/P1]. If there are any such m1, then with y = L1−7α, we have u :=
log(x/P1)/ log y ≥ 0.25(log x)α. Hence, u log u > 3(log x)α for x > x0. By (2.1), the number of
these m1 is at most x/(L2αP1) for x > x0. Summing over all primes P1 ≤ x, we get an upper bound of
O(x(log2 x)/L2α) = O(x/Lα) on the number of such b.

13. Let P2 = P+(m1) and put m1 = P2m2. Note that P2 ≤ x/(P1m2) and P2 > L1−7α. Clearly, if α ≤
1
11 , then P2 does not divide cd for large x because P2 > L1−7α ≥ max{c, d}. Also, since L1−7α > L2α/2
for x > x0, it follows that P2 ‖ b. Thus, P2 + 1 | σ(b).

14. We eliminate b ≤ x such that P+(P2 + 1) ≤ L1−8α. Since P2 + 1 > L1−7α, for fixed P1, m2,
by arguments similar to the preceding ones, we get that the number of such P2 is at most x/(L2αP1m2).
Summing up the above inequality over all the primes P1 ≤ x and all positive integers m2 ≤ x, we get a
bound of O(x(log x)(log2 x)/L2α) = O(x/Lα) on the number of such b.

15. Now we put R2 = P+(P2 + 1). Then R2 > d if α < 1
10 , because R2 > L1−8α. Thus, R2 | σ(b)/d =

σ(a)/c, therefore there exists Q`3 dividing a such that R2 | σ(Q`3). Thus, 2Q`3 > σ(Q`3) ≥ R2. Since
α < 1

10 , we have R2 > L1−8α > L42α for x > x0, so, by 7, we get that ` = 1. Thus, Q3 ‖ a and Q3 ≡ −1

(mod R2) (the case Q3 = Q1 is possible). Now assume α ≤ 1
12 . Then Q3 > R2 > L1−8α ≥ c. Since

a = (σ(b)− b)c/d, it follows that Q3 | σ(b)− b. Hence,

P1s(m1) + σ(m1) ≡ 0 (mod Q3).

Since Q3 > L1−8α, arguments similar to previous ones show that Q3 - s(m1). This puts P1 ≤ x/m1

in an arithmetic progression modulo Q3. Since Q3 ≤ Q1 ≤ P1, it follows that x/m1 ≥ Q3, so that the
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number of such integers P1 (even ignoring the fact that P1 is prime) is O(x/(m1Q3)). But m1 = P2m2,
where R2 | gcd(P2 + 1, Q3 + 1). Fixing R2, P2, Q3 and summing up over m2 ≤ x, we get a count
of O(x(log x)/(P2Q3)). Now we sum up over primes P2 and Q3 both at most x and both congruent to
−1 (mod R2) getting a count of O(x(log x)(log2 x)2/R2

2). We finally sum over primes R2 ∈ (L1−8α, x]
getting a bound of O(x(log x)(log2 x)2/L1−8α) = O(x/Lα) on the number of such b.

The steps 12 – 15 apply whenm1 satisfies (2.5). Now assume thatm1 fails (2.5). In this case,m1 < R1/2
(assuming x > x0). So by (2.4), we must have λ2 ≥ R1/2 > 0.5L1−2α. Note that λ2 = n2(d/c); therefore
n2 = λ2(c/d) > 0.5L1−2α/d > L0.51−2α for x > x0, since d ≤ L2α.

16. We eliminate b ≤ x such that their corresponding a has the property that P+(n2) ≤ L1−4α. Put
y = L1−4α. We fix Q2 and count n2 ≤ x/Q2, with n2 > L0.51−2α, such that P+(n2) ≤ y. Since u :=

log(x/Q2)/ log y ≥ 0.5(log x)2α, it follows that u log u > 4(log x)2α for x > x0. Thus, for large x the
number of corresponding a ≤ x is at most x/(L32αQ2). Summing up the above bound over primes Q2 ≤ x,
we get a count of order x(log2 x)/L32α. This is smaller than x/L22α for x > x0, and so we are fine by 7.

Now we put n2 = Q3n3, where Q3 = P+(n2) > L1−4α.

17. We eliminate b ≤ x corresponding to a such that P+(Q3 + 1) ≤ L1−6α. Fix Q2 and n3. Then
Q3 ≤ x/(Q2n3) and Q3 > L1−4α. Assuming that P+(Q3 + 1) ≤ L1−6α, we get by previous arguments
involving (2.1) that the count of such Q3 is smaller than x/(L32αQ2n3), once x > x0. Summing up the
above bound over primes Q2 ≤ x and all positive integers n3 ≤ x, we get an upper bound of order
x(log x)(log2 x)/L32α on the number of these a. Again, we are fine by 7.

Write R2 = P+(Q3 + 1). Then R2 > L1−6α. Assume now that α < 1
10 . Then R2 > max{c, d}

and R2 > L42α for x > x0. Since Q3 > L1−4α > L22α (for x > x0), 7 gives that Q3 ‖ a. Thus,
R2 | Q3 +1 | σ(a). Since R2 does not divide c, we get that R2 divides σ(a)/c = σ(b)/d. Hence, R2 | σ(b).
Since b has no squarefull divisors exceeding L2α/2, there is a prime P2 ‖ b such that R2 | P2 + 1. In fact, we
can take P2 = P1, in other words, R2 | P1 + 1. Suppose otherwise. Then R2 | σ(b)

P1+1 = σ(m1). However,
since m1 fails (2.5), σ(m1) ≤ m2

1 ≤ (L1−6α)1/2 < R2.
Hence, R1 | P1 + 1 and R2 | P1 + 1.

18. Consider the case when R1 = R2. Then a = Q2Q3n3 and both Q2 and Q3 are congruent to −1
modulo R1. Fixing Q2, Q3, the number of such a is at most x/Q2Q3. Summing this bound over all pairs
of distinct primes Q2, Q3 up to x and congruent to −1 modulo R1, we get a bound of O(x(log2 x)2/R2

1).
Now summing over all primes R1 ∈ (L1−2α, x], we get a count that is < x/L1−2α < x/L22α for x > x0,
and we are fine by 7.

From now on, we assume that R1 6= R2, so that P1 ≡ −1 (mod R1R2).

19. We eliminate numbers b ≤ x such that either m1Q2R1 ≤ x or m1Q3R2 ≤ x. Suppose we are in the
first case. Then P1 ≡ −1 (mod R1), and

P1s(m1) + σ(m1) ≡ 0 (mod Q2).

Since Q2 - s(m1), this puts P1 into an arithmetic progression modulo Q2. By the Chinese remainder
theorem, P1 ≤ x/m1 is in an arithmetic progression modulo Q2R1, and the number of such numbers
(ignoring the condition that P1 is prime) is at most 1 + x/(m1Q2R1) ≤ 2x/(m1Q2R1). Here is where we
use the condition that m1Q2R1 ≤ x. We keep R1 fixed and sum over all m1 ≤ x, and primes Q2 ≡ −1
(mod R1), getting a count of O(x(log x)(log2 x)/R2

1). Then we sum over all primes R1 ∈ (L1−2α, x],
getting a count of O(x(log x)(log2 x)/L1−2α). This count of b values is < x/Lα once x > x0.

The same applies when m1Q3R2 ≤ x. There, P1 ≡ −1 (mod R2) and the congruence P1s(m1) +
σ(m1) ≡ 0 (mod Q3) together with the fact that Q3 does not divide s(m1) puts P1 ≤ x/m1 in an
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arithmetic progression modulo Q3. By the Chinese remainder theorem, P1 ≤ x/m1 is in an arithmetic
progression modulo Q3R2, and the number of such possibilities (ignoring the fact that P1 is prime) is at
most 1 + x/(m1Q3R2) ≤ 2x/(m1Q3R2). Here we used that m1Q3R2 ≤ x. Summing up the above
bound over all m1 ≤ x and primes Q3 ≤ x in the arithmetic progression −1 (mod R2), we get a
count of O(x(log x)(log2 x)/R2

2). Summing up the above bound over all R2 > L1−6α, we get a count
of O(x(log x)(log2 x)/L1−6α). So the number of these b is smaller than x/Lα for x > x0.

20. We now look at the instance m1Q2R1 > x and m1Q3R2 > x. We will show that this set is empty for
x > x0. Indeed, write Q2 = R1`1 − 1, Q3 = R2`2 − 1 for some even integers `1, `2 > 0. The inequalities

m1Q2R1 > x and m1Q3R2 > x

yield m1
√
Q2Q3R1R2 > x. Since R1R2 = (Q2 + 1)(Q3 + 1)/(`1`2)� Q2Q3/`1`2, we get

(2.6)
m1Q2Q3√

`1`2
� x.

Now
P1s(m1) + σ(m1) = σ(b)− b = a(d/c) = Q2Q3(n3d/c).

Since min{Q2, Q3} > max{d, c}, we have c | n3d. Put `3 = n3d/c. Then Q2Q3`3 = σ(b)− b < σ(b)�
x log2 x. Thus, Q2Q3 � x(log2 x)/`3. Hence, using (2.6),

xm1 log2 x

`3
√
`1`2

� m1Q1Q2√
`1`2

� x giving `3
√
`1`2 � m1 log2 x.

In particular,

(2.7) `1 � m2
1(log2 x)2, `2 � m2

1(log2 x)2, `3 � m1 log2 x.

Write P1 = R1R2`− 1. We then have

(R1R2`− 1)s(m1) + σ(m1) = (R1`1 − 1)(R2`2 − 1)`3,

which is equivalent to

(2.8) (`s(m1)− `1`2`3)R1R2 +m1 = −R1`1`3 −R2`2`3 + `3.

Moving m1 to the other side, dividing by R1R2 and using (2.7), we get

|`s(m1)− `1`2`3| = O

(
m1

R1R2
+
`1`3
R2

+
`2`3
R1

)
= O

(
m3

1(log2 x)3

L1−6α

)
= o(1) (x→∞),

where the last estimate above comes from the fact that m1 fails (2.5). Since the left–hand side above is an
integer, it must be 0 for x > x0. Returning to (2.8), we get

m1 = −R1`1`3 −R2`2`3 + `3 < 0,

a contradiction. Hence, this case cannot occur once x > x0.

Denouement. Glancing back through the argument, we find that every step can be carried out with α = 1
12 .

Hence, the total count of b-values is O(x/ exp((log x)1/12)). �

To count values of a paired with b having P+(a) ≤ P+(b), we use a method introduced by Wirsing
[16]. Wirsing showed that the number of solutions n ≤ x to an equation of the form σ(n)/n = β is at
most exp(O(log x/ log log x)), uniformly in β. The next lemma provides a sharper bound if the number of
primes dividing n is not too large.

Lemma 3. Let k be a positive integer and let x ≥ 105. Let β ≥ 1 be a rational number. The number of
integers n ≤ x with ω(n) ≤ k and σ(n)

n = β is at most (2 log x)3k.
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Proof. Write β = λ/µ, where the right-hand fraction is in lowest terms. If σ(n)/n = λ/µ, then µ | n. So
we may assume that ω(µ) ≤ k. Given an n with σ(n)/n = β, put P = {p ≤ 2k} ∪ {p | µ}, and write

n = AB, where A =
∏
p 6∈P

pvp(n), B =
∏
p∈P

pvp(n).

Note that µ | B. The main idea of the proof is to show that B nearly determines its cofactor A. Specifically,
we will show that for any given B, the number of corresponding A is at most (log x)k.

Since gcd(A,B) = 1, we have

(2.9) σ(A)σ(B) =
λ

µ
AB.

Moreover,

1 ≥ A/σ(A) >
∏
p|A

(1− 1/p) ≥ 1−
∑
p|A

1

p
≥ 1− k

2k + 1
>

1

2
.

As a consequence,

(2.10)
1

2

(
λ

µ
B

)
< σ(B) =

A

σ(A)

(
λ

µ
B

)
≤ λ

µ
B.

Thus, σ(B) - λµB unless the final inequality is an equality, which occurs only if A = 1 and σ(B) = λ
µB.

Suppose that σ(B) - λ
µB. Then there is a prime dividing σ(B) to a higher power than λ

µB. Let p1 be
the least such prime and observe that p1 is entirely determined by β and B. By (2.9), p1 | A. Suppose that
pe11 ‖ A. Set A1 = A/pe11 and B1 = Bpe11 . Then (2.9)–(2.10) hold with A and B replaced by A1 and B1,
respectively. From the analogue of (2.10), we find that if σ(B1) | λµB1, then A1 = 1, so that A = pe11 .

Suppose that σ(B1) - λµB1. There is a prime dividing σ(B1) to a higher power than it divides λ
µB1. Let

p2 be the smallest such prime. Then p2 is entirely determined by β,B, and e1, and p2 | A1. If pe22 ‖ A1, we
set A2 = A1/p

e2
2 and B2 = B1p

e2
1 . If σ(B2) | λµB2, then A = pe21 p

e2
2 . If not, there is a prime dividing B2

to a higher power than λ
µB2, which allows us to continue the argument.

We carry out this process until Ar = 1, which happens in r ≤ k steps. Then A = pe11 · · · perr . Here each
prime pi+1 is entirely determined by β,B, and e1, . . . , ei. Thus, A is entirely determined by β,B, and the
exponent sequence e1, . . . , er. Clearly,

3ei ≤ (2k + 1)ei ≤
r∏
i=1

peii = A ≤ x,

and so each ei ∈ [1, log x/ log 3]. Extend e1, . . . , er to a sequence e1, . . . , ek by putting ei = 0 for r < i ≤
k. Since each ei ∈ [0, log xlog 3 ], the number of possibilities for e1, . . . , er is at most (1 + log x

log 3 )k ≤ (log x)k,
using in the last step that x ≥ 105.

To bound the number of possibilities for n = AB, it now suffices to estimate the number of possibilities
for B. We have B =

∏
p∈P pfp , where each fp ∈ [0, log xlog 2 ]. Thus, B belongs to a set of size at most(

1 +
log x

log 2

)#P

≤ (2 log x)#P ≤ (2 log x)π(2k)+ω(µ) ≤ (2 log x)k+k = (2 log x)2k.

Putting everything together gives a final upper bound of (log x)k · (2 log x)2k ≤ (2 log x)3k. �

Proof of Theorem 1. In view of Proposition 2, it is enough to estimate the number of a involved in a pair
a, b with max{a, b} ≤ x and P+(b) ≥ P+(a). With K ≥ 1 to be specified shortly, we partition these a
according to whether or not ω(a) ≤ K. Since σ(a)

a is determined by b, Lemma 3 and Proposition 2 show
that the number of a with ω(a) ≤ K is

� (2 log x)3K · x/ exp((log x)1/12).
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On the other hand, since τ(a) ≥ 2ω(a), we have trivially that the number of a with ω(a) > K is

� x log x

2K
.

Adding these two estimates and taking K = (log x)1/12(log log x)−2 finishes the proof. �

Remark. We have shown that there are not many integers which are the member of some harmonious pair
contained in [1, x]. It would be interesting to show that there are not too many such harmonious pairs.
Note that the upper bound x exp(O(log x/ log log x)) follows trivially from Wirsing’s theorem. One cannot
immediately derive a sharper estimate from Theorem 1, since a single integer may be shared among many
pairs. However, Theorem 1 and Lemma 3 imply (arguing similarly to the proof just given) that the number
of pairs with max{a, b} ≤ x and min{ω(a), ω(b)} ≤ (log x)

1
12
−δ is at most x/ exp((log x)

1
12

+o(1)), for
any fixed δ > 0.

3. DISCORDANT NUMBERS

Given a number a, is there a number b for which the pair a, b is harmonious? If not, we say that a is
discordant. Since a and b form a harmonious pair exactly when σ(b)/b = σ(a)/s(a), deciding whether a is
discordant amounts to solving a special case of the following problem:

Problem (Recognition problem for σ(n)/n). Decide whether a given rational number belongs to the image
of the function σ(n)/n.

Rational numbers not in the range of σ(n)/n have been termed abundancy outlaws. In the early 1970s,
C.W. Anderson [1] conjectured that the set {σ(n)/n} is recursive: In other words, an algorithm exists for
deciding whether or not a given rational number is an outlaw. This conjecture is still open, but some partial
results can be found in [8]. See also [15, 12, 6, 14].

Difficulties arise when trying to decide discordance even for small values of a. The smallest number
whose status is unresolved seems to be a = 11; to answer this, we would need to know whether or not 12 is
an abundancy outlaw. Anderson noted that σ(b)b = 5

3 if and only if 5b is an odd perfect number with 5 - b.
Since σ(24)

s(24) = 5
3 , it follows that a = 24 is a member of a harmonious pair if and only if there is an odd

perfect number precisely divisible by 5.
It is perhaps not immediately clear that there are infinitely many discordant numbers. Here we prove the

following modest lower bound.

Proposition 4. The number of discordant integers n ≤ x is at least x/(log x)(e
−γ+o(1))/ log3 x as x→∞.

The following simple lemma can be found in [1] and [15].

Lemma 5. Suppose v and u are coprime positive integers. If v < σ(u), then v/u is an abundancy outlaw.

Proof. Suppose v
u = σ(n)

n . Then u | n, so that vu = σ(n)
n ≥ σ(u)

u . Hence, v ≥ σ(u). �

Lemma 5 implies the following criterion for discordance.

Lemma 6. If n, u, v are positive integers with s(n)/σ(n) = u/v, gcd(u, v) = 1, and

(3.1)
n

σ(n)
+

u

σ(u)
< 1,

then n is discordant.

Proof. Our assumptions imply that u
σ(u) < 1 − n

σ(n) = s(n)
σ(n) = u

v , so that v < σ(u). From Lemma 5,
σ(n)/s(n) is an outlaw; hence, n is discordant. �

We now are ready to prove Proposition 4.
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Proof. Let ε > 0 be arbitrary but fixed and let π be the largest prime number smaller than eγ−ε log3 x. Thus,
for large enough xwe have π ≥ 5. LetB = (log2 x)/(log3 x)2 and letA0 denote the least common multiple
of integers in [1, B] coprime to π. Further, let A be the product of A0 and all primes r with the property that
π | σ(rvr(A0)). That is, if r is a prime and rα ‖ A0 with π | σ(rα), we multiply by r. We have

π - Aσ(A), A = exp((1 + o(1))B), σ(A)/A = (eγ + o(1)) log3 x,

as x→∞.
Let k run over integers to x1/4 such that A | k and π - kσ(k). We would like a lower bound for

∑
1/k.

For this, we restrict our attention to numbers of the form Aj, where j ≤ x1/5 is squarefree with no prime
factors below B and no prime factors in the residue class −1 (mod π). Let i0 = b3 log log(x1/5)c and let
S denote the set of primes r in (B, x1/i0 ] with r 6≡ −1 (mod π). For an integer i ≤ i0, the sum Si of
reciprocals of squarefree numbers j ≤ x1/5 composed solely of primes in S satisfies

Si ≥
1

i!

(∑
r∈S

1

r

)i
− 1

(i− 2)!

∑
r∈S

1

r2

(∑
r∈S

1

r

)i−2
>

1

(i− 2)!

(∑
r∈S

1

r

)i−2 1

i2

(∑
r∈S

1

r

)2

−
∑
r∈S

1

r2

 .

By the prime number theorem for residue classes (cf. [8, Theorem 1]),

(3.2)
∑
r∈S

1

r
=

(
1− 1

π − 1

)
log log x− log logB +O(1).

Thus, since
∑

r∈S 1/r2 � 1/B, this sum is small compared with (1/i2)(
∑

r∈S 1/r)2, so that

∑
k

1

k
≥ 1

A

∑
j

1

j
≥ 1

A

∑
i≤i0

Si �
1

A

∑
i≤i0

1

i!

(∑
r∈S

1

r

)i
=

1

A
e
∑
r∈S

1
r − 1

A

∑
i>i0

1

i!

(∑
r∈S

1

r

)i
= T1 − T2,

say. By (3.2), T1 � (log x)1−1/(π−1)/(A logB). Also note that by (3.2),

T2 ≤
∑
i>i0

1

i!

(∑
r∈S

1

r

)i
� 1

i0!

(∑
r∈S

1

r

)i0
≤

(
e

i0

∑
r∈S

1

r

)i0
= o(1)

as x→∞. Thus,∑
k

1

k
≥ 1

A logB
(log x)1−(1+o(1))/π = (log x)1−(1+o(1))/π, x→∞.

Next, for each k chosen, let q run over primes to x1/2/k, with q - k, π - q(q + 1), and

π - qs(k) + σ(k) = s(qk).

To arrange for this last condition, note that if π | s(k), it is true automatically, and if π - s(k), then there
are at least π − 3 allowable residue classes for q modulo π (we discard the classes 0, 1,−σ(k)/s(k)). For
m = qk so chosen, we have A | m, π - ms(m)σ(m), and by the prime number theorem for residue classes,∑

m

1

m
=
∑
k

1

k

∑
q

1

q
�
∑
k

1

k
≥ (log x)1−(1+o(1))/π, x→∞.

Finally, for each m, we let p run over primes to x/m where p - m and

(3.3) π | ps(m) + σ(m) = s(pm).

For (3.3), we take p in the residue class −σ(m)/s(m) modulo π. Since π - σ(m)s(m), this is a nonzero
residue class. Further, it is not the class −1 since π - m implies that σ(m) 6≡ s(m) (mod π). Thus, if we
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choose p satisfying (3.3), then π - p+ 1. For n = pm so chosen we have by the prime number theorem for
residue classes

(3.4)
∑
n≤x

1 =
∑
m

∑
p

1�
∑
m

x/m

π log(x/m)
� x

π log x

∑
m

1

m
≥ x

(log x)(1+o(1))/π

as x→∞.
It remains to note that for each number n constructed we have n ≤ x, A | n, and if s(n)/σ(n) = u/v

with u, v coprime, then π | u. Thus, as x→∞,

n

σ(n)
+

u

σ(u)
≤ A

σ(A)
+

π

π + 1
≤ 1

(eγ + o(1)) log3 x
+ 1− 1

eγ−ε log3 x+ 1
,

and this expression is smaller than 1 for all large x. Thus, by (3.1), n is discordant. Since ε > 0 is arbitrary,
(3.4) implies the proposition. �

The criterion (3.1) is sufficient for discordance but not necessary; there are abundancy outlaws of the
form σ(a)/s(a) not captured by Lemma 5. In order to detect (some) of these, we combine Lemma 5 with a
bootstrapping procedure described in the following result.

Lemma 7 (Recursive criterion for outlaws). Let v and u be coprime positive integers. Let P be the product
of any finite set of primes p for which pvp(u)

σ(pvp(u))
· vu is known to be an outlaw. If σ(uP )

uP > v
u , then v

u is an
outlaw.

Proof. If σ(n)/n = v/u, then u | n. Let p be a prime dividing P . If pvp(u) ‖ n, then

σ(n/pvp(u))

n/pvp(u)
=

pvp(u)

σ(pvp(u))
· v
u
,

contradicting that the right-hand side is an outlaw. Thus, pvp(u)+1 | n for all p dividing P , and so uP | n.
Hence, vu = σ(n)

n ≥ σ(uP )
uP , contrary to assumption. �

Example. As an illustration, let us show that 888 is discordant. We have σ(888)
s(888) = 95

58 . Then 2 ‖ 58, and
2

σ(2) ·
95
58 = 95

87 . Since σ(87) = 120 > 95, the fractional 95
87 is a known outlaw by Lemma 5. Moreover,

σ(2·58)
2·58 = 105

58 > 95
58 . So Lemma 7, with P = p = 2, implies that 95

58 is an outlaw.

Table 1 displays the counts of numbers up to 2k, for k = 1, 2, . . . , 26, that belong to a harmonious pair
with other member at most 10j , where j = 8, 9, . . . , 18. To collect this data, we modified a gp script posted
by Michael Marcus to the Online Encyclopedia of Integer Sequences (see [13]). Given a rational number v

u

and a search limit L, the script (provably) finds all b ≤ L with σ(b)
b = v

u . For each 1 < a ≤ 2k, we used this
script to determine whether or not the equation σ(b)

b = σ(a)
s(a) has any solutions b ≤ 10j .

Table 2 summarizes three counts: Numbers known to be harmonious because they are members of a
pair contained in [1, 1018], numbers proved to be discordant, and numbers which fall into neither camp. The
count of discordant numbers was obtained by tallying those a > 1 for which σ(a)/s(a) could be determined
to be an abundancy outlaw by at most five iterations of Lemma 7. (Here the 0th iteration corresponds to
outlaws detected by Lemma 5.) We then added 1 to the counts, since 1 is discordant but not detected in this
fashion.

It would be interesting to prove (or disprove) that the set of discordant integers has positive lower density.
It seems possible that we could detect further classes of discordant numbers by developing some of the ideas
introduced in [14] for finding abundancy outlaws; this deserves further study. In the opposite direction, we
do not know how to show that there are infinitely many non-discordant integers, i.e., that there are infinitely
many harmonious pairs.
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24 25 26 27 28 29 210 211 212 213 214 215 216 217 218

108 10 18 37 70 127 226 367 594 944 1456 2227 3310 4838 6823 9493
109 10 18 38 74 135 240 397 657 1057 1663 2601 3962 5972 8701 12539

1010 10 18 38 74 135 240 403 682 1126 1823 2888 4497 6936 10429 15457
1011 10 19 39 77 141 250 420 715 1207 1978 3176 5009 7831 12076 18307
1012 10 19 39 77 143 254 427 732 1254 2075 3390 5397 8599 13516 20895
1013 10 19 39 79 146 258 434 745 1295 2157 3567 5742 9269 14755 23139
1014 10 19 39 79 146 260 438 755 1322 2221 3704 6028 9796 15758 25025
1015 10 19 39 79 147 262 444 765 1348 2273 3805 6254 10280 16674 26715
1016 10 19 39 80 148 264 449 774 1362 2305 3895 6463 10684 17483 28223
1017 10 19 39 80 148 266 457 787 1381 2339 3964 6616 11019 18139 29580
1018 10 19 39 80 149 268 461 796 1398 2368 4031 6757 11275 18663 30640

219 220 221 222 223 224 225 226

108 13035 17600 23294 30445 39200 49779 62363 77374
109 17792 24835 33953 45853 60956 79901 103318 131954

1010 22586 32500 45843 63695 87100 117548 156567 205675
1011 27393 40371 58276 83122 116711 161754 221399 298577
1012 31939 47994 70793 103288 148490 210543 294805 406975
1013 36008 55037 82861 123112 180642 261391 373696 526878
1014 39631 61539 94240 142449 212625 313250 455894 655103
1015 42844 67456 104686 160569 243473 364106 538838 787186
1016 45660 72740 114179 177347 272600 413431 620475 920261
1017 48190 77413 122830 192819 299822 460478 700065 1051622
1018 50291 81454 130287 206485 324537 504113 775476 1179215

TABLE 1. Number of positive integers up to 2k belonging to a harmonious pair with other
member at most 10j .

210 211 212 213 214 215 216 217 218 219

Harmonious 461 796 1398 2368 4031 6757 11275 18663 30640 50291
Discordant 27 49 103 209 418 822 1598 3154 6114 11849

Not classified 536 1203 2595 5615 11935 25189 52663 109255 225390 462148

220 221 222 223 224 225 226

Harmonious 81454 130287 206485 324537 504113 775476 1179215
Discordant 22985 44710 87056 169084 329189 641109 1250156

Not classified 944137 1922155 3900763 7894987 15943914 32137847 64679493

TABLE 2. Counts up to various heights of numbers belonging to a harmonious pair in
[1, 1018], numbers known to be discordant, and numbers fitting neither classification.

4. CONCLUDING REMARKS

Harmonious pairs have a surprising connection with a different generalization of amicable pairs recently
studied by two of us [7]. Say that m and n form a δ-amicable pair if σ(m) = σ(n) = m + n + δ. When
δ = 0, this reduces to the usual notion of an amicable pair. It was shown in [7] that for each fixed δ 6= 0,
the set of numbers in [1, x] belonging to a δ-amicable pair has size Oδ(x(log2 x)4/(log x)1/2). The same
authors conjectured that for arbitrary B, this count is

(4.1) �δ,B x/(log x)B.
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210 211 212 213 214 215 216 217 218 219

Hsingle(x) 93 170 251 379 584 897 1323 1965 2909 4377
Hpair(x) 56 99 146 222 336 515 764 1130 1666 2500

∆(x) 46 74 118 187 285 432 651 979 1449 2181

220 221 222 223 224 225 226

Hsingle(x) 6630 9865 14689 21537 31961 47311 69798
Hpair(x) 3787 5631 8383 12310 18279 27067 39934

∆(x) 3320 4934 7378 10959 16215 24055 35605

TABLE 3. Values of Hsingle(x) = # of n involved in a harmonious pair a ≤ b ≤ x,
Hpair(x) = # of pairs a ≤ b ≤ x, and ∆(x) = # of values of δ = a+ b ≤ x.

The conjectured upper bound (4.1) turns out to be too optimistic. To explain why, we first describe how to
associate to a harmonious pair a, b a family of δ-amicable numbers with δ = a+b. Since a/σ(a)+b/σ(b) =
1, the fractions a/σ(a) and b/σ(b) have the same denominator in lowest terms, say d. Thus, we can write

a/σ(a) = u/d and b/σ(b) = v/d,

where both right-hand fractions are reduced and u+ v = d. Write

a = ua0, b = vb0, σ(a) = da0, σ(b) = db0.

Put n = ap and m = bq, where p - a, q - b are primes. Then the equation σ(n) = σ(m) amounts to
requiring σ(a)(p+ 1) = σ(b)(q + 1), or equivalently, a0(p+ 1) = b0(q + 1). This holds precisely when

(4.2) p =
b0

(a0, b0)
t− 1 and q =

a0
(a0, b0)

t− 1

for some positive integer t. In that case,

n+m+ δ = ap+ bq + δ = ua0

(
b0

(a0, b0)
t− 1

)
+ vb0

(
a0

(a0, b0)
t− 1

)
+ (a+ b)

=
a0b0t

(a0, b0)
(u+ v) =

da0b0t

(a0, b0)
.

But this last fraction is equal to both σ(m) and σ(n), and thus m and n form a δ-amicable pair.
We have constructed a pair of δ-amicable numbers from each pair of primes p, q satisfying (4.2), as long

as p - a and q - b. One expects that there are always infinitely many such pairs. When b0 = a0, which
corresponds to the case when a, b form an amicable pair, this follows immediately from the prime number
theorem for arithmetic progressions. In that case, the above construction produces � x/ log x members
of a δ-amicable pair not exceeding x, which is much larger than allowed by (4.1). If b0 6= a0, we cannot
rigorously prove the existence of infinitely many prime pairs satisfying (4.2), but this follows from the prime
k-tuples conjecture. Here we expect the construction to produce� x/(log x)2 numbers in [1, x] that belong
to a δ-amicable pair. Again, this contradicts the conjectured bound (4.1).

The following related questions seem attractive but difficult.

Question. Does the bound (4.1) hold if δ cannot be written as a+ b for any harmonious pair a, b?

Question. Let ∆(x) be the number of δ ≤ x that can be written as a sum of two members of a harmonious
pair. Can one show that ∆(x) = o(x), as x → ∞? Of course this would follow if we could show that
the count Hpair(x) of harmonious pairs in [1, x] is o(x). Perhaps ∆(x) ∼ Hpair(x) ∼ 1

2Hsingle(x), where
Hsingle(x) is the quantity bounded in Theorem 1. See Table 3.
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