MULTIVARIABLE POLYNOMIAL INJECTIONS ON RATIONAL NUMBERS

BJORN POONEN

ABSTRACT. For each number eld k , the Bombieri-Lang conjecture for k -rational points on surfaces of general type implies the existence of a polynomial $f(x; y) \supseteq k[x; y]$ inducing an injection k k ! k .

1. INTRODUCTION

Harvey Friedman asked whether there exists a polynomial $f(x, y) \supseteq \mathbb{Q}[x, y]$ such that the induced map $\mathbb{Q} \setminus \mathbb{Q}$ is injective. Heuristics suggest that most sufficiently complicated polynomials should do the trick. Don Zagier has speculated that a polynomial as simple as $x^7 + 3y^7$ might already be an example. But it seems very difficult to prove that any polynomial works. Both Friedman's question and Zagier's speculation are at least a decade old (see [\[Cor99,](#page-3-0) Remarque 10]), but it seems that there has been essentially no progress on the question so far.

Our theorem gives a positive answer conditional on a small part of a well-known conjecture.

Theorem 1.1. Let k be a number field. Suppose that there exists a homogeneous polynomial $F(x, y) \supseteq k[x, y]$ such that the k-rational points on the surface X in \mathbb{P}^3 defined by $F(x, y) =$ $F(z, w)$ are not Zariski dense in X. Then there exists a polynomial $f(x, y) \geq k[x, y]$ inducing an injection $k \, k \, l \, k$.

Remark 1.2. If $F(x, y)$ is separable (or equivalently, squarefree) and homogeneous of degree at least 5, then X is of general type. So the hypothesis in Theorem [1.1](#page-0-0) would follow from the Bombieri-Lang conjecture that k-rational points on a surface of general type are never Zariski dense.

Remark 1.3. As the proof of Theorem [1.1](#page-0-0) will show, if we have an algorithm for determining the Zariski closure of the set of k -rational points on each curve or surface of general type, then we can construct $f(x, y)$ explicitly.

Remark 1.4. To prove that a nonzero homogeneous polynomial $F(x, y)$ defines an injection k k ! k is to prove that $X(k)$ is contained in the line $x \quad z = y \quad w = 0$. If F is separable, then X is a smooth projective hypersurface in \mathbb{P}^3 , so it is simply connected. But as far as we know, there is not a single simply connected smooth algebraic surface X with $X(k) \neq \emptyset$; such that $X(k)$ is known to be not Zariski dense in X! If one uses nonhomogeneous polynomials, one must instead understand rational points on affine 3-folds; this seems unlikely to improve

Date: September 23, 2010.

²⁰⁰⁰ Mathematics Subject Classification. Primary 11C08; Secondary 11G30, 11G35.

Key words and phrases. Bombieri-Lang conjecture, polynomial injection.

The research was supported by NSF grant DMS-0841321. This article has been published in Acta Arith. 145 (2010), no. 2, 123{127.

the situation. All this suggests that Friedman's question cannot be answered unconditionally without a major advance in arithmetic geometry.

Remark 1.5. One cannot hope to answer the question using local methods alone. More precisely, if L is any local field of characteristic 0, and $f(x, y) \n\geq L[x, y]$ is nonconstant, then the induced map $L \perp L$ L is not injective. To prove this, choose a point (x_0, y_0) 2 L L where $\partial f/\partial x$ or $\partial f/\partial y$ is nonvanishing, and let $c = f(x_0, y_0)$; then the affine curve $f(x, y) = c$ is smooth at (x_0, y_0) , so by the implicit function theorem it contains infinitely many L-points, each of which has the same image under f as (x_0, y_0) .

Remark 1.6. If k is any imperfect field, then there exists a polynomial injection $k \leq k \leq k$, by a construction that can be found in the proof of Proposition 8 in [\[Cor99\]](#page-3-0). Namely, let $p = \text{char } k$, choose $t \geq k$ k^p , and use $f(x, y) = x^p + ty^p$. This applies in particular to any global function field.

Remark 1.7. The generalized abc-conjecture of [\[BB94\]](#page-3-1) (more specifically, the 4-variable analogue) would imply that $f(x, y) := x^n + 3y^n$ defines a polynomial injection $\mathbb{Q} \quad \mathbb{Q}$! \mathbb{Q} for sufficiently large odd integers n: this was observed in $[Cor99, Remarque 10]$ $[Cor99, Remarque 10]$.

Remark 1.8. For the function field K of an irreducible curve over a base field k of characteristic 0, an analogue of the generalized abc-conjecture is known [\[Mas86,](#page-3-2) Lemma 2]. This analogue can be used to show that for some $t \, 2K$ and m 1, the polynomial $f(x, y) = x^m + ty^m$ defines an injection, under certain technical hypotheses. These hypotheses can be satisfied when k is a number field, for instance. See $[Cor99, Proposition 8]$ $[Cor99, Proposition 8]$ for details and for other related results.

2. Proof of theorem

Let k, F, and X be as in Theorem [1.1.](#page-0-0) Let $d = \deg F$. Call a line in \mathbb{P}^3 trivial if it is given by $x \quad \zeta z = y \quad \zeta w = 0$ for some $\zeta \geq k$ with $\zeta^d = 1$. Each trivial line is contained in X. Let w be the number of roots of 1 in k, and let p be a prime number such that $p > 3$ and $p \nmid w$. When we speak of the genus of a geometrically irreducible curve, we mean the genus of its smooth projective model. When we say that something holds for "most" elements of k or of k^n , we mean that it holds outside a thin set in the sense of [\[Ser97,](#page-3-3) χ 9.1]. Such sets arise in the context of the Hilbert irreducibility theorem, which shows that a finite union of thin sets cannot cover all of k^n .

Lemma 2.1. Fix an integral closed subscheme Z of X. For most $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ 2 $GL_2(k)$ k $⁴$, the</sup> inverse image Y of Z under the finite morphism

$$
\mathbb{P}^3 \neq \mathbb{P}^3
$$

$$
(x:y:z:w) \not\mathbb{P} \ (ax^p + by^p : cx^p + dy^p : az^p + bw^p : cz^p + dw^p)
$$

satisfies:

- (i) If dim $Z = 0$, then $Y(k) = \mathcal{I}$.
- (ii) If Z is a trivial line, then $Y(k)$ is contained in a trivial line.
- (iii) If Z is any other curve in X, then $Y(k)$ is finite.

Proof. We can compute Y in stages, by first taking the *forward* image of Z under the automorphism

$$
\mathbb{P}^3 \stackrel{\rho}{\cdot} \mathbb{P}^3
$$

(x : y : z : w) \mathbb{V} (ax + by : cx + dy : az + bw : cz + dw)

(technically, $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ here should be the inverse of what it was before, but this does not matter), and then pulling back by

$$
\mathbb{P}^3 \stackrel{\beta}{\frown} \mathbb{P}^3
$$

$$
(x:y:z:w) \not\mathbb{V} \quad (x^p:y^p:z^p:w^p).
$$

(i) Here dim $Z = 0$. If Z is not a k-rational point, then $Z(k) = \square$, so $Y(k) = \square$. If Z is a k-rational point, then for most $(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix})$ the value of $(ax + by)/(cx + dy)$ on Z is not a p^{th} power in k, so $Y(k) = \ldots$

(ii) Here Z is $x \quad \zeta z = y \quad \zeta w = 0$ for some $\zeta 2k$ with $\zeta^d = 1$. Then $\alpha(Z) = Z$, so Y is $x^p \quad \zeta z^p = y^p \quad \zeta w^p = 0.$ By choice of p, the pth-power map on k is injective, and moreover $\zeta = \eta^p$ for some $\eta \geq k$ with $\eta^d = 1$. So all points in $Y(k)$ satisfy $x - \eta z = y - \eta w = 0$.

(iii) Here Z is an irreducible curve in X that is not a trivial line. If Z is geometrically reducible, then $Z(k)$ is not Zariski dense in Z, so $Z(k)$ is finite, and $Y(k)$ is finite too. So assume that Z is geometrically irreducible.

If $y = 0$ on Z or if x/y defines a *constant* rational function on Z, then as in (i), for most $\binom{a}{c}\,b$ the value of x/y on $\alpha(Z)$ is not a p^{th} power in k, so Y has no k-rational points except possibly those where $x = y = 0$, so $Y(k)$ is finite.

Suppose that x/y defines a rational function of degree $m > 1$ on Z. By Bertini's theorem ([\[Har77,](#page-3-4) Corollary III.10.9]), $ax + by$ has distinct zeros on the normalization Z' of Z, outside the base locus of the linear system given by hx, yi , for most a and b. The same applies to $cx+dy$, so for most $(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix})$, the rational function $(ax+by)/(cx+dy)$ on Z' has m simple zeros and m simple poles on Z'. Adjoining the pth root of this function to the function field of Z' yields the function field of a geometrically irreducible curve C of genus greater than 1, by the Hurwitz formula. By [\[Fal83\]](#page-3-5), $C(k)$ is finite. Since Y admits a dominant rational map to C, the set $Y(k)$ is finite too.

Thus we may assume that x/y is of degree 1 on Z; in particular, Z is a rational curve. Similarly, we may assume that z/w is of degree 1 on Z. If the rational functions x/y and z/w on Z were different, then for most $\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$, the supports of the divisors of $(ax + by)/(cx + dy)$ and $\frac{az + bw}{cz + dw}$ on the normalization of Z would not coincide. Adjoining the p^{th} roots of these functions would lead to a geometrically irreducible curve of genus greater than 1, by the Hurwitz formula again. So $Y(k)$ would be finite as before.

Thus we may assume that $x/y = z/w$ as rational functions on Z. So on Z, we have

$$
x^{d}F(x, y) = x^{d}F(z, w) = F(xz, xw) = F(xz, yz) = z^{d}F(x, y).
$$

But $F(x, y)$ does not vanish on Z (since x/y is nonconstant), so x^d z^d vanishes on Z. Since Z is geometrically irreducible, $x \leq z$ vanishes on Z for some $\zeta \geq k$ with $\zeta^d = 1$. But $x/y = z/w$ on Z, so y ζw vanishes on Z too. Thus Z is a trivial line, a contradiction. \square

Let W be the Zariski closure of $X(k)$. By assumption, dim W 1. Applying Lemma [2.1](#page-1-0) to each irreducible component of W shows that by replacing $F(x, y)$ with $F(ax^p + by^p, cx^p + dy^p)$ for suitable $(\frac{a}{c} \frac{b}{d})$, we may reduce to the case that $W(k)$ contains at most finitely many points

outside the trivial lines. Repeating this construction lets us reduce to the case that $W(k)$ is contained in the trivial lines.