












Remarks. Algorithm 1 seems better suited for practical computations. However, unlike in
the case of fields, the precise worst-case behavior of the analogue of Buchberger’s algorithm
for computing Gröbner bases over Z[X] is as of yet still unclear. (For very weak bounds see
[GM94], and for further discussion the forthcoming [Asc09].) Algorithm 2 has the advantage
of coming with explicit (doubly-exponential) complexity bounds: for example, suppose d ∈
N is an upper bound on the (total) degree of fi for i = 1, . . . , n; then IQ[X] ∩ Z[X] =

(g1, . . . , gm) where deg(gj) ≤ (2d)2
N log(N+1)

for j = 1, . . . ,m, cf. [Asc04, Theorem B]. (Note
that this bound only depends on the bound d on the degrees and not on the particular
coefficients of the fi.)

In connection with (P1), we remark that the smallest positive integer δ such that (I :
δ) = IQ[X] ∩ Z[X] agrees with the exponent of the torsion subgroup of the additive group
of Z[X]/I. (The torsion subgroup of the additive group of a Noetherian ring always has
finite exponent.) The algorithms indicated above, together with a procedure for deciding
equality of ideals in Z[X] (found in [GTZ88,Asc04]), give rise to a procedure for computing
this exponent in an obvious way; another algorithm was given by Clivio [Cli90] (based on
earlier work of Ayoub [Ayo83]).
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