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Abstract. We prove that some in�nite p-adically discrete sets have Diophantine de�nitions
in large subrings of number �elds. First, if K is a totally real number �eld or a totally
complex degree-2 extension of a totally real number �eld, then for every prime p of K there
exists a set of K-primes S of density arbitrarily close to 1 such that there is an in�nite
p-adically discrete set that is Diophantine over the ring OK,S of S-integers in K. Second,
if K is a number �eld over which there exists an elliptic curve of rank 1, then there exists a
set of K-primes S of density 1 and an in�nite Diophantine subset of OK,S that is v-adically
discrete for every place v of K. Third, if K is a number �eld over which there exists an
elliptic curve of rank 1, then there exists a set of K-primes S of density 1 such that there
exists a Diophantine model of Z over OK,S . This line of research is motivated by a question
of Mazur concerning the distribution of rational points on varieties in a nonarchimedean
topology and questions concerning extensions of Hilbert’s Tenth Problem to subrings of
number �elds.

1. Introduction

Matijasevi�c (following work of Davis, Putnam, and Robinson) proved that Hilbert’s Tenth
Problem could not be solved: that is, there does not exist an algorithm, that given an
arbitrary multivariable polynomial equation f(x1, . . . , xn) = 0 with coe�cients in Z, decides
whether or not a solution in Zn exists. It is not known whether an analogous algorithm exists,
however, if in the problem one replaces Z by Q in both places. One natural approach to
proving a negative answer for Q is to show that Z admits a Diophantine de�nition over Q, or
more generally that there is a Diophantine model of the ring Z over Q; the meaning of these
statements is given in De�nitions 1.1 and 1.3 below. (See [DLPVG00] for an introduction to
the subject.)

Definition 1.1. Let R be a (commutative) ring. Suppose A ⊆ Rk for some k ∈ N. Then
we say that A has a Diophantine de�nition over R if there exists a polynomial

f(t1, . . . , tk, x1, . . . , xn) ∈ R[t1, . . . , tk, , x1, . . . , xn]

such that for any (t1, . . . , tk) ∈ Rk,

(t1, . . . , tk) ∈ A ⇐⇒ ∃x1, . . . , xn ∈ R, f(t1, . . . , tk, x1, ..., xn) = 0.
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In this case we also say that A is a Diophantine subset of Rk, or that A is Diophantine
over R.

Remark 1.2. Suppose that R is a domain whose quotient �eld is not algebraically closed.
Then

(a) Relaxing De�nition 1.1 to allow an arbitrary �nite conjunction of equations in place
of the single equation on the right hand side does not enlarge the collection of Dio-
phantine sets.

(b) Finite unions and �nite intersections of Diophantine sets are Diophantine.

See the introduction in [Phe94] for details.

Definition 1.3. A Diophantine model of Z over a ring R is a Diophantine subset A ⊆
Rk for some k together with a bijection φ : Z → A such that the graphs of addition and
multiplication (subsets of Z3) correspond under φ to Diophantine subsets of A3 ⊆ R3k.

Mazur formulated a conjecture that would imply that a Diophantine de�nition of Z over
Q does not exist, and later in [CZ00] it was found that his conjecture also ruled out the
existence of a Diophantine model of Z over Q. One form of Mazur’s conjecture was that for
a variety X over Q, the closure of X(Q) in the topological space X(R) should have at most
�nitely many connected components. See [Maz92], [Maz94], [Maz95], [Maz98], [CTSSD97],
[CZ00], [Poo03], and [Shl03] for more about the conjecture and its consequences.

Mazur also formulated an analogue applying to both archimedean and nonarchimedean
completions of arbitrary number �elds. Speci�cally, on page 257 of [Maz98] he asked:

Question 1.4. Let V be any variety de�ned over a number �eld K. Let S be a �nite set
of places of K, and consider KS =

∏
v2S Kv viewed as locally compact topological ring. Let

V (KS) denote the topological space of KS-rational points. For every point p ∈ V (KS) de�ne
W (p) ⊂ V to be the subvariety de�ned over K that is the intersection of Zariski closures of
the subsets V (K)∩U , where U ranges through all open neighborhoods of p in V (KS). As p
ranges through the points of V (KS), are there only a �nite number of distinct subvarieties
W (p)?

In Question 1.4, it does not matter whether we require V to be irreducible. (We will not.)

Proposition 1.5. Fix a number �eld K and a place p. If Question 1.4 has a positive answer
for K and S := {p}, then there does not exist an in�nite, p-adically discrete, Diophantine
subset of K.

Proof. Suppose there exists a subset A of K that is in�nite, p-adically discrete, and Dio-
phantine over K. The Diophantine de�nition of A corresponds to an a�ne algebraic set V
such that the projection π : V → A1 onto the �rst coordinate satis�es π(V (K)) = A.

Suppose a ∈ A. Since A is p-adically discrete, there exists an open neighborhood N of a
in Kp such that A∩N = {a}. Pick p ∈ V (K) with π(p) = a. Then U := π�1(N) is an open
neighborhood of p, and π maps V (K) ∩ U into A ∩N = {a}, so W (p) ⊆ π�1(a).

By choosing one p above each a ∈ A, we get in�nitely many disjoint subvarieties W (p),
contradicting the positive answer to Question 1.4. �

In view of the proposition above, constructing a Diophantine de�nition of an in�nite dis-
crete p-adic set over a number �eld K would be one way to answer Question 1.4 (negatively)
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for K. Unfortunately, at the moment such a construction seems out of reach. Thus instead
we consider analogues in which K is replaced by some of its large integrally closed subrings.

Definition 1.6. If K is a number �eld, let PK be the set of �nite primes of K. For S ⊆ PK ,
de�ne the ring of S-integers

OK;S = {x ∈ K | ordp x ≥ 0 for all p /∈ S }.
(Elsewhere the term S-integers often presupposes that S is �nite, but we will use this term
for in�nite S also.)

If S = ∅, then OK;S equals the ring OK of algebraic integers of K. If S = PK , then
OK;S = K. In general, OK;S lies somewhere between OK and K, and the density of S (if it
exists) may be used as a measure of the \size" of OK;S . Throughout this paper, \density"
means natural density, which is de�ned as follows.

Definition 1.7. Let S ⊆ PK . The density of S is de�ned to be the limit

lim
X!1

#{p ∈ S : Np ≤ X}
#{all p : Np ≤ X}

if it exists. If the density of S does not exist, we can replace the limit in De�nition 1.7 by
lim sup or lim inf and hence de�ne the upper or lower densities of S. (See [Lan94, VIII, §4]
for more about density.)

The study of Diophantine de�nability and the archimedean conjecture of Mazur over rings
of S-integers has produced Diophantine de�nitions of Z and discrete archimedean sets over
large subrings of some number �elds (see [Shl97], [Shl00a], [Shl02], [Shl04] and [Shl03]).
Recently in [Poo03], the �rst author constructed an in�nite discrete Diophantine set (in the
archimedean topology) and a Diophantine model of Z over a subring of Q corresponding to
a set of primes of density 1. Thus he showed that the analogue of Hilbert’s Tenth Problem
is undecidable over such a ring.

In this paper we consider Diophantine de�nability of in�nite discrete p-adic sets over some
rings of S-integers. Our results will come from two sources: norm equations (as in [Shl03])
and elliptic curves (as in [Poo03]). Our main results are stated below. When we say that
a subset of OK;S is Diophantine, we mean that it is Diophantine over OK;S . A subset S of
PK is recursive if there exists an algorithm that takes as input an element of K (given by
its coordinates with respect to some �xed Q-basis) and decides whether it belongs to OK;S .

Theorem 1.8. Let K be a totally real number �eld or a totally complex degree-2 extension
of a totally real number �eld. Let p be any prime of K and let pQ be the rational prime below
it. Then for any ε > 0 there exists a recursive set of K-primes S 3 p of density > 1 − ε
such that there exists an in�nite Diophantine subset of OK;S that is discrete and closed when
viewed as a subset of the completion Kp. In fact, such a subset can be found inside Z[1/pQ].

Theorem 1.9. Let K be any number �eld for which there exists an elliptic curve E such
that rankE(K) = 1. Then

(1) There exist recursive subsets T1, T2 ⊆ PK of density 0 such that for any S with
T1 ⊆ S ⊆ PK − T2, there exists an in�nite Diophantine subset A of OK;S such that
for all places v of K, the set A is discrete when viewed as a subset of the completion
Kv.
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(2) There exist recursive subsets T 01 , T 02 ⊆ PK of density 0 such that for any S with
T 01 ⊆ S ⊆ PK − T 02 , there exists a Diophantine model of the ring Z over OK;S .

Sections 2 and 3, which lead to Theorems 1.8 and 1.9, respectively, can be read indepen-
dently.

2. Using norm equations

In this section we use norm equations to construct in�nite Diophantine p-adically discrete
sets, in order to prove Theorem 1.8.

2.1. Preliminary results.

Proposition 2.1. Let K be a number �eld and let S ⊆ PK. Then OK;S−{0} is Diophantine
over OK;S .

Proof. See Proposition 2.6 on page 113 of [Shl00b]. (Note: there is a typo in the statement
in [Shl00b]: the last K should be OK;W .) �

The importance of Proposition 2.1 is that equations with variables intended to range over
K can now be interpreted in the arithmetic of OK;S , since elements of K can be represented
as fractions of elements of OK;S with nonzero denominator.

Proposition 2.2. Let K be a number �eld, and let p ∈ PK. Then the discrete valuation
ring OK;PK�fpg = {x ∈ K : ordp x ≥ 0 } is Diophantine over K.

Proof. See Lemma 3.22 in [Shl94]. �

Corollary 2.3. Let K be a number �eld, and let p ∈ PK. Then the sets {x ∈ K : ordp x >
0 }, { (x, y) ∈ K2 : ordp x ≥ ordp y }, and { (x, y) ∈ K2 : ordp x = ordp y } are Diophantine
over K.

Proof. Fix a ∈ K with ordp a = 1. Then

ordp x > 0 ⇐⇒ ordp(x/a) ≥ 0,

ordp x ≥ ordp y ⇐⇒ (∃r)(x = ry and ordp r ≥ 0),

ordp x = ordp y ⇐⇒ (ordp x ≥ ordp y) and (ordp y ≥ ordp x).

�

Propositions 2.1 and 2.2 together imply the following generalization of Proposition 2.2
(cf. Theorem 4.4 in [Shl94]):

Proposition 2.4. Let K be a number �eld. If S ⊆ S 0 ⊆ PK and S 0−S is �nite, then OK;S
is Diophantine over OK;S′.

Lemma 2.5. Let F be a number �eld. Let {ω1, . . . , ωs} be a Z-basis for OF . Let a1, . . . , as ∈
Q, and let x =

∑s
i=1 aiωi. Let p be a prime of Q that does not ramify in F . Then

min
i

ordp ai = min
P

ordP x,

where P ranges over F -primes above p.
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Proof. Since p is unrami�ed in F , the ideal pOF factors as the product of the P. Thus we
have an equality pmOF =

∏
P Pm for any m ∈ Z. The two minimums in the statement

equal the largest m for which x belongs to this fractional ideal, since pmω1, . . . , pmωs form
a Z-basis for pmOF . �



for some k ∈ Z>0. Furthermore, the set of solutions to (1) satisfying (2) and (3) is nonempty
and closed under multiplication. (If x1 and x2 are solutions to (1), then x1/x2 is again a
solution to (1), but x1/x2 will not necessarily satisfy (2) and (3) even if x1 and x2 do.)

Proof. Since pQ splits completely in E and in L, it splits completely in EL. Now apply
Section 3.3.2 on page 131 of [Shl00b].

�

Corollary 2.8. Let A be the set of (a1, . . . , a2p) in
(
OQ;WQ

)2p
such that the element x =∑2p

i=1 aiωi of OEL;WEL
satis�es (1), (2), and (3). Let B be the set of b ∈ OQ;WQ such that

for some (a1, . . . , a2p) ∈ A,

(i) The element b equals one of the ai, and
(ii) ordpQ b = min{ordpQ a1, . . . , ordpQ a2p}.

(Thus B is the set of \pQ-adically largest coordinates" of elements of A.) For r ∈ Z, let
Br = { b ∈ B : ordpQ b = r }. Then

(a) A and B are Diophantine over OQ;WQ.
(b) B ⊂ Z[1/pQ].
(c) There exists M ∈ Z>0 such that B =

⋃1
m=1 B�Mm and each B�Mm in the union is a

nonempty �nite set.

Proof.

(a) By writing each norm in (1) as a product of conjugates, we �nd that the equations (1)
are equivalent to polynomial equations in the ai. By Corollary 2.3 together with the
\Going up and then down" method (see Section 2.2 on pages 110{111 of [Shl00b]),
conditions (2) and (3) are Diophantine. Thus A is Diophantine.

Condition (i) is
∏2p

i=1(b−ai) = 0, and condition (ii) is Diophantine by Corollary 2.3,
so B is Diophantine too.

(b) This follows from (4) above.
(c) If b ∈ B is associated to (a1, . . . , a2p) ∈ A and k is the positive integer in (4) for the

element x =
∑2p

i=1 aiωi, then ordpQ b = −k by Lemma 2.5. Thus the set of r for which
Br 6= ∅ equals the set of possibilities for −k in (4) as x varies over all solutions to
(1) satisfying (2) and (3). Let M be the smallest positive integer such that −M is
a possible value of −k. Proposition 2.7 implies that the set of possibilities for −k is
then {−M,−2M, . . . }. Thus Br 6= ∅ if and only if r ∈ {−M,−2M, . . . }.

It remains to prove that each Br is �nite. Fix r ∈ Z. The �niteness of Br follows
once we show that the set of x satisfying (1), (2), and (3) and having k = −r in (4)
is �nite. Suppose x1 and x2 are two such values of x, so by (4) the divisor of x1/x2 is
trivial. Then x1/x2 ∈ O�EL and NEL=E(x1/x2) = 1. But EL/E is a totally complex
degree-2 extension of a totally real �eld, so these conditions imply that x1/x2 is a
root of unity. Finally, there are only �nitely many roots of unity in EL.

�

Corollary 2.9. There exists an in�nite Diophantine subset B ⊂ OQ;WQ that is pQ-adically
discrete and closed. In fact, such a subset can be found inside Z[1/pQ].

Proof. The Diophantine set B of Corollary 2.8 is in�nite, because it is an in�nite disjoint
union of nonempty sets. It is pQ-adically discrete and closed, because for each r < 0, the set
of b ∈ B with ordpQ b ≥ r is �nite. �
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2.3. Notation and assumptions. Our next task is to extend the result above to some
number �elds. To accomplish this we will need additional notation and assumptions. We
view all number �elds as being sub�elds of a �xed algebraic closure Q, so that compositums
are well-de�ned.

• Let K be the number �eld given in Theorem 1.8. Thus K is totally real, or K is a
totally complex degree-2 extension of a totally real �eld.
• Let n = [K : Q].
• Let p be the prime of K in Theorem 1.8.

We take pQ in the preceding section to be the rational prime under p.
• Let p = p0 < p1 < · · · < pn be a sequence of odd primes such that pi > n and

1/pi < ε/(n+ 1) for all i. (Here p is the same as in the preceding section.)
• Let E0 = E,E1, . . . , En be a sequence of totally real cyclic extensions of Q such that

[Ei : Q] = pi. (Here E is the same �eld as above.)
• Let UQ be the set of rational primes that are inert in all of the extensions Ei/Q for

0 ≤ i ≤ n. (Note that UQ satis�es the requirements for VQ of the preceding section.)
Let WQ = UQ ∪ {pQ}.
• Let WK be the set of K-primes above WQ.

2.4. Discrete Diophantine subsets of large subrings of K.

Proposition 2.10. Let U be a set of K-primes remaining prime in EiK/K for i = 0, . . . , n.
Then there exists a set of K-primes �U such that the set di�erence (U − �U)∪ ( �U −U) is �nite
and OK;Ū ∩Q has a Diophantine de�nition over OK;Ū .

Proof. See Corollary 2.3 and Theorem 3.8 of [Shl02]. (The application of Corollary 2.3
requires that pi does not divide the absolute degree of the Galois closure of K/Q; this holds
since pi > n.) �

Clearly Proposition 2.10 implies the slightly stronger version in which the hypothesis on
U is weakened to the hypothesis that all but �nitely many primes of U are inert in all the
EiK/K. We now show that we can also insist that the new set of primes contains the original
set:

Proposition 2.11. Let U be a set of K-primes such that all but �nitely many of them are
inert in EiK/K for i = 0, . . . , n. Then there exists a set of K-primes U 0 containing U such
that U 0 − U is �nite and OK;U ′ ∩Q is Diophantine over OK;U ′.

Proof. Let �U be the set given by (the slightly stronger version of) Proposition 2.10, and let
U 0 = U ∪ �U . Thus U 0 − U is �nite.

By choice of �U , the set R := OK;Ū ∩ Q is Diophantine over OK;Ū , which is Diophantine
over OK;U ′ by Proposition 2.4. Thus R is a Diophantine subset of OK;U ′ . The desired subset
OK;U ′ ∩Q can now be de�ned as the set of elements of OK;U ′ equal to a ratio of elements of
R with nonzero denominator (here we use Proposition 2.1 for R). �

Proof of Theorem 1.8. We will apply Proposition 2.11 to the set WK de�ned in Section 2.3.
By assumption, the cyclic extension Ei/Q has prime degree pi > n. Thus [EiK : K] = pi,
and moreover, a K-prime is inert in EiK/K if and only if the Q-prime below it is inert in
Ei/Q. All primes of WQ but pQ are inert in all the Ei/Q, so all primes of WK but �nitely
many are inert in all the EiK/K. Thus we may apply Proposition 2.11 to �nd a set of
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K-primesW 0K such thatW 0K−WK is �nite and such that the set OQ;W ′Q is Diophantine over

OK;W ′K , where W 0Q is the set of Q-primes q such that all K-primes above q lie in W 0K .
Since W 0K −WK is �nite, W 0Q −WQ is �nite.
Now the in�nite set B of Corollary 2.9 is Diophantine overOQ;WQ , which by Proposition 2.4

is Diophantine over OQ;W ′Q , which is Diophantine over OK;W ′K . Thus B is Diophantine over

OK;W ′K . Since p lies above pQ, the set B is p-adically discrete and closed. To ful�ll the
requirements of Theorem 1.8, we take S =W 0K . This is recursive, since up to a �nite set, its
primes are characterized by splitting behavior in a �nite list of extension �elds.

It remains to show thatW 0K has density greater than 1−ε. Up to �nitely many primes,W 0K
is de�ned by the splitting behavior in �nitely many extensions of K (namely, the EiK/K).
Thus, by the Chebotarev Density Theorem (see Th�eor�eme 1 of [Ser81] for a version using
natural density), W 0K has a density. The density of the set of K-primes that fail to be inert
in EiK/K is 1/pi, so the density of W 0K is at least

1−
n∑
i=0

1

pi
> 1−

n∑
i=0

ε

n+ 1
= 1− ε.

�

3. Using elliptic curves

3.1. Notation.

• Whenever k is a perfect �eld, let k be an algebraic closure, and let Gk = Gal(k/k).
• K is a number �eld.
• E is an elliptic curve of rank 1 over K. (In particular, we assume that K is such that

such an E exists).
• We �x a Weierstrass equation y2 = x3 + ax+ b for E with coe�cients in the ring of

integers of K.
• E(K)tors is the torsion subgroup of E(K).
• r is an even multiple of #E(K)tors.
• Q ∈ E(K) is such that Q generates E(K)/E(K)tors.
• P := rQ.
• PQ = {2, 3, 5, . . . } is the set of rational primes.
• PK is the set of all �nite primes of K.
• Let Sbad ⊆ PK consist of the primes that ramify in K/Q, the primes for which the

reduction of the chosen Weierstrass model is singular (this includes all primes above
2), and the primes at which the coordinates of P are not integral. We occasionally
view E as the scheme over OK;Sbad de�ned by the homogenization of the Weierstrass
equation.
• E 0 is the smooth a�ne curve y2 = x3 + ax + b over OK;Sbad . Thus E 0 is E with the

zero section removed.
• MK is the set of all normalized absolute values of K.
• MK;1 ⊂MK is the set of all archimedean absolute values of K.
• For p ∈ PK , let

(1) Kp be the completion of K at p.
(2) Rp be the valuation ring of Kp

(3) Fp be the residue �eld of Rp,
8



(4) Np = #Fp be the absolute norm of p
• For n 6= 0, write nP = (xn, yn) where xn, yn ∈ K.
• Let the divisor of xn be of the form

an
dn

bn,

where
– dn =

∏
q q
�aq , where the product is taken over all primes q of K not in Sbad such

that aq = ordq xn < 0,
– an =

∏
q q

aq , where the product is taken over all primes q of K not in Sbad such
that aq = ordq xn > 0.

– bn =
∏

q q
aq , where the product is taken over all primes q ∈ Sbad and aq =

ordq xn.
We use the convention that d0 is the zero ideal.
• For n as above, let Sn = {p ∈ PK : p|dn}. By de�nition of Sbad, we have S1 = ∅.
• For n as above, let dn = Ndn ∈ Z�1.
• For u ∈ K� and v a place of K lying above the place p of Q (possibly p =∞), de�ne

the (unnormalized) local height hv(u) = log max{‖u‖v, 1} where ‖u‖v = |NKv=Qp(u)|p
and Kv and Qp denote completions.
• For u ∈ K�, de�ne the global height h(u) =

∑
v2MK

hv(u).
• For ` ∈ PQ, de�ne a‘ to be the smallest positive number such that S‘a` 6= ∅. (By

Siegel’s Theorem, a‘ = 1 for all but �nitely many `.)
• Let L = {` ∈ PQ : a‘ > 1} and L =

∏
‘2L `

a`�1.
• Let p‘ be a prime of largest norm in S‘a` .
• For `,m ∈ PQ, let p‘m be a prime of largest norm in S‘m − (S‘ ∪ Sm), if this set is

nonempty (see Proposition 3.5).
• E[m] denotes {T ∈ E(K) : mT = 0 }.
• If λ is an ideal in the endomorphism ring of E, then

E[λ] := {T ∈ E(K) : aQ = 0 for all a ∈ λ }.

3.2. Divisibility of denominators of x-coordinates. The next lemma is the number
�eld analogue to Lemma 3.1(a) of [Poo03], where it was proved for Q.

Lemma 3.1. Let r be an integral divisor of K prime to Sbad. Then {n ∈ Z : r | dn } is a
subgroup of Z.

Proof. It is enough to prove the lemma when r is a prime power pm. Let Ê be the formal
group over Rp de�ned by the chosen Weierstrass model of E. Let Ê(pRp) be the group of

points associated to Ê. There exist Laurent series x(z) = z�2 + · · · and y(z) = z�3 + · · ·
with coe�cients in Rp giving an injective homomorphism Ê(pRp) → E(Kp) whose image
is the set E1(Kp) of (x, y) ∈ E(Kp) with ordp(x) < 0 (together with O): this follows from
Proposition VII.2.2 of [Sil92] when the Weierstrass equation is minimal, but the proof there
does not use the minimality. Since ordp x(z) = −2 ordp z whenever z ∈ pRp, the set of
(x, y) ∈ E(Kp) with ordp(x) ≤ −m (together with O) corresponds under this homomorphism
to a subgroup pdm=2eRp of pRp, and hence is a subgroup of E(Kp). �

Corollary 3.2. Let m,n ∈ Z− {0}, and let (m,n) be their gcd. Then Sm ∩ Sn = S(m;n). In
particular, if (m,n) = 1 then Sm ∩ Sn = ∅.
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3.3. New primes in denominators of x-coordinates.

Lemma 3.3. Let n ∈ Z�1. Suppose that t ∈ PK divides dn, and p ≥ 3 is a rational prime.

(1) If t | p, then ordt dpn = ordt dn + 2.
(2) If t - p, then ordt dpn = ordt dn.

Proof. We will use the notation of Lemma 3.1. Since t | dn, by assumption t 6∈ Sbad. In
particular t is not rami�ed over Q. Furthermore, ordt xn < 0, so nP ∈ E1(Kt). Let z

be the corresponding element in the group of points Ê(tRt) of the formal group. We have
[p]z = pf(z) + g(zp), by Proposition 2.3, page 116 and Corollary 4.4, page 120 of [Sil92],
where [p] is the multiplication-by-p in the formal group and f(T ), g(T ) ∈ Rt[[T ]] satisfy
g(0) = 0 and f(T ) = T + higher order terms. Thus ordt([p]z) equals (ordt z) + 1 or ordt z,
depending on whether t | p. Since x = z�2 + · · · , we �nd that ordt xpn equals (ordt xn) − 2
or ordt xn, depending on whether t | p. �

Lemma 3.4. There exists c ∈ R>0 such that log dn = (c− o(1))n2 as n −→∞.

Proof. Let ĥ be the canonical height on E(K). Then ĥ(nP )/n2 is a positive constant inde-

pendent of n. The Weil height di�ers from ĥ by O(1), so h(xn)/n2 tends to a positive limit
as n → ∞. By de�nition, h(xn) di�ers from log dn by the sum of hv(xn) over archimedean
v and v ∈ Sbad. By the theorem on page 101 of [Ser97], hv(xn)/h(xn) → 0 as n → ∞ for
each v, so (log dn)/h(xn) tends to 1 as n→∞. Thus (log dn)/n2 tends to a positive limit as
n→∞. �

The next proposition is a number �eld version of Lemma 3.4 of [Poo03].

Proposition 3.5. If `,m ∈ PQ and max(`,m) is su�ciently large, then S‘m−(S‘∪Sm) 6= ∅.

Proof. Suppose S‘m − (S‘ ∪ Sm) = ∅. We claim that d‘m | `2m2d‘dm. To check this, we
compare orders of both sides at a prime t dividing d‘m. By assumption, t divides either d‘ or
dm. Without loss of generality, assume t | d‘. Then Lemma 3.3 implies ordt d‘m ≤ ordt(m

2d‘),
which proves the claim.

Taking norms, we obtain d‘m | (`m)2[K:Q]d‘dm. Taking logs and applying Lemma 3.4, we
deduce

(c− o(1))`2m2 ≤ 2[K : Q](log `+ logm) + (c− o(1))`2 + (c− o(1))m2

≤ (c+ o(1))(`2 +m2),

which is a contradiction once max(`,m) is su�ciently large. �

3.4. Density of prime multiples.

Lemma 3.6. Let ~α ∈ Rn, let I be an open neighborhood of 0 in Rn/Zn, and let d ∈ Z�1.
Then the set of primes ` ≡ 1 (mod d) such that (` − 1)~α mod 1 is in I has positive lower
density.

Proof. Let ~α = (α1, . . . , αn). We �rst reduce to the case that 1, α1, . . . , αn are Z-independent.
Choose m ∈ Z�1 and β1, . . . , βr such that 1/m, β1, . . . , βr form a Z-basis for the subgroup
of R generated by 1, α1, . . . , αn. Replacing d by a positive integer multiple only reduces the
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density, so we may assume m | d. For �xed i, if αi = c0
m

+
∑r

j=1 cjβj, then for ` ≡ 1 (mod d)
we have

(`− 1)αi ≡
r∑
j=1

cj(`− 1)βj (mod 1),

so it su�ces to prove positivity of the lower density of ` ≡ 1 (mod d) for which (`− 1)βj is
su�ciently close mod 1 to 0 for all j.

In fact, we will prove the stronger result that the points (`−1)~β ∈ (R/Z)r for prime ` ≡ 1
(mod d) are equidistributed. By Weyl’s equidistribution criterion [Wey16, Satz 3], we reduce
to proving that for any s ∈ R−Q, ∑

‘�x
‘�1 (mod d)

e2�i‘s = o(π(x))

as x → ∞. This is a consequence of Vinogradov’s work on exponential sums over primes:
see [Mon94, p. 34], for instance. �

Remark 3.7. With a slightly more involved argument, one could prove that the density of
the set in Lemma 3.6 exists, though we will not need this.

3.5. Denominators of x-coordinates having many small prime factors. We next
prove an analogue of Lemma 7.1 of [Poo03] showing that it is rare that S‘ has a large
fraction of the small primes. For prime `, de�ne

µ‘ = sup
X2Z≥2

#{p ∈ S‘ : Np ≤ X}
#{p ∈ PK : Np ≤ X}

.

Lemma 3.8. For any ε > 0, the density of { ` : µ‘ > ε } is 0.

Proof. The proof can be copied from that of Lemma 7.1 of [Poo03], using \the primes p ∈ PK
with Np ≤ X" everywhere in place of the \the primes p up to X": it requires only the facts

(1) The function πK(X) := #{p ∈ PK : Np ≤ X} is (1 + o(1))X/ logX as X → ∞
(Theorem 3 on page 213 of [CF86]).

(2) #S‘ ≤ log2 d‘ (clear, since each prime has norm at least 2)
(3) log2 d‘ = O(`2) as `→∞ (follows from Lemma 3.4).

�

3.6. Construction of the `i. By [Sil92, Corollary VI.5.1.1] and [Sil94, Corollary V.2.3.1],
there is an isomorphism of real Lie groups

∏
v2MK,∞

E(Kv) ' (R/Z)N × (Z/2Z)N
′

for

some N ≥ 1 and N p



(6) |x‘i�1|v > i for all v ∈MK;1.

Proposition 3.9. The sequence `1, `2, . . . is well-de�ned and computable.

Proof. Condition (6) is equivalent to the requirement that (` − 1)~α lie in a certain open
neighborhood of 0 in (R/Z)N , since the Lie group isomorphism maps neighborhoods of O to
neighborhoods of 0. Thus by Lemma 3.6, the set of primes satisfying (5) and (6) has positive
lower density. By Lemma 3.8, (2) fails for a set of density 0. Therefore it will su�ce to show
that (1), (3), and (4) are satis�ed by all su�ciently large `i.

For �xed j ≤ i, the primes p‘i‘j for varying values of `i are distinct by Corollary 3.2, so
eventually their norms are greater than 2i. The same holds for p‘‘i for �xed ` ∈ L. Thus
by taking `i su�ciently large, we can make all the p‘i‘j and p‘‘i have norm greater than 2i.
Thus the sequence is well-de�ned.

Each `i can be computed by searching primes in increasing order until one is found sat-
isfying the conditions: condition (6) can be tested e�ectively, since |x‘i�1|v is an algebraic
real number. �

As in Section 4 of [Poo03], we de�ne the following subsets of PK :

• T1 = Sbad ∪
⋃
i�1 S‘i ,

• T a2 is the set of p‘ for ` /∈ {`1, `2, . . . },
• T b2 = { p‘i‘j : 1 ≤ j ≤ i },
• T c2 = { p‘‘i : ` ∈ L, i ≥ 1 }, and
• T2 = T a2 ∪ T b2 ∪ T c2 .

As in Section 5 of [Poo03], we prove that

Lemma 3.10. The sets T1 and T2 are disjoint. If the subset S ⊂ PK contains T1 and is
disjoint from T2, then E := E 0(OK;S) ∩ rE(K) is the union of {±`iP : i ≥ 1 } and some
subset of the �nite set

{
sP : s |

∏
‘2L `

a`�1
}

.

Proof. Once we note that rE(K) = ZP , the proofs proceed as in Section 5 of [Poo03]. �

The recursiveness of T1 and T2 follows as in Section 8 of [Poo03], using the following:

Lemma 3.11. If ` is prime, then ` | #E(Fp`).

Proof. For p /∈ Sbad, a multiple nP reduces to 0 in E(Fp) if and only if p divides dn. Hence,
by de�nition of p‘, the point `a`P reduces to 0 in E(Fp`) but `a`�1P does not. �

3.7. Density of T1 and T2. The proofs that T1, T b2 , and T c2 have density 0 are identical
to the proofs in Section 9 of [Poo03]. The remainder of this section is devoted to proving
that T a2 has density 0. Again, we follow [Poo03], but more work is necessary because we no
longer assume that E has no CM.

For n ∈ Z>0, let ω(n) be the number of distinct prime factors of n.

Lemma 3.12. For any t ≥ 1, the density of { p : ω(#E(Fp)) < t } is 0.

Proof. If E does not have CM (i.e., EndEK = Z), then the proof given for K = Q in
Lemma 9.3 of [Poo03] generalizes easily to arbitrary K. The �rst step in this proof, which
we will also use for the CM case, is to relate divisibility to Galois representations: namely,
for a prime p of good reduction not above `, the condition ` | #E(Fp) is equivalent to the
existence of an `-torsion point in E(Fp) �xed by the Frobenius element of Gal(Fp/Fp), which
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in turn is equivalent to the condition that the the image of a Frobenius element at p under
GK → AutE[`] = GL2(Z/`Z) has a nontrivial �xed vector in (Z/`Z)2.

We assume from now on that E has CM, say by an order O in a quadratic imaginary �eld
F . Using the action of O on LieE (the tangent space of E at O), we may view O (and hence
also F ) as a subring of K.

All the endomorphisms are de�ned over the compositum KF [Sil94, II.2.2(b)].
Let � be the set of primes ` of Z such that ` - disc(O) and (`) factors into distinct prime

ideals λ and �λ of O. (Later we will delete �nitely many primes from �.)
For ` ∈ �,

E[`] = E[λ]⊕ E[�λ].

The summands on the right are free modules over O/λ and O/�λ, respectively, and we
choose generators for each in order to obtain identi�cations

E[`] ' O/λ⊕O/�λ ' (Z/`Z)2,

and hence AutE[`] ' GL2(Z/`Z). The action of GKF commutes with the O-action, so the

image of GKF in GL2(Z/`Z) lies in the subgroup

(
∗
∗

)
of diagonal matrices. On the other

hand, if τ ∈ GK − GKF , then τ interchanges λ and �λ, and its image in GL2(Z/`Z) lies in

the coset

(
∗

∗

)
.

De�ne subgroups

D =

(
∗
∗

)
H =

(
∗
∗

)
∪
(

∗
∗

)
of GL2

(∏
‘2Λ Z/`Z

)
. Thus the image of ρ : GK → GL2

(∏
‘2Λ Z/`Z

)
lies in H. It is a classical

fact that ρ(GKF ) is open in D (see for example, the Corollaire on page 302 of [Ser72]), so
ρ(GK) is open in H. By deleting a few primes from �, we may assume that ρ(GK) contains
D, and hence equals D or H, depending on whether F ⊆ K or not.

Let π‘ be the probability that a random element of the subgroup

(
∗
∗

)
⊆ GL2(Z/`Z) has

a nontrivial �xed vector. A calculation shows that π‘ = 2/`+O(1/`2). Since � has density
1/2, the series

∑
‘2Λ 1/` diverges. Thus

∑
‘2Λ π‘ diverges. Elementary probability shows

that if X1, X2, . . . are independent events, and the sum of their probabilities diverges, then
as C →∞, the probability that fewer than t of the �rst C events occur tends to 0. Therefore
as C →∞, if σ is chosen uniformly at random from the image of D in

∏
‘2Λ;‘<C GL2(Z/`Z),

then the probability that σ has fewer than t components with a nontrivial �xed vector tends
to 0.

Similarly, a random element of the coset

(
∗

∗

)
⊆ GL2(Z/`Z) has a nontrivial �xed

vector with probability 1/`+O(1/`2). Thus the probability that a random σ from the image
of H−D in

∏
‘2Λ;‘<C GL2(Z/`Z) has fewer than t components with a nontrivial �xed vector

tends to 0.
13



Combining the previous two paragraphs shows that the same holds for a random element of
the image IC of GK →

∏
‘2Λ;‘<C GL2(Z/`Z). But the Chebotarev Density Theorem implies

that the images of the Frobenius elements Frobp in IC are equidistributed in IC . Finally
we apply the \key �rst step" mentioned at the beginning of this proof to get the desired
result. �

Using the preceding lemma, the proof that T a2 has density 0 follows exactly the proof of
Proposition 9.4 in [Poo03], using Np in place of p in the inequalities.

Thus T1 and T2 have density 0.

Remark 3.13. It follows that the set of all p‘ has density 0, since by de�nition T1∪T2 contains
all but �nitely many of the p‘.

3.8. Convergence and discreteness.

Lemma 3.14. For each v ∈MK, the sequence `1P , `2P , . . . converges in E(Kv) to P .

Proof. It su�ces to show that (`i − 1)P → O in E(Kv) as i → ∞. If v is archimedean,
this holds by condition (6) in the construction of the `i. Now suppose v is nonarchimedean.
Then the topological group E(Kv) has a basis consisting of open �nite-index subgroups U ,
namely the groups in the �ltration appearing in the proof of [Sil92, VII.6.3]. So it su�ces to
show, given U , that (`i − 1)P ∈ U for su�ciently large i. Let j be the index of U in E(Kv).
If i ≥ j, then j | i! | `i − 1, by condition (5) in the construction of the `i, so (`i − 1)P ∈ U .

�

Proposition 3.15. Let S be as in Lemma 3.10. Let A := {x‘1 , x‘2 , . . . }. Then A is a
Diophantine subset of OK;S . For any v ∈MK, the set A is discrete when viewed as a subset
of Kv.

Proof. By Lemma 3.10, x(E) is the union of the set A := {x‘1 , x‘2 , . . . } and a �nite set. Since
E is Diophantine over OK;S , so is A.

By Lemma 3.14, the elements of A form a convergent sequence in Kv, and the limit x1 of
the sequence is not in A, so A is discrete. �

This completes the proof of part (1) of Theorem 1.9.

3.9. A Diophantine model of Z. We next show how to �nd a Diophantine model of the
ring Z over certain rings OK;S .

Lemma 3.16. Let B = { 2n + n2 : n ∈ Z�1 }. Multiplication admits a positive existential
de�nition in the structure Z := (Z�1, 1,+, B). (Here B is considered as a unary predicate.)

Proof. We can de�ne > by

x > y ⇐⇒ (∃z) x = y + z

and for �xed a ∈ Z, we have

x 6= a ⇐⇒ (x > a) ∨ (a > x),

so this predicate is positive existential in Z. For �xed c ∈ Z�1, the function x 7→ cx is
positive existential, since it can be obtained by repeated addition.

14



Call x, y consecutive if there exists n ∈ Z�1 such that x = 2n +n2 and y = 2n+1 + (n+ 1)2.
The set of such (x, y) is positive existential in Z since it equals

{ (x, y) ∈ B2 : x < y < 3x }.
Next

{ ((2y − z)− (2x− y), 2x− y) : x, y are consecutive and y, z are consecutive }
equals the set T := { (2n− 1, n2 − 2n− 1) : n ∈ Z�1 }. We have

(u = v2) ∧ (v > 0) ⇐⇒ (2v − 1, u− 2v − 1) ∈ T.
Call this relation P (u, v). Then

u = v2 ⇐⇒ P (u, v) ∨ P (u,−v) ∨ ((u = 0) ∧ (v = 0)),

u = vw ⇐⇒ (v + w)2 = v2 + w2 + 2u,

so we can construct a positive existential de�nition of multiplication. �

Remark 3.17. Y. Matijasevi�c (private communication) independently discovered a recursive
set B such that multiplication admits a positive existential de�nition in (Z�1, 1,+, B). Any
such B could be used in place of ours in the construction of the Diophantine model of Z over
OK;S below.

Corollary 3.18. The structure (Z, 0, 1,+, ·) admits a positive existential model in the struc-
ture Z.

Because of Corollary 3.18, instead of �nding a Diophantine model of the ring Z over OK;S ,
it will su�ce to �nd a Diophantine model of Z.

Now we redo the construction in Section 3.6, but change some of the conditions de�ning
the sequence of primes `i. Fix p, q ∈ PK − Sbad of degree 1 such that neither p nor q
divides y1 = y(P ), and such that the underlying primes p, q ∈ PQ are distinct and odd. Let



Lemma 3.20. If m ∈ Z�1, then

ordp(xmM+1 − x1) = ordp(xM+1 − x1) + ordpm.

Proof. Let R be the valuation ring Rp de�ned in Section 3.1. Because y1 ∈ R� and p - 2,
for any r ≥ 1, the restriction of the x-coordinate map E(R/pr) → P1(R/pr) to the subset
of points of E(R/pr) with the same image in E(R/p) as P is injective (the y-coordinate can
be recovered from the the x-coordinate as the square root of an element of R�: its sign is
determined by the fact that the point is in the residue class of P ). Thus for r ≥ 1, the ideal
pr divides xmM+1 − x1 if and only if (mM + 1)P and P have the same image in E(R/pr),

or equivalently if (mM)P maps to O in E(R/pr). Let z ∈ Ê(pR) be the point of the formal
group corresponding to MP . Then the condition that (mM)P maps to O in E(R/pr) is
equivalent to [m](z) ∈ pr, where [m] denotes the multiplication-by-m map in the formal
group.

It remains to prove that ordp[m](z) = ordp z + ordpm. By induction on m, it su�ces to
prove this when m is prime. Then, in the proof of Lemma 3.3, we have [m](z) = mf(z) +
g(zm) where f(T ), g(T ) ∈ R[[T ]] satisfy g(0) = 0 and f(T ) = T+higher order terms. Finally
ordpm = ordpm is 1 or 0 according to whether m = p or not, so the result follows. �

Proposition 3.21. Let S be as in Lemma 3.10. Let A := {x‘1 , x‘2 , . . . }. Then A is a
Diophantine model of Z over OK;S , via the bijection φ : Z�1 → A taking i to x‘i.

Proof. The set A is Diophantine over OK;S by the argument in the proof of Proposition 3.15.
We have

i ∈ B ⇐⇒ q divides (`i − 1)/M (by condition (70))

⇐⇒ ordq(x‘i − x1) > ordq(xM+1 − x1),

by Lemma 3.20 (with q in place of p). The latter inequality is a Diophantine condition on
x‘i , by Corollary 2.3 (in which we represent elements of K as ratios of elements of OK;S).
Thus the subset φ(B) of A is Diophantine over OK;S .

Finally, for i ∈ Z�1, Lemma 3.20 and condition (60) imply ordp(x‘i − x1) = c + i, where
the integer c = ordp(xM+1 − x1) is independent of i. Therefore, for i, j, k ∈ Z�1, we have

i+ j = k ⇐⇒ ordp(x‘i − x1) + ordp(x‘j − x1) = ordp(x‘k − x1) + c.

It follows that the graph of + corresponds under φ to a subset of A3 that is Diophantine
over OK;S .

Thus A is a Diophantine model of Z over OK;S . �

As already remarked, Corollary 3.18 and Proposition 3.21 together imply part (2) of
Theorem 1.9.

Acknowledgements

We thank Ernie Croot for a discussion regarding Lemma 3.6, and the referee for a helpful
report.

16



References

[CF86] J. W. S. Cassels and A. Fr�ohlich (eds.), Algebraic number theory, London, Academic Press Inc.
[Harcourt Brace Jovanovich Publishers], 1986, Reprint of the 1967 original.

[CTSSD97] J.-L. Colliot-Th�el�ene, A. N. Skorobogatov, and Peter Swinnerton-Dyer, Double �bres and double
covers: paucity of rational points, Acta Arith. 79 (1997), no. 2, 113{135.

[CZ00] Gunther Cornelissen and Karim Zahidi, Topology of Diophantine sets: remarks on Mazur’s
conjectures, Hilbert’s tenth problem: relations with arithmetic and algebraic geometry (Ghent,
1999), Amer. Math. Soc., Providence, RI, 2000, pp. 253{260.

[DLPVG00] Jan Denef, Leonard Lipshitz, Thanases Pheidas, and Jan Van Geel (eds.), Hilbert’s tenth prob-
lem: relations with arithmetic and algebraic geometry, American Mathematical Society, Prov-
idence, RI, 2000, Papers from the workshop held at Ghent University, Ghent, November 2{5,
1999.

[Lan94] Serge Lang, Algebraic number theory, second ed., Springer-Verlag, New York, 1994.
[Maz92] Barry Mazur, The topology of rational points, Experiment. Math. 1 (1992), no. 1, 35{45.
[Maz94] Barry Mazur, Questions of decidability and undecidability in number theory, J. Symbolic Logic

59 (1994), no. 2, 353{371.
[Maz95] Barry Mazur, Speculations about the topology of rational points: an update, Ast�erisque (1995),

no. 228, 4, 165{182, Columbia University Number Theory Seminar (New York, 1992).
[Maz98] B. Mazur, Open problems regarding rational points on curves and varieties, Galois representa-

tions in arithmetic algebraic geometry (Durham, 1996), London Math. Soc. Lecture Note Ser.,
vol. 254, Cambridge Univ. Press, Cambridge, 1998, pp. 239{265.

[Mon94] Hugh L. Montgomery, Ten lectures on the interface between analytic number theory and har-
monic analysis, CBMS Regional Conference Series in Mathematics, vol. 84, Published for the
Conference Board of the Mathematical Sciences, Washington, DC, 1994.

[Phe94] Thanases Pheidas, Extensions of Hilbert’s tenth problem, J. Symbolic Logic 59 (1994), no. 2,
372{397.

[Poo03] Bjorn Poonen, Hilbert’s tenth problem and Mazur’s conjecture for large subrings of Q, J. Amer.
Math. Soc. 16 (2003), no. 4, 981{990.

[Ser72] Jean-Pierre Serre, Propri�et�es galoisiennes des points d’ordre �ni des courbes elliptiques, Invent.
Math. 15 (1972), no. 4, 259{331.

[Ser81] Jean-Pierre Serre, Quelques applications du th�eor�eme de densit�e de Chebotarev, Inst. Hautes
�Etudes Sci. Publ. Math. (1981), no. 54, 323{401.

[Ser97] Jean-Pierre Serre, Lectures on the Mordell-Weil theorem, third ed., Friedr. Vieweg & Sohn,
Braunschweig, 1997, Translated from the French and edited by Martin Brown from notes by
Michel Waldschmidt, With a foreword by Brown and Serre.

[Shl94] Alexandra Shlapentokh, Diophantine classes of holomorphy rings of global �elds, J. Algebra
169 (1994), no. 1, 139{175.

[Shl97] Alexandra Shlapentokh, Diophantine de�nability over some rings of algebraic numbers with
in�nite number of primes allowed in the denominator, Invent. Math. 129 (1997), no. 3, 489{
507.

[Shl00a] Alexandra Shlapentokh, De�ning integrality at prime sets of high density in number �elds, Duke
Math. J. 101 (2000), no. 1, 117{134.

[Shl00b] Alexandra Shlapentokh, Hilbert’s tenth problem over number �elds, a survey, Hilbert’s tenth
problem: relations with arithmetic and algebraic geometry (Ghent, 1999), Amer. Math. Soc.,
Providence, RI, 2000, pp. 107{137.

[Shl02] Alexandra Shlapentokh, Diophantine de�nability and decidability in large subrings of totally real
number �elds and their totally complex extensions of degree 2, J. Number Theory 95 (2002),
no. 2, 227{252.

[Shl03] Alexandra Shlapentokh, A ring version of Mazur’s conjecture on topology of rational points,
Internat. Math. Res. Notices (2003), no. 7, 411{422.

[Shl04] Alexandra Shlapentokh, On diophantine de�nability and decidability in some in�nite totally real
extensions of Q, Trans. Amer. Math. Soc., 356 (2004), no. 8, 3189{3207.

17



[Sil92] Joseph H. Silverman, The arithmetic of elliptic curves, Springer-Verlag, New York, 1992, Cor-
rected reprint of the 1986 original.

[Sil94] Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, Springer-Verlag, New
York, 1994.

[Wey16] Hermann Weyl, �Uber die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313{
352.

Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA
E-mail address: poonen@math.berkeley.edu

URL: http://math.berkeley.edu/~poonen

Department of Mathematics, East Carolina University, Greenville, NC 27858, USA
E-mail address: shlapentokha@mail.ecu.edu

URL: http://www.personal.ecu.edu/shlapentokha

18


