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Abstract. Let X → Y be a Galois covering of curves, where the genus of X is ≥ 2 and the
genus of Y is ≤ 2. We prove that under certain hypotheses, X has an unramified cover that
dominates a hyperelliptic curve; our results apply, for instance, to all tamely superelliptic
curves. Combining this with a theorem of Bogomolov and Tschinkel shows that X has an
unramified cover that dominates y2 = x6 − 1, if char k is not 2 or 3.

1. Introduction

1.1. Definitions. Let k be an algebraically closed field. Let p be the characteristic of k (we
allow the case p = 0). In this paper, a curve is a smooth, projective, integral, 1-dimensional
variety over k. If we write an affine equation for a curve, its smooth projective model is
implied. We write g(X) for the genus of a curve X. By an unramified cover of a curve X, we
mean a curve Z with a finite étale morphism Z → X. As usual, one says that X dominates
Y if there is a rational map X 99K Y whose image is Zariski dense in Y ; for curves (satisfying
our hypotheses), this is equivalent to the existence of a surjective morphism.

Definition 1.1. Let X and Y be curves. Following [BT04], we write X ⇒ Y if there exists
an unramified cover Z of X such that Z dominates Y . Write X ⇔ Y if X ⇒ Y and Y ⇒ X.

The relation ⇒ is reflexive and transitive. For any X, we have X ⇒ P1. On the other
hand, P1 has no nontrivial unramified covers; thus P1 ⇒ X only if X ' P1. Hence the
relation ⇒ is not symmetric.

Remark 1.2. One motivation for introducing the relation⇒ arises from arithmetic geometry.
Suppose that X, Y are curves over a number field F and that Y has genus at least 2. If
X ⇒ Y , then by [CW30], the problem of determining the F -points on X can be reduced to
finding the F ′-points on Y for some effectively computable finite extension F ′ of F .

1.2. Previous results. Bely̆ı [Bel79] proved that every curve over Q admits a morphism to
P1 ramified only above {0, 1,∞}. Almost immediately thereafter, Manin proved that Bely̆ı’s
Theorem implies the following theorem:

Theorem 1.3 ([BH00, Proposition 7.1]). For any curve X over Q, there exists N ≥ 1 such
that the modular curve X(N) satisfies X(N) ⇒ X.
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Call a curve X hyperelliptic if there exists a degree-2 map X → P1 and g(X) ≥ 2.

Theorem 1.4 ([BT02, Theorem 1.7]). If X is a hyperelliptic curve over Fp, and Y is any

curve over Fp, then X ⇒ Y .

Let Cn be (the smooth projective model of) the curve y2 = xn − 1.

Theorem 1.5 ([BT02, Proposition 1.8]). Suppose p 6= 2, 3. If X is a hyperelliptic curve
over k, then X ⇒ C6.

Theorem 1.6 ([BT04]). Suppose k = Q. For any m ≥ 5 and n ∈ {2, 3, 5}, we have
Cm ⇔ Cmn.

Proof. The direction Cmn ⇒ Cm is trivial. For Cm ⇒ Cmn, the case m ≥ 6 is [BT04,
Theorem 1.2], and the case m = 5 is a consequence of [BT04, Corollary 2.8]. �

1.3. New results. If X → Y is a dominant morphism of curves, call X a Galois cover of
Y if the corresponding function field extension k(X) over k(Y ) is Galois (thus we do not
require that X be unramified over Y ). If moreover Gal(k(X)/k(Y )) is cyclic, then call X a
cyclic cover of Y . If G is a subgroup of Aut X, then X/G denotes the curve whose function
field is the fixed field k(X)G.

Theorem 1.7. Let X be a curve. Let G be a subgroup of Aut(X) of order not divisible by
the characteristic of k. Let Y = X/G. Suppose g(X) ≥ 2 ≥ g(Y ). Suppose in addition that
at least one of the following holds:

(1) g(Y ) ∈ {1, 2}.
(2) G is solvable.
(3) There are two distinct points of Y above which the ramification indices have a non-

trivial common factor.
(4) There are three points of Y above which the ramification indices are divisible by 2, 3,

`, respectively, where ` is a prime with either ` ≤ 89 or

` ∈ {101, 103, 107, 131, 167, 191}.
Then X ⇒ H for some hyperelliptic curve H.

Corollary 1.8. If in addition to the hypotheses of Theorem 1.7 we have p 6= 2, 3, then
X ⇒ C6.

Proof. Combine Theorem 1.7 with Theorem 1.5, and use transitivity of ⇒. �

Call a curve X tamely superelliptic if X is a cyclic cover of P1 of degree not divisible by
p, and g(X) ≥ 2. These are the curves of genus ≥ 2 with equations of the form yn = f(x)
with p - n.

Corollary 1.9. If X is tamely superelliptic, then X ⇒ H for some hyperelliptic curve H.

Proof. Theorem 1.7 applies because the Galois group is solvable. �

2. Lemmas

In this section we gather various results needed for the proof of Theorem 1.7 and for the
remarks at the end of this paper.
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2.1. Abhyankar’s lemma. We will construct unramified covers using Abhyankar’s lemma,
a version of which we now state. If π : X → Y and φ : Y ′ → Y are surjective morphisms of
curves, then by a compositum of X and Y ′ over Y , we mean a curve whose function field is
a compositum of k(X) and k(Y ′) over k(Y ).

Lemma 2.1 (Abyhankar’s lemma). Let π : X → Y and φ : Y ′ → Y be surjective morphisms
of curves. Assume that for all closed points x ∈ X and y′ ∈ Y ′ with π(x) = φ(y′), the
ramification index of φ at y′ divides the ramification index of π at x and is not divisible by
p. Let X ′ be a compositum of X and Y ′ over Y . Then X ′ is an unramified cover of X.

Proof. This follows from a local version of Abhyankar’s lemma, such as [SGA 1, XIII.5.2]. �

Remark 2.2. Even if k(X) and k(Y ′) are linearly disjoint over k(Y ), the fiber product X×Y Y ′

need not be a compositum in our sense, since it could be singular.

2.2. Modular curves X∗
0 (`) of small genus.

Lemma 2.3. Let ` be a prime. Let X∗
0 (`) be the quotient of the modular curve X0(`) over

Q (or over any field of characteristic not divisible by `) by its Atkin-Lehner involution. Let
g be the genus of X∗

0 (`). Then

g = 0 ⇐⇒ ` ∈ {2, 3, 5, 7, 13, 23, 29, 31, 37, 41, 47, 59, 71}
g = 1 ⇐⇒ ` ∈ {11, 17, 19, 37, 43, 53, 61, 79, 83, 89, 101, 131}
g = 2 ⇐⇒ ` ∈ {67, 73, 103, 107, 167, 191}.

If g > 2, then Aut X∗
0 (`)Q is trivial.

Proof. The values of ` for which g ≤ 2 can be deduced by combining the list of X0(`)
for which g(X0(`)) ≤ 1 (by the general formula, these are the primes ` ≤ 19), the list of
hyperelliptic X0(`) [Ogg74], the list of bielliptic X0(`) [Bar99], and the list of hyperelliptic
X∗

0 (`) [HH96]. The final statement is proved in [BH03]. �

Remark 2.4. In fact, the papers cited above together with [Has97] contain the information
needed to list all (not necessarily prime) ` ∈ Z>0 with g(X∗

0 (`)) = 0, 1, 2.

2.3. Existence of covers of P1 unramified outside 3 points. The following lemma is
well known. It was used, for instance, in [DG95] to prove that xp + yq = zr has at most
finitely many pairwise relatively prime integer solutions for any fixed p, q, r ∈ Z>1 with
1/p + 1/q + 1/r < 1.

Lemma 2.5. Let k be an algebraically closed field of characteristic 0. Let n0, n1, n∞ ∈ Z>1.
Then there exists a Galois cover X → P1

k unramified outside 0, 1,∞ and with ramification
indices exactly n0, n1, n∞ above 0, 1,∞ respectively.

Proof. We elaborate on the suggestion in the paragraph before Proposition 3a in [DG95]
to use results stated in [Ser92]. By [Ser92, Theorem 6.3.3], it suffices to construct the
cover for k = C. Let π1 be the topological fundamental group of P1

C − {0, 1,∞}, and let
s0, s1, s∞ be the monodromy generators at the three points. Let N be the smallest normal
subgroup of π1 containing sn0

0 , sn1
1 , sn∞

∞ . By [Ser92, Theorem 6.4.2] (with s = 3, t = 0), the
images of s0, s1, s∞ in π1/N have orders exactly n0, n1, n∞. By the last paragraph of [Ser92,
Section 6.3], the map from π1 to its profinite completion is injective, so π1 contains a normal
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subgroup N ′ of finite index such that the images of s0, s1, s∞ in π1/N
′ have orders exactly

n0, n1, n∞. By [Ser92, Theorem 6.1.4], the analytic covering of P1
C −{0, 1,∞} corresponding

to N ′ is an algebraic curve X0. The corresponding smooth projective curve X is the desired
Galois covering of P1. �

3. Proof of the main theorem

3.1. Case 1: g(Y ) ∈ {1, 2}. If g(Y ) = 2, then Y is hyperelliptic and X ⇒ Y , so there is
nothing to show. So assume that Y is an elliptic curve E. Since g(X) ≥ 2, X is ramified
above some point of E, which we may assume is the identity of E. Let e be a prime
dividing the ramification index there. Replace X → E by its (unramified) base extension
by the multiplication-by-` map E → E for some prime ` ≥ 5 not equal to p (and choose an
irreducible component if necessary, so that the new X is again a curve). Thus we reduce to
the case where X → E has ramification index divisible by e above each `-torsion point of
E. Fix a Weierstrass model of E. The `2 − 1 nonzero `-torsion points come in pairs sharing
the same x-coordinate: let a1, . . . , a(`2−1)/2 be all these x-coordinates.

By Lemma 2.1, a compositum of X and

H : ze =
(x− a1)(x− a2)

(x− a3)(x− a4)
.

over P1 (with coordinate x) gives an unramified cover of X that dominates H. The function z
on H is of degree 2, and applying the Hurwitz formula to x : H → P1 shows that g(H) = e−1.
Thus if e ≥ 3, then H is hyperelliptic. If e = 2, instead use

H : z2 =
(x− a1)(x− a2)(x− a3)

(x− a4)(x− a5)(x− a6)
.

which is hyperelliptic of genus 2.

We assume Y ' P1 from now on. By the Hurwitz formula, there are ≥ 3 branch points.

3.2. Case 2: G is solvable. We use induction on #G. If H ( G is a nontrivial normal
subgroup, then depending on whether g(X/H) ≥ 2, g(X/H) = 1, or g(X/H) = 0, we apply
the inductive hypothesis to X/H → Y , Case 2 to X → X/H, or the inductive hypothesis
to X → X/H, respectively. Thus we may assume that G is simple. But G is solvable, so
G ' Z/`Z for some prime ` 6= p. Thus X is a Z/`Z-cover of P1. If ` = 2 then X itself is
hyperelliptic, so assume ` ≥ 3.

If we take a compositum with a Z/`Z-cover P1 → P1 ramified above exactly two branch
points of X → P1, we find a new Z/`Z-cover X ′ → P1. By Lemma 2.1, X ′ is unramified
over X. Since g(X ′) > g(X), the Z/`Z-cover X ′ → P1 is ramified above ≥ 4 points of P1.
Let x be a parameter on P1 whose values a1, . . . , a4 at these points are not ∞. Applying
Lemma 2.1 to a compositum with the Z/`Z-cover H → P1 given by

H : y` =
(x− a1)(x− a2)

(x− a3)(x− a4)

shows that X ′ ⇒ H. And H is hyperelliptic.
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3.3. Case 3: There are two branch points whose associated ramification indices
have a nontrivial common factor. Let e be a prime dividing the ramification indices
above two branch points, and let e′ be a prime dividing the ramification index above some
other branch point y′. A compositum of X → P1 with a Z/eZ-cover φ : P1 → P1 branched
above exactly the first two branch points is a Galois cover X ′ of (a new) P1, and X ′ is
unramified over X. The new cover X ′ → P1 has ramification index e′ above each of the e
points in φ−1(y′). In particular, e′ divides the ramification indices above two branch points
of the new cover, so we can repeat the process to obtain an infinite commutative (though
not necessarily cartesian) diagram

· · · −−−→ X(n) −−−→ · · · −−−→ X ′′ −−−→ X ′ −−−→ X

π(n)

y π′′

y π′

y π

y
· · · e(n)

−−−→ P1 e(n−1)

−−−→ · · · e′′−−−→ P1 e′−−−→ P1 e−−−→ P1,

in which the integers e(n) indicate the degrees of cyclic covers. By commutativity, the degree
of X(n) → X is at least e(n−1) · · · e′e/(deg π), which tends to ∞, so X(n+1) → X(n) must
be of degree > 1 for infinitely many n. Since g(X) ≥ 2 and all morphisms are separable,
it follows that g(X(n)) → ∞ as n → ∞. On the other hand, deg π(n) ≤ deg π, so by the
Hurwitz formula, the number of branch points of π(n) tends to ∞. The ramification indices
are bounded by that of π, so for some n, there is an integer ` ≥ 2 that is the ramification
index above more than 6 branch points. Let S be a Z/`Z-cover of P1 branched above 6
points, with ramification index ` above each. Applying Lemma 2.1 to a compositum of X(n)

and S over P1 shows that X(n) ⇒ S. Hence X ⇒ S. The Hurwitz formula shows that
g(S) ≥ 2. Also, by construction, p - `, so S is tamely superelliptic. By Case 3, S ⇒ H for
some hyperelliptic curve H. By transitivity, X ⇒ H.

3.4. Case 4: Ramification divisible by 2, 3, `. By Case 3, we may assume ` ≥ 5. The
modular curve X(`) is a Galois cover of P1 ramified above three points, with ramification
indices 2, 3, `. We may assume those three points are the same of the branch points for
X → P1. Let Z be a compositum of X and X(`) over P1. By Lemma 2.1, Z is unramified
over X. Also Z is Galois over X(`).

Suppose ` = 5. By the Hurwitz formula, the original cover X → P1 must have had either
a fourth branch point P , or else extra ramification (more than 2, 3, 5, respectively) above
one of the three branch points P . In either case, the preimages of P under X(5) → P1 are
branch points of Z → X(5) having the same ramification index > 1, so Case 3 shows that
Z ⇒ H for some hyperelliptic curve H. Then X ⇒ Z ⇒ H.

Thus we may assume ` ≥ 7. We have X ⇒ X(`) (through Z). Since X(`) is a solvable
cover of the modular curve X0(`), we are done by Case 2 if g(X0(`)) ≤ 2. Otherwise, let
X∗

0 (`) be the quotient of X0(`) by its Atkin-Lehner involution. If g(X∗
0 (`)) ≤ 2, we apply

Case 2 to X0(`) → X∗
0 (`).

Summing up, we are done whenever g(X∗
0 (`)) ≤ 2. These primes ` are given by Lemma 2.3.

This completes the proof of Theorem 1.7.
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4. Final remarks

Remark 4.1. Here we show that in order to prove Theorem 1.7 in characteristic 0 without
making any of the additional assumptions (1) through (4), it would suffice to do the case of
Galois covers of P1 with non-abelian simple Galois group, ramified above exactly 3 points,
above which the ramification indices are distinct primes p1, p2, p3.

First exclude cases already covered by Theorem 1.7. Choose three branch points (we may
assume they are 0, 1,∞ on P1) and primes p1, p2, p3 dividing the associated ramification
indices. The pi will be distinct, since otherwise apply Case 3. If {p1, p2, p3} = {2, 3, 5},
apply Case 4. Lemma 2.5 gives a Galois cover Z → P1 ramified above exactly these three
branch points, and with ramification indices p1, p2, p3. Since 1/p1 + 1/p2 + 1/p3 < 1, the
Hurwitz formula gives g(Z) > 1. Applying Lemma 2.1 to a compositum of X and Z shows
that X ⇒ Z, so we have reduced to proving the result for Z → P1. Finally, apply induction
as in Case 2 to reduce to the case of a simple Galois group (no new primes are introduced
into ramification indices during the induction).

Remark 4.2. In the previous remark, if Z1 and Z2 are two Galois covers of P1 each ramified
above exactly 3 points with ramification indices p1, p2, p3, then Lemma 2.1 applied to a
compositum of Z1 and Z2 over P1 shows that Z1 ⇔ Z2.
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