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Abstract. In the predecessor to this article, we used global equidistribution theorems to
prove that given a correspondence between a modular curve and an elliptic curve A, the
intersection of any finite rank subgroup of A with the set of CM-points of A is finite. In this
article we apply local methods, involving the theory of arithmetic differential equations, to
prove quantitative versions of a similar statement. The new methods apply also to certain
infinite rank subgroups, and to the situation where the set of CM-points is replaced by
certain isogeny classes of points on the modular curve. Finally, we prove Shimura curve
analogues of these results.
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1. Introduction

Let N > 3. Let S be the modular curve X1(N) over Q. Let CM ⊆ S(Q) be the set of
CM-points on S. (See Section 2 for definitions.) Let A be an elliptic curve over Q. Given a
morphism S → A, we may map the CM-points on S to points on A, and ask what relations
exist among them in the group law on A. More generally, we may consider a modular-elliptic

correspondence, a pair of non-constant morphisms S
Π←− X

Φ−→ A of smooth connected
projective curves over Q, where S and A are as above. On the one hand, it is easy to
construct some relations by using Hecke correspondences: see (A.4). On the other hand, the
following special case of Theorem 2.1 of [8] says that not too many relations exist:

Theorem 1.1. Let S
Π←− X

Φ−→ A be a modular-elliptic correspondence and let Γ ≤ A(Q)
be a finite rank subgroup. Then Φ(Π−1(CM)) ∩ Γ is finite.

(Recall Γ is said to be of finite rank if the quantity rank(Γ) := dimQ(Γ ⊗ Q) is finite.)
Theorem 2.5 of [8] implies an analogous result when S is a Shimura curve and Π is the
identity.

The aim of this paper is to prove local analogues of these results in which, roughly speaking,
the field Q is replaced by the completion R := Ẑur

p of the maximal unramified extension of
the ring Zp of p-adic integers, and the set CM is replaced by either the set CL of canonical
lift points or by a fixed (partial) isogeny class. The new results represent an improvement
over those in [8] in that they come with effective bounds and are valid for certain groups Γ
of infinite rank.
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For historical background see Section 1.2 of [8], which comments on related results in
[12, 24, 28, 31, 35, 45]. Although the present article is intended as a sequel to [8], it is
logically independent of [8].

Our methods are quite different from those used in [8, 12, 24, 28, 31, 35, 45]. Indeed, our
local results will be proved using the theory of arithmetic differential equations in the sense
of [7]: see Section 3.9.

1.1. Main theorems. First we introduce the following local analogue of rank, in order to
treat some infinite-rank groups as if they were of finite rank.

Definition 1.2. For any abelian group G define Gp-div := Gtors + pG. For any subgroup
Γ ≤ G define

rankGp (Γ) := dimFp

(
Γ

Γ ∩Gp-div

)
.

Then

rankGp (Γ) ≤ dimQ(Γ⊗Q) =: rank Γ,

rankGp (Γ) ≤ dimFp(Γ⊗Z Fp).

Assume that we are given a modular-elliptic correspondence S
Π←− X

Φ−→ A. For each
sufficiently large prime p ∈ Z one can choose a model of this correspondence over R := Ẑur

p :

see Section 3. We obtain maps S(R)
Π←− X(R)

Φ−→ A(R). Let CL ⊂ S(R) be the set of
CL-points (canonical lift points); see Section 3.3 for more on the definition of CL. In an
appropriate sense, CL is a subset of CM: see Theorem 4.4.

Theorem 1.3 (Finiteness for CL points in a subgroup). Suppose that S
Π←− X

Φ−→ A is a
modular-elliptic or Shimura-elliptic correspondence (see Section 2 for definitions) and assume
that p is a sufficiently large good prime in the sense of Definition 3.3. Then there exists a
constant c depending on p such that for any subgroup Γ ≤ A(R) with r := rankA(R)

p (Γ) <∞,

the set Φ(Π−1(CL)) ∩ Γ is finite of cardinality at most cpr.

Remark 1.4. Corollary 3.19 makes c explicit in the case where Π is the identity and Φ is a
modular parametrization in the sense of Definition 2.3.

Remark 1.5. There are interesting examples of subgroups Γ ≤ A(R) with rankA(R)
p (Γ) <∞

and rank(Γ) =∞: indeed, if Γ := Γ0 + pA(R), where Γ0 ≤ A(R) and rank(Γ0) <∞, then Γ
is such an example; see Remark 3.11 for more on this.

If S is a modular curve and Σ is a set of prime numbers, define the Σ-isogeny class of Q in
S(R) as the set of all points in S(R) corresponding to elliptic curves that admit an isogeny
u to E such that all the prime divisors of deg(u) are in Σ; there is a similar definition in the
Shimura curve case: see Section 3.7 for details. Also, if S is a modular curve, and Q ∈ S(R)
is an ordinary point, i.e., a point corresponding to an elliptic curve E with good ordinary
reduction E, then let KQ := End(E) ⊗ Q; for the similar definition in the Shimura curve
case, see Section 3.4.

Theorem 1.6 (Finiteness of the intersection of an isogeny class with a subgroup). Assume

that S
Π←− X

Φ−→ A is a modular-elliptic or Shimura-elliptic correspondence and that p is
2



a sufficiently large good prime. Let Q ∈ S(R) be an ordinary point. Let Σ be the set of all
rational primes that are inert in the imaginary quadratic field KQ. Let C be the Σ-isogeny
class of Q in S(R). Then there exists a constant c such that for any subgroup Γ ≤ A(R)

with r := rankA(R)
p (Γ) <∞ the set Φ(Π−1(C)) ∩ Γ is finite of cardinality at most cpr.

Theorems 1.1, 1.3, and 1.6 suggest the following “global” conjecture:

Conjecture 1.7. Let S
Π←− X

Φ−→ A be a modular-elliptic or Shimura-elliptic correspon-
dence. Let Γ ≤ A(Q) be a finite rank subgroup. Let C ⊂ S(Q) be an isogeny class. Then
the set Φ(Π−1(C)) ∩ Γ is finite.

1.2. Reciprocity functions. Our local results for CL points are proved via “reciprocity
theorems” (e.g., Theorem 3.5), which transform relations between certain CL-points in A
into additive relations between values of a certain “reciprocity function”. More precisely,
one part of Theorem 3.5 (with Remark 3.7 for terminology) shows that given a modular-

elliptic correspondence S
Π←− X

Φ−→ A and a model of X over R there exist an affine
dense open subscheme X† of this model and a p-adic formal function Φ† on X† with non-
constant reduction such that for any divisor

∑
miPi supported on Π−1(CL) ∩ X†(R), we

have
∑
miΦ(Pi) ∈ A(R)tors if and only if

∑
miΦ

†(Pi) = 0 ∈ R.
Some reciprocity results have analogues for (local) isogeny classes: see Sections 3.7 and 3.8.
On the other hand, Theorems A.2, A.1, and A.10 show that there is no reciprocity in the

global setting.

1.3. Structure of the paper. We review basic definitions in Section 2. Section 3 states
all our local results beyond those already in this introduction, and Section 4 proves them.
Section 4 also reviews the necessary background from the theory of arithmetic differential
equations. The non-existence of global reciprocity functions is relegated to an appendix.

Remark 1.8. The proofs of the modular and Shimura cases are parallel and share some
common tools, but they are logically independent in the sense that it is not necessary to
follow both cases to understand only one. A similar comment applies to results for CL points
versus isogeny classes.

The following leitfaden may help the reader seeking a quick path through the proof of
the modular case of Theorem 1.3 (the result for CL points). Theorem 1.3 follows from
Theorem 3.5 and its immediate Corollary 3.8. The proof of Theorem 3.5 is sketched in
Section 3.9. A reader accepting parts (4) and (5) of Lemma 4.7, the isomorphism (4.48),
and formula (4.15) can go directly to the first paragraphs of Section 4.9 for a complete proof
of Theorem 3.5 in the modular case.

Acknowledgments. While writing this paper, the authors were partially supported by
NSF grants: A.B. by DMS-0552314, and B.P. by DMS-0301280 and DMS-0841321. We are
indebted to M. Kim, J. H. Silverman, and J. F. Voloch for their remarks and suggestions.
The paper also benefited greatly from the advice of a referee.

2. Basic definitions

2.1. Modular curves. Let N ∈ Z satisfy N > 3. Let X1(N) over Q be the complete
modular curve attached to the group Γ1(N). If Y1(N) ⊂ X1(N) is the non-cuspidal locus
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then Y1(N)(Q) is in bijection with the set of isomorphism classes of pairs (E,α) where E is
an elliptic curve over Q and α : Z/NZ ↪→ E(Q) is an injection.

Definition 2.1. A CM-point on the curve S := X1(N) is a point in Y1(N)(Q) represented
by a pair (E,α) such that E has complex multiplication, i.e., End(E) 6= Z. Let CM ⊂ S(Q)
be the set of CM-points on S.

Definition 2.2. A modular-elliptic correspondence is a pair of non-constant morphisms of

smooth connected projective curves over Q, S
Π←− X

Φ−→ A, where S = X1(N) and A is an
elliptic curve. From now on, we normalize Φ by fixing x∞ ∈ X(Q) such that Π(x∞) = ∞
and requiring Φ(x∞) = 0. Call Φ(Π−1(CM)) ⊂ A(Q) the set of CM-points on A.

Definition 2.3. Let f =
∑
anq

n be a newform. (Unless otherwise specified, newforms in this
paper are of weight 2, on Γ0(N), and normalized (a1 = 1), with Fourier coefficients in Z.) (For
terminology on modular forms we refer to [13].) The Eichler-Shimura construction [13] yields
a Q-morphism from X0(N) to an elliptic curve Af . By a modular parametrization attached to
f we mean a composition X1(N)→ X0(N)→ Af → A where X1(N)→ X0(N) is the usual
map and Af → A is any isogeny of elliptic curves over Q. A modular-elliptic correspondence

is said to arise from a modular parametrization if it is of the form S
Π←− X

Φ−→ A where
S = X = X1(N), Π = Id, and Φ is a modular parametrization.

Remark 2.4. By work of Wiles and others [47, 44, 2], together with the Isogeny Theorem of
Faltings [16], any elliptic curve A over Q has a modular parametrization.

Definition 2.5. The isogeny class C of a non-cusp Q ∈ S(Q) is the set of points in S(Q) such
that the corresponding elliptic curve admits an isogeny to the elliptic curve corresponding
to Q. (The isogeny is not required to respect the points of order N .)

2.2. Shimura curves. Let D be a non-split indefinite quaternion algebra over Q. Fix a
maximal order OD once and for all. Let XD(U) be the Shimura curve attached to the pair
(D,U), where U is a sufficiently small compact subgroup of (OD ⊗ (lim←−Z/mZ))× such that

XD(U) is connected: see [9, 48].

Definition 2.6. A fake elliptic curve1 is a pair (E, i) consisting of an abelian surface E over
Q and an embedding i : OD → End(E).

The set XD(U)(Q) is in bijection with the set of isomorphism classes of fake elliptic curves
equipped with a level U structure in the sense of [9, 48].

Definition 2.7. The classification of endomorphism algebras [30, p. 202] shows that for any
fake elliptic curve (E, i), the algebra (EndE)⊗Q is isomorphic to either D or D⊗K 'M2(K)
for some imaginary quadratic field K embeddable in D. In the latter case, (E, i) is called
CM; then E is isogenous to the square of an elliptic curve with CM by an order in K. A
CM-point of S(Q) is a point whose associated (E, i) is CM. Let CM ⊂ S(Q) be the set of
CM-points on S.

Definition 2.8. A Shimura-elliptic correspondence is a pair of non-constant morphisms of

smooth connected projective curves over Q, S
Π←− X

Φ−→ A, where S is a Shimura curve as
above and A is an elliptic curve. Call Φ(Π−1(CM)) ⊂ A(Q) the set of CM-points on A.

1In the literature this is sometimes called a “false elliptic curve”.
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Definition 2.9. For any Q ∈ S(Q), represented by a fake elliptic curve (E, i) with level
U -structure, the isogeny class C of Q in S(Q) consists of all points in S(Q) represented
by fake elliptic curves (E ′, i′) with level U -structure such that there is an isogeny E → E ′

compatible with the OD-action (but not necessarily compatible with the level U -structures).

3. Detailed exposition of the results

3.1. Review of Witt rings. Fix a prime p. Let Zp be the ring of p-adic integers. Let Zur
p

be the maximal unramified extension of Zp. Let R := Ẑur
p be the completion of Zur

p . We set

k = R/pR and K := R[1/p]. Thus k ' Fp, and R is the Witt ring W (k). Let Fr : k → k be
the automorphism Fr(x) := xp, and let φ : R→ R be the unique automorphism lifting Fr.

We will use the notion of a canonical lift (CL) abelian scheme over R: see Section 4.1 for
the definition.

3.2. Hecke correspondences. For any prime l let Y1(N, l) be the affine curve over Q
parametrizing triples (E,α,H) in which (E,α), with α : Z/NZ ↪→ E(Q), represents a point
in Y1(N) and H ≤ E(Q) is an order-l subgroup intersecting α(Z/NZ) trivially: see [11,
p. 207]. Define degeneracy maps σ1, σ2 : Y1(N, l) → Y1(N) by σ1(E,α,H) := (E,α) and
σ2(E,α,H) := (E/H, u ◦ α), where u : E → E/H is the quotient map.

Let X1(N, l) be the smooth projective model of Y1(N, l). The σi extend to σi : X1(N, l)→
X1(N). Define the Hecke operator T (l)∗ on Div(X1(N)(Q)) by T (l)∗D := σ2∗σ

∗
1D. For

P ∈ X1(N)(Q) write T (l)∗P =:
∑

i P
(l)
i ; the sum involves l+ 1 or l terms according as l - N

or l | N . If in addition f =
∑
anq

n ∈ Z[[q]] is a newform, then the divisor
∑

i P
(l)
i − alP will

be called a Hecke divisor.

3.3. Conventions on modular-elliptic correspondences. The Z[1/N ]-scheme Y1(N)
represents the functor taking a Z[1/N ]-algebra B to the set of isomorphism classes of pairs
(E,α) where E is an elliptic curve over B and α : (Z/NZ)B → E is a closed immersion of
group schemes. For each P ∈ Y1(N)(B), let (EP , αP ) be a pair in the corresponding iso-
morphism class. The Z[1/N ]-scheme S = X1(N) is the Deligne-Rapoport compactification:
see [13, pp. 78–81]. The base extension of S to C will also be denoted S. The cusp ∞ on
X1(N) is defined over Q(ζN), where ζN is a primitive N th root of 1.

Remark 3.1. Some of the references we cite use a modular curve parametrizing elliptic curves
with an embedding of µN instead of Z/NZ, but the two theories are isomorphic provided we
work over Z[1/N, ζN ]-algebras.

Assume that we are given a modular-elliptic correspondence S
Π←− X

Φ−→ A with S =
X1(N). We may assume that A comes from a model over OF0 [1/Nm], and that X,S,Π,Φ
come from models over OF [1/Nm], where F0 ⊆ F are number fields, and OF0 and OF are
their rings of integers, and m ∈ Z>0. Then x∞ = Π(∞) has a model over OF1 [1/Nm], where
F1 is a number field containing F (ζN).

If p is large enough to be unramified in F1, then we fix once and for all an embedding of F1

into K; then we obtain an embedding OF1 [1/Nm] ⊂ R. A point P ∈ S(R) is called ordinary
(respectively, a CL-point) if P ∈ Y1(N)(R) and EP has ordinary reduction EP (respectively,
EP is CL). If P ∈ S(R) is ordinary let KP be the imaginary quadratic field End(EP ) ⊗Q.
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Finally let CL be the set of all CL-points of S(R). Call Φ(Π−1(CL)) ⊂ A(R) the set of
CL-points of A.

3.4. Conventions on Shimura-elliptic correspondences. Now suppose instead that S is
a Shimura curve XD(U), where D and U satisfy the conditions in [9]; then for some m ∈ Z>0

the Shimura curve S = XD(U) is a Z[1/m]-scheme with geometrically integral fibers, such
that for any Z[1/m]-algebra B the set S(B) is in bijection with the set of isomorphism classes
of triples (E, i, α) where (E, i) is a fake elliptic curve over B (i.e. E/B is an abelian scheme
of relative dimension 2 and i : OD → End(E/B) is an injective ring homomorphism) and α
is a level U structure.

Assume that we are given a Shimura-elliptic correspondence S
Π←− X

Φ−→ A. With
notation as in Section 3.3, Replacing m by a multiple if necessary, we may assume that A
comes from a model over OF0 [1/m] and that X,S,Π,Φ come from models over OF [1/m],
where F0 ⊆ F are number fields. Assuming that p is suitably large, we again fix an embedding
F ⊂ K hence we have an embedding OF [1/m] ⊆ R. A point P ∈ S(R) is called ordinary
(respectively a CL-point) if P corresponds to a triple (EP , iP , αP ) where EP has ordinary
reduction EP (respectively EP is CL). If P ∈ S(R) is ordinary, let KP be the imaginary
quadratic field End(EP , iP ) ⊗ Q. Finally CL is the set of all CL-points of S(R). Call
Φ(Π−1(CL)) ⊂ A(R) the set of CL-points of A.

3.5. Reciprocity functions for CL points.

Definition 3.2. Let p be a prime number. Let F0 be a number field, and let v be a degree-1
place lying above p. Call v anomalous for an elliptic curve A over F0 if the trace av of the
p-power Frobenius on the reduction A mod v satisfies av ≡ 1 (mod p). (See [27, p. 186].)

Let notation be as in Section 3.3 or Section 3.4.

Definition 3.3. A rational prime p is good (for our correspondence) if p splits completely
in F0, the elliptic curve A has good reduction at all primes v|p, and in the Shimura-elliptic
case each v|p is not anomalous for A.

Remark 3.4. The Chebotarev density theorem easily implies that there are infinitely many
good primes.

Let p be sufficiently large and set XR := X ⊗ R. (More generally, throughout this paper
the subscript R always means “base extension to R” and we use the same convention for
any other ring in place of R. In particular, if p is a good prime, AR comes from an elliptic
curve AZp over Zp and we let ap be the trace of the p-power Frobenius on AFp .) Let
X̄ := Xk = X ⊗ k. For any P ∈ X(R), let P̄ denote the image of P in X̄(k). (More
generally, throughout this paper, when we are dealing with a situation that is “localized at
p”, an upper bar always means “reduction mod p”.) Let X̂R the p-adic completion of XR

viewed as a formal scheme over R. (More generally, throughout this paper, an upper ˆ will
denote “p-adic completion”.) If X† ⊂ XR is an affine dense open subscheme then any global

function Φ† ∈ O(X̂†) = O(X†)̂ defines a map Φ† : X†(R)→ R. The reduction Φ† ∈ O(X̄†)

induces a regular map Φ† : X̄†(k)→ k.
Recall the group A(R)p-div := A(R)tors + pA(R).
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Theorem 3.5 (Reciprocity functions for CL points). Assume that S
Π←− X

Φ−→ A is
a modular-elliptic or a Shimura-elliptic correspondence and that p is a sufficiently large
good prime. Then there exist an affine dense open subscheme X† ⊂ XR and a function
Φ† ∈ O(X̂†) with non-constant reduction Φ† ∈ O(X̄†) \ k, such that for any P1, . . . , Pn ∈
Π−1(CL) ∩X†(R) and any m1, . . . ,mn ∈ Z we have∑n

i=1miΦ(Pi) ∈ A(R)tors ⇐⇒
∑n

i=1 miΦ
†(Pi) = 0 ∈ R,∑n

i=1miΦ(Pi) ∈ A(R)p-div ⇐⇒
∑n

i=1 miΦ†(P̄i) = 0 ∈ k.

Theorem 3.5 will be proved in Section 4. It is useful to compare Theorem 3.5 to Theo-
rems A.1 and A.10.

Remark 3.6. As the proof of Theorem 3.5 will show, the functions Φ† will be functorially
associated (in an obvious sense) to tuples (X,S,A,Π,Φ, ωA), where ωA is a nonzero global
1-form on A defined over F0.

Remark 3.7. Let C = Π−1(CL) ∩X†(R) and let Div(C) be the free abelian group generated
by C. Then one can consider the maps Φ∗ : Div(C) → A(R)/A(R)tors and Φ†∗ : Div(C) → R
naturally induced by Φ and Φ† by additivity. Then the first equivalence in Theorem 3.5 says
that Ker(Φ∗) = Ker(Φ†∗). A similar description can be given for the second equivalence.
There is a formal similarity between such a formulation of Theorem 3.5 and the way classical
reciprocity laws are formulated in number theory and algebraic geometry. Indeed, in classical
reciprocity laws one is usually presented with maps Φ : C → G and Φ† : C → G† from a set
C of places of a global field to two groups G and G† (typically a Galois group and a class
group), and one claims the equality of the kernels of the induced maps Φ∗ : Div(C)→ G and
Φ†∗ : Div(C)→ G†.

Let us discuss some consequences of Theorem 3.5.

Corollary 3.8. In the notation of Definition 1.2 and Theorem 3.5, we have

rank (
∑n

i=1 Z · Φ(Pi)) = rank
(∑n

i=1 Z · Φ†(Pi)
)

rankA(R)
p (

∑n
i=1 Z · Φ(Pi)) = dimFp

(∑n
i=1 Fp · Φ†(P̄i)

)
.

Proof of Theorem 1.3. By Corollary 3.8, the Fp-span of

Φ†(Φ−1(Γ) ∩ Π−1(CL) ∩X†(R))

has dimension ≤ r over Fp. So

#Φ−1(Γ) ∩ Π−1(CL) ∩X†(R) ≤ pr deg(Φ†).

Now CL elliptic curves overR are uniquely determined, up to isomorphism, by their reduction
mod p: see Theorem 4.3. Similarly, by loc. cit., if (E1, i1) and (E2, i2) are two fake elliptic
curves such that E1, E2 are CL and (Ē1, ī1) ' (Ē2, ī2) then (E1, i1) ' (E2, i2). Thus

Φ−1(Γ) ∩ Π−1(CL) ∩X†(R)

has at most pr deg(Φ†) ·d1d2 elements, where d1 := deg Π and d2 is the number of level Γ1(N)
structures (respectively, level U structures) on a given elliptic (respectively, fake elliptic)
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curve. Also, #
(
Π−1(CL) \X†(R)

)
≤ d1d2d3, where d3 = #

(
Π−1(S

ord
(k)) \ X̄†(k)

)
, where

the ord superscript indicaes the ordinary locus. So

(3.9) #Φ(Π−1(CL)) ∩ Γ ≤ #Φ−1(Γ) ∩ Π−1(CL) ≤ (pr deg(Φ†) + d3)d1d2,

which is at most cpr, where c := deg(Φ†) + d1d2d3. �

Corollary 3.19 will make the bound in (3.9) explicit in the case where S = X = X1(N),
Π = Id, and Φ is a modular parametrization.

Remark 3.10. Let M be the algebraic closure of F in K. Then the study of pA(M) is
analogous to the study of Wieferich places in [43] and [46]: indeed, for a ∈ Z not divisible
by p, the classical Wieferich condition ap ≡ a (mod p2) is equivalent to a ∈ M×p, and M×p

is the analogue of pA(M) for the multiplicative group Gm.

Remark 3.11. Let Γ0 be a finite-rank subgroup of A(M), and let Γ := Γ0 + pA(M). Then

rankA(R)
p (Γ) <∞, so Theorem 1.3 applies to Γ.

On the other hand, we claim that rank(Γ) =∞. This follows from the following statement:
If L is the compositum in F of all quadratic extensions of F that are unramified at all primes
above p, then A(L) is of infinite rank. To prove this, choose a Weierstrass equation y2 = f(x)
for A, where f(x) is a monic cubic polynomial with coefficients in the ring of integers OF
of F . Consider points with x-coordinate xn = 1/p4 + n for n ∈ OF . Then F (

√
f(xn)) is

unramified at p since the equation p12f(xn) ≡ 1 (mod p4) implies by Hensel’s lemma that
p12f(xn) is a square in the completion of F at any prime above p. Thus we get a collection of

points in A(L). We may inductively define a sequence of ni ∈ OF such that each F (
√
f(xni))

is ramified at a prime of F not ramifying in the field generated by the previous square roots,
by choosing ni so that 1/p4 + ni has valuation 1 at some prime of F splitting completely
in the splitting field of f . By choosing the ni sufficiently large, we may assume that the
corresponding points Pi ∈ A(L) have large height and hence are non-torsion. Now we claim
that the Galois action forces P1, . . . , Pm to be Z-independent in A(L). Indeed, if there were
a relation a1P1 + · · · + amPm = 0 then we could apply a Galois automorphism fixing all
the Pi but P1 to obtain −a1P1 + a2P2 + · · · + amPm = 0, and subtracting would show that
2a1P1 = 0, but P1 is non-torsion, so a1 = 0; similarly all ai would be 0. Since m can be
made arbitrarily large, A(L) has infinite rank.

3.6. Refinement of results on CL points for modular parametrizations. Theo-
rem 3.17 below is a refinement of Theorem 3.5 in the special case of a modular-elliptic

correspondence S
Π←− X

Φ−→ A arising from a modular parametrization attached to a new-
form f =

∑
anq

n; recall that S = X = X1(N), Π = Id, and we always assume f of weight 2,
on Γ0(N), normalized, with rational Fourier coefficients. In this case we may (and will) take
F = F0 = Q. Recall that a1 = 1, that an ∈ Z for n ≥ 1, and that for sufficiently large p, the
coefficient ap equals the trace of Frobenius on AFp . One can ask if in this case the function
Φ† also has a description in terms of eigenforms. This is indeed the case, as we shall explain
below. Consider the series

(3.12) f (−1)(q) :=
∑

(n,p)=1

an
n
qn ∈ Zp[[q]].
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The series f (−1)(q) is called f |R−1 in [38, p. 211]. Assume that p � 0 and that AR has
ordinary reduction. Then ap 6≡ 0 (mod p). Let up ∈ Z×p be the unique root in pZp of

the equation x2 − apx + p = 0; thus āpū = 1. Let V : Zp[[q]] → Zp[[q]] be the operator
V (
∑
cnq

n) =
∑
cnq

np. Define

(3.13) f
(−1)
[u] (q) :=

(
∞∑
i=0

uiV i

)
f (−1)(q) =

∑
i≥0

∑
(n,p)=1

ui
an
n
qnp

i ∈ Zp[[q]].

Then

(3.14) −
(
f

(−1)
[u] (q)

)p
+ āpf

(−1)
[u] (q) = āpf (−1)(q),

in Fp[[q]], where the bars denote reduction modulo p, as usual. The series f (−1)(q) has a
nice interpretation in terms of modular forms mod p. Indeed, recall from [17, pp. 451, 458]
that if Mm is the k-linear space of modular forms over k on Γ1(N) of weight m then there
is an injective q-expansion map Mm → k[[q]] and a Serre operator θ : Mm → Mm+p+1 that
on q-expansions acts as q d

dq
. Let Ēp−1 ∈Mp−1 be the reduction mod p of the modular form

Ep−1 over Z(p) whose q-expansion in Z(p)[[q]] is the normalized Eisenstein series of weight
p− 1; hence Ēp−1 is the Hasse invariant and has q-expansion 1 in Fp[[q]].

Define the affine curve

X1(N)
ord

:= X1(N) \ {zero locus of Ēp−1}. = Y1(N)
ord
∪ {cusps}

where Y1(N)
ord

is the open set of points in Y1(N) represented by ordinary elliptic curves.
If α ∈ Mm+w, and β ∈ Mm is nonzero, call α/β a weight-w quotient of modular forms

over k. A weight-0 quotient of modular forms is a rational function on X1(N). In particular,
θp−2f̄ , Ēp

p−1 ∈Mp2−p, and

(3.15) f̄ (−1) := (θp−2f̄)/Ēp
p−1

is a regular function on X1(N)
ord

. Let g 7→ g∞ be the natural q-expansion map k(X1(N))→
k((q)). The corresponding point in X1(N)(k((q))) will be called the Fourier k((q))-point.

Then f̄
(−1)
∞ = f (−1)(q). For primes l 6= p, define the Hecke operator T (l) : k[[q]] → k[[q]] by

T (l)(
∑
cnq

n) =
∑
clnq

n + ε(l)l−1
∑
cnq

ln, where ε(l) = 0 or 1 according as l divides N or
not. Define the U-operator U : k[[q]] → k[[q]] by U(

∑
cnq

n) :=
∑
cnpq

n. By [17, p. 458],

f (−1)(q) is an eigenvector of Tl for every l 6= p; moreover, f (−1)(q) ∈ kerU . Finally, for any
open subscheme X ′ ⊂ X1(N)R containing the ∞ section [∞] we have a natural injective
q-expansion map O(X ′ \ [∞])̂ → R((q))̂ , which we write as G 7→ G∞. (See Section 4.4 for
more details.)

Definition 3.16. An open subscheme of the form X ′ \ [∞] with X ′ as above will be called
standard.

Let j(x) ∈ k be the j-invariant of x ∈ Y1(N)(k).

Theorem 3.17 (Explicit reciprocity functions for CL points). Assume, in Theorem 3.5,
that X = S = X1(N), Π = Id, and Φ is a modular parametrization attached to a newform
f . Then one can choose X† and Φ† in Theorem 3.5 such that

(1) X† is standard and X̄† = Y1(N)
ord
\ {x | j(x) = 0, 1728}.

9



(2) If AR is not CL then Φ†∞ = f (−1)(q). In particular, Φ† = f̄ (−1).

(3) If AR is CL then Φ†∞ = −uf (−1)
[u] (q). In particular, (Φ†)p − āpΦ† = f̄ (−1).

In both cases, (2) and (3), the function Φ† is integral over the integrally closed ring

O(X1(N)
ord

) and belongs to the fraction field of O(X1(N)
ord

). So Φ† ∈ O(X1(N)
ord

).
Theorem 3.17 will be proved in Section 4.

Remark 3.18. If AR is CL, then Theorem 3.17(3) implies that f
(−1)
[u] (q) is the Fourier expan-

sion of a rational function on X1(N), hence of a quotient α/β where α, β ∈Mν are modular
forms defined over k of some weight ν. Is there a direct argument for this?

Corollary 3.19. Let Φ: X1(N) → A be a modular parametrization and let Γ ≤ A(R) be a

subgroup with r := rankA(R)
p (Γ) <∞. Then the set Φ(CL)∩Γ is finite of cardinality at most[

(2g − 2 + ν) · p
2 − p

2
· pr + 2λ

]
λ,

where g is the genus of X1(N), ν is the number of cusps of X1(N), and λ is the degree of
X1(N)→ X1(1).

Proof. By Theorem 3.17 we have d1 = 1, d2 = λ, and d3 ≤ 2λ in (3.9). So it will be enough
to check that

(3.20) deg(Φ†) ≤ (2g − 2 + ν) · p
2 − p

2
.

Taking degrees in parts (2) and (3) of Theorem 3.17 yields either deg(Φ†) = deg(f̄ (−1)) or

p deg(Φ†) = deg(f̄ (−1)). In both cases, deg(Φ†) ≤ deg(f̄ (−1)). Now (3.20) follows from the
fact that the numerator and denominator of the fraction in (3.15) are sections of the line

bundle (Ω1(cusps))
p2−p

2 , where Ω1 is the cotangent bundle on X1(N). �

We next discuss a uniqueness property for the function Φ† in Theorem 3.17. Let S =
X1(N), let X† ⊂ S be a standard open subscheme over R such that

(3.21) X̄† ⊂ Y1(N)
ord
\ {x|j(x) = 0, 1728}

and define
(3.22)
P := {P ∈ CL | P̄ is not in the isogeny class of any of the k-points of Y1(N) \X†}.

Clearly P is infinite. Let M be the algebraic closure of Q in K and let ℘ be the place of
M above which pR lies. We have P ⊂ X†(OM,℘). Let f =

∑
anq

n be a newform. Let∑
P

(l)
i − alP be the Hecke divisor on S(Q) associated to any P ∈ P and any prime l 6= p

(see Section 3.2). Then P
(l)
i ∈ CL∩X†(OM,℘). For d ∈ (Z/NZ)×, let 〈d〉 be the diamond

operator acting on X1(N) and on O(X1(N)
ord

). Consider the k-linear space

(3.23) F :=
{

Θ ∈ O(X1(N)
ord

) | 〈d〉Θ = Θ for all d ∈ (Z/NZ)× and UΘ(q) = 0
}
,

where Θ(q) ∈ k[[q]] is the Fourier expansion of Θ. Note that f̄ (−1) ∈ F .
10



Theorem 3.24 (Uniqueness of reciprocity functions for CL points). Let S = X1(N), and
let Φ: S → A be a modular parametrization attached to a newform f =

∑
anq

n and let p
be a sufficiently large good prime. Assume that X† ⊂ S is an open subscheme over R as in
(3.21). Let P be as in (3.22). Then the following conditions on Θ ∈ F are equivalent.

1) For any P1, . . . , Pn ∈ CL∩X†(R) and any integers m1, . . . ,mn we have
n∑
i=1

miΦ(Pi) ∈ A(R)p-div =⇒
n∑
i=1

miΘ(P̄i) = 0 ∈ k.

2) For any P ∈ P and any prime l 6= p we have∑
Θ(P̄

(l)
i )− alΘ(P̄ ) = 0.

3) Θ = λ̄ · f (−1) for some λ̄ ∈ k.

Proof. Condition 1 implies condition 2 by (A.5). That condition 2 implies condition 3 will
be proved in Section 4: see Lemma 4.83. Finally condition 3 implies condition 1 by Theo-
rem 3.17. �

3.7. Reciprocity functions and finiteness for isogeny classes. Fix a set Σ of rational
primes.

Suppose that S = X1(N). Let B be a Z[1/N ]-algebra. Let Q be a B-point of Y1(N),
represented by (EQ, αQ). The Σ-isogeny class (respectively, the prime-to-Σ isogeny class) of
Q in S(B) is the set C = CQ ⊂ S(B) of all B-points of Y1(N) represented by (EQ′ , αQ′) such
that there exists an isogeny EQ → EQ′ of degree divisible only by primes in Σ (respectively,
outside Σ). We do not require the isogeny to be compatible with αQ and αQ′ .

The definition for S = XD(U) is similar. Let B be a Z[1/m]-algebra. Let Q ∈ S(B) be
represented by (EQ, iQ, αQ). The Σ-isogeny class (respectively, the prime-to-Σ isogeny class)
of Q in S(B) is the set C = CQ ⊂ S(B) of all B-points of S represented by (EQ′ , iQ′ , αQ′)
such that there exists an isogeny EQ → EQ′ , compatible with the OD-action, and of degree
divisible only by primes in Σ (respectively, outside Σ). Again the isogeny need not respect
αQ and αQ′ .

Let now S be either X1(N) or XD(U) and let C be a Σ-isogeny class where p /∈ Σ
or a prime to Σ isogeny class where p ∈ Σ. Say that C is ordinary (respectively CL) if it
contains an ordinary point (respectively a CL point); in this case all points in C are ordinary
(respectively, CL).

Theorem 3.25 (Reciprocity functions mod p for isogeny classes). Assume that S
Π←− X

Φ−→
A is a modular-elliptic or Shimura-elliptic correspondence, assume that p is a sufficiently
large good prime, and assume C is an ordinary prime-to-p isogeny class in S(R). Then
there exist an affine dense open subscheme X† ⊂ X, a (not necessarily connected) finite

étale cover π : X̄‡ → X̄† of degree p, a regular function Φ‡ ∈ O(X̄‡) that is non-constant on
each component of X̄‡, and a map σ : Π−1(C) ∩X†(R)→ X̄‡(k) such that π(σ(P )) = P̄ for
all P , and for any P1, . . . , Pn ∈ Π−1(C) ∩X†(R) and any m1, . . . ,mn ∈ Z we have

(3.26)
n∑
i=1

miΦ(Pi) ∈ A(R)p-div ⇐⇒
n∑
i=1

miΦ‡(σ(Pi)) = 0 ∈ k.

Theorem 3.25 will be proved in Section 4.
11



Remark 3.27. 1) Again, as the proof will show, the maps Φ‡ and σ will have a functorial
nature. In Theorem 3.25 σ is simply a map of sets, but the proof will show that σ has
actually an algebro-geometric flavor.

2) Theorem 3.25 is an analogue of the second equivalence in Theorem 3.5. Is there also
an isogeny-class analogue of the first equivalence in Theorem 3.5?

3) The sum in the right half of (3.26) may be viewed as a function η‡ on X‡
n

evaluated at
(σ(P1), . . . , σ(Pn)). If the value is zero, then so is η†(P̄1, . . . , P̄n), where η† is the norm of η‡

in the degree-pn extension O
(
X‡

n
)

of O
(
X†

n
)

. Here η† may be expressed as a polynomial

in the mi and the coefficients of the characteristic polynomial of multiplication-by-Φ‡ on the
locally free O(X†)-algebraO(X‡). Thus the left half of (3.26) implies a statement expressible

in terms of evaluation of functions on X† instead of X‡. Theorem 3.32(4) will show that η†

is not always zero (consider the case n = 1, for example), so the statement is not always
vacuous.

Theorem 3.25 trivially implies

Corollary 3.28. In the notation of Theorem 3.25 we have

rankA(R)
p

(
n∑
i=1

Z · Φ(Pi)

)
= dimFp

(
n∑
i=1

Fp · Φ‡(σ(Pi))

)
.

Just as Corollary 3.8 implied Theorem 1.3, Corollary 3.28 applied to subsets {P1, . . . , Pn}
of Φ−1(Γ) ∩ Π−1(C) ∩X†(R) implies the first conclusion in

Corollary 3.29. Assume S
Π←− X

Φ−→ A is a modular-elliptic or a Shimura-elliptic corre-
spondence and assume p is a sufficiently big, good prime. Let C be an ordinary prime-to-p
isogeny class in S(R). Then there exists a constant c such that for any subgroup Γ ≤ A(R)

with r := rankA(R)
p (Γ) < ∞ the set Φ(Π−1(C)) ∩ Γ ⊆ A(k) is finite of cardinality at most

cpr. In particular, the set Φ(Π−1(C)) ∩ A(R)tors is finite.

The first conclusion of Corollary 3.29 implies the last because the reduction mapA(R)tors →
A(k) is injective for large p.

One can ask if the set Φ(Π−1(C)) ∩ Γ is finite for every Γ with rankA(R)
p (Γ) < ∞. Theo-

rem 1.6 represents a partial result in this direction, with certain Σ-isogeny classes instead of
prime-to-p isogeny classes. Corollary 3.29 will be used to prove Theorem 1.6 in Section 4.9.

3.8. Refinement of results on isogeny classes for modular parametrizations. Sup-

pose that S
Π←− X

Φ−→ A arises from a newform f =
∑
anq

n. Our goal in this subsection is

to state Theorem 3.32, which describes the cover X‡ and the function Φ‡ explicitly in this
case.

Let I1(N) be the Igusa curve from pp. 460–461 of [17], except that we view I1(N) as a

smooth projective integral curve. It is a Galois cover of X1(N) ramified only over super-
singular points, and the Galois group is naturally isomorphic to F×p . Let J := I1(N)/〈−1〉
be the intermediate cover of degree (p − 1)/2 obtained by taking the quotient of I1(N) by

the involution corresponding to −1 ∈ F×p . We will describe X‡ in terms of J . There is a

point ∞ on each of these covers that is unramified over ∞ ∈ X1(N). In particular, rational
functions on I1(N) and J have Fourier expansions in k((q)).

12



Let

(3.30) f (0)(q) :=
∑

(n,p)=1

anq
n ∈ Zp[[q]].

(The series f (0)(q) is called f |R0 in [38, p. 115].) Let

(3.31) f
(0)
[ap](q) :=

(
∞∑
i=0

aipV
i

)
f (0)(q) =

∞∑
i=0

∑
(n,p)=1

aipanq
npi ∈ Zp[[q]].

Corollary 4.50 and Lemma 4.52 will show that for p � 0, the series f
(0)
[ap](q) is the Fourier

expansion of some η ∈ k(J). For a constant λ̄ ∈ k to be specified later, define

Φ†† :=

{
λ̄ηp

2 − āpηp, if AR is not CL

ηp, if AR is CL.

Theorem 3.32 (Explicit reciprocity functions mod p for isogeny classes). Assume, in Theo-

rem 3.25, that S
Π←− X

Φ−→ A arises from a modular parametrization attached to a newform
f on Γ0(N). Then there exists λ̄ ∈ k× such that X†, X‡, and Φ‡ can be chosen to satisfy:

1) The cover X‡ of X† is a disjoint union X0
∐
X+

∐
X−, where X0 ' X† is the trivial

cover and X+ and X− are each isomorphic to the inverse image of X† under J → X1(N).

2) The restrictions of Φ‡ to X0, X+, X− equal

Φ†, Φ† + λ+Φ††, Φ† + λ−Φ††,

respectively, where λ± ∈ k are such that λ
(p−1)/2
+ , λ

(p−1)/2
− are the two square roots of λ̄.

Theorem 3.32 will be proved in Section 4.

Corollary 3.33. Let notation be as in Theorem 3.32. The characteristic polynomial of the
endomorphism “multiplication by Φ‡” in the locally free O(X†)-algebra O(X‡) is

xp − λ̄h2x+ (λ̄h2Φ† − (Φ†)p),

where h :=
(

Φ††
)(p−1)/2

∈ k(X1(N)).

Proof. The characteristic polynomial of Φ‡ − Φ† equals

x
(
x(p−1)/2 − λ(p−1)/2

+ Φ††
(p−1)/2

)(
x(p−1)/2 − λ(p−1)/2

− Φ††
(p−1)/2

)
= xp − λ̄h2x.

In this, replace x by x− Φ†. �

3.9. Strategy of proofs. The proof of our local results will be an application of the theory
of δ-characters [3, 4] and δ-modular forms [5, 6]. These two types of objects are special
cases of arithmetic differential equations in the sense of [7]. Section 4 reviews the facts from
this theory that are necessary for the proof. As a sample of our strategy let us explain, very
roughly, the idea of our proof of Theorem 3.5. Assume for simplicity that we are dealing with

a modular-elliptic correspondence S
Π←− X

Φ−→ A arising from a modular parametrization
attached to a newform f . Following [3] consider the Fermat quotient operator δ : R → R
defined by δx := (φ(x) − xp)/p, where φ : R → R is the lift of Frobenius. We view δ
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as an analogue of a derivation operator with respect to p. Recall from [3] that if Y is
any smooth scheme over R then a function g : Y (R) → R is called a δ-function of order
r if it is Zariski locally of the form P 7→ G(x, δx, . . . , δrx), where G is a restricted power
series with R-coefficients and x ∈ RN is a tuple of affine coordinates of P in some N -
dimensional affine space. If A is our elliptic curve then by [3] there exists a δ-function of
order 2, ψ : A(R)→ R, which is also a group homomorphism; ψ is called in [3] a δ-character
and may be viewed as an arithmetic analogue of the “Manin map” [25, 26]. Consider the
composition f ] = ψ ◦ Φ: X(R)→ R. On the other hand, the theory of δ-modular forms [5]
yields an open subset X† of S and a δ-function of order 1, f [ : X†(R) → R, that vanishes
at all CL-points: see Lemma 4.37 and (4.39). Then we prove that there exist δ-functions of
order 2, denoted h0, h1 : X†(R)→ R, such that the δ-function

Φ† := f ] − h0 · f [ − h1 · δ ◦ f [

has order 0, or equivalently is a formal function in the usual sense of algebraic geometry.
(Intuitively, in the system of “arithmetic differential equations” f ] = f [ = 0 one can eliminate
all the “derivatives” of the unknowns.) It follows that f ] and Φ† have the same value at each
CL-point Pi. So ∑

miΦ
†(Pi) =

∑
mif

](Pi) = ψ(
∑

miΦ(Pi)).

By the arithmetic analogue in [3, 4] of Manin’s Theorem of the Kernel [25, 26], ψ(
∑
miΦ(Pi))

vanishes if and only if
∑
miΦ(Pi) is torsion. (Actually, for our application to Theorem 1.3

we need only the “if” part, which does not require the analogue of the Theorem of the
Kernel.) On the other hand we will check that Φ† /∈ k by looking at Fourier q-expansions,
and this will complete the proof of the first equivalence in Theorem 3.5 in the special case
we considered.

In particular, our proof of the (effective) finiteness of Φ(CL) ∩ Γ in the case Γ = A(R)tors

can be intuitively described as follows. The points of CL are solutions of the “arithmetic
differential equation” f [ = 0 whereas the points of Φ−1(Γ) are solutions of the “arithmetic
differential equation” f ] = 0. Hence the points of CL∩Φ−1(Γ) are solutions of the system of
“arithmetic differential equations” f [ = f ] = 0. By what was said above one can eliminate, in
this system, the “derivatives” of the unknowns and hence one is left with a (non-differential)
algebraic equation mod p, whose “degree” can be estimated. There are only finitely many
solutions to this algebraic equation and their number is effectively bounded by the “degree”.

4. Proofs

Fix a prime p ≥ 5. Recall that R = Ẑur
p , k = R/pR, K := R[1/p], and φ : R → R is the

Frobenius automorphism.

4.1. Review of CL and CM points. This section reviews facts we need about CL abelian
schemes and their relation with CM points; see [22, 15, 29]. Expert readers should skip this
discussion.

Definition 4.1. An abelian scheme E/R is CL (a canonical lift) if its reduction Ē := E⊗ k
is ordinary and there exists an R-homomorphism E → Eφ := E ⊗R,φ R whose reduction
mod p is the relative Frobenius k-homomorphism Ē → ĒFr := Ē ⊗k,Fr k.

Theorem 4.2. The following are equivalent for an elliptic curve E over R:
14



(1) E is CL.
(2) E has ordinary reduction and Serre-Tate parameter q(E) = 1 (with respect to some,

and hence any, basis of the physical Tate module).
(3) There exists a morphism of Z-schemes E → E whose reduction mod p is the absolute

Frobenius Fp-morphism Ē → Ē. (In [7] this situation was referred to by saying that
E has a lift of Frobenius.)

Proof. The equivalence between 2 and 1 is essentially the definition of the CL property in [22].
The implication 1 =⇒ 3 is trivial. For 3 =⇒ 1, note first that Ē must be ordinary: this
follows, for instance, from Proposition 7.15 and Corollaries 8.86 and 8.89 in [7]. Finally, the
Z-morphism E → E induces an R-morphism E → Eφ; the Néron model property shows that
the latter is a composition of a homomorphism u with translation by an R-point reducing
to the identity mod p. But then u mod p is the relative Frobenius. �

Theorem 4.3 (Existence and uniqueness of CL abelian schemes).

(1) Fix a prime p and an ordinary abelian variety Ē over k. Then there exists a unique
CL abelian scheme E over R with E ⊗ k ' Ē (unique up to isomorphism).

(2) If E and E ′ are CL abelian schemes over R, then the natural map HomR(E,E ′) →
Homk(Ē, Ē

′) is an isomorphism.
(3) If two elliptic curves over R are related by an isogeny of degree prime to p and one

of them is CL, then so is the other.

Proof. This is due to Serre and Tate: see [22, 15]. �

The conductor of an order in a quadratic number field is the index of the order in the
maximal order.

Theorem 4.4 (Relation between CL and CM).

(1) (a) If E is a CL elliptic curve over R, then E has CM (part of this claim is that E
is definable over M = K ∩ Q). Thus we have the relation CL ⊆ CM between
subsets of Y1(N)(Q).

(b) Conversely, if Q = (E,α) ∈ Y1(N)(Q) is in CM, and p is split in EndE ⊗ Q
and does not divide the conductor of EndE, then Q ∈ CL.

(2) (a) If (E, i) is a CL fake elliptic curve over R, then (E, i) is CM. Thus we have the
relation CL ⊆ CM between subsets of XD(U)(M).

(b) Conversely, for any CM-point Q ∈ XD(U)(Q), we know that the associated
abelian surface E is the square of an elliptic curve with CM by an order in some
K; if p splits in K and p does not divide the conductor of the order, then Q ∈ CL.

Proof.

(1) (a) If E/R is a CL elliptic curve, then EndR(E) ' Endk(Ē) 6= Z.
(b) This follows from the theorem in the middle of p. 293 in [36].

(2) (a) Let E := EndR(E) ⊗ Q ' Endk(Ē) ⊗ Q. Since Ē is ordinary, the center of
E contains an imaginary quadratic field K: see [7, p. 247], say. In particular,
E 6' D, so (E, i) is CM.

(b) Apply Theorem 4.4(1)(b) to the elliptic curve.

�
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4.2. δ-functions. See [3, 7]. Let δ : R→ R be the Fermat quotient map δx := (φ(x)−xp)/p.
Then

(4.5)
δ(x+ y) = δx+ δy + Cp(x, y)
δ(xy) = xp · δy + yp · δx+ p · δx · δy,

where Cp(X, Y ) := Xp+Y p−(X+Y )p

p
∈ Z[X, Y ]. Following [3] we think of δ as a “derivation

with respect to p”. If P ∈ AN(R) = RN , then δP is defined by applying δ to each coordinate.
Let X be a smooth R-scheme and let f : X(R)→ R be a map of sets. Following [7, p. 41],

we say that f is a δ-function of order r if for any point in X(R) there is a Zariski open
neighborhood U ⊂ X, a closed immersion u : U ↪→ AN

R , and a restricted power series F with
R-coefficients in (r + 1)N variables such that

f(P ) = F (u(P ), δ(u(P )), . . . , δr(u(P ))) for all P ∈ U(R).

(Restricted means that the coefficients converge p-adically to 0.) Let Or(X) be the ring of
δ-functions of order r on X.

We have natural maps δ : Or(X) → Or+1(X), f 7→ δf := δ ◦ f , and natural ring homo-
morphisms φ : Or(X) → Or+1(X), f 7→ φ(f) = fφ := φ ◦ f . The maps δ above still satisfy
the identities in (4.5). Let X be affine, and let x be a system of étale coordinates on X, that
is to say there exists an étale map X → Ad such that x is the d-tuple of elements in O(X)
obtained by pulling back the coordinates on Ad. Let x′, x′′, . . . , x(r) be d-tuples of variables
and let ˆ denotes p-adic completion, as usual. Then the natural map

(4.6) O(X )̂ [x′, x′′, . . . , x(r) ]̂ → Or(X)

sending x′ 7→ δx, x′′ 7→ δ2x,. . . ,x(r) 7→ δrx is an isomorphism: see Propositions 3.13 and 3.19
in [7].

4.3. δ-characters. We recall facts from [3, 7]. If G is a smooth group scheme over R, then
by a δ-character of order r we understand a δ-function ψ : G(R)→ R of order r which is also
a group homomorphism into the additive group of R. Following [3], we view δ-characters
of abelian schemes as arithmetic analogues of the Manin maps [25, 26]. Let Xr(G) be the
R-module of δ-characters of order r on G. By [3, pp. 325-326], the following hold for an
elliptic curve E/R:

(1) If E is CL, then X1(E) is free of rank 1.
(2) If E is not CL, then X2(E) is free of rank 1.

We will need to review (and complement) some results in [3, 4] that can be viewed as an
arithmetic analogue of Manin’s Theorem of the Kernel [26, 10]. For any abelian group G, we
set p∞G := ∩∞n=1p

nG and we let p∞G : p∞ be the group of all x ∈ G for which there exists
an integer n ≥ 1 with pnx ∈ p∞G. Also recall that we set Gp-div = Gtors + pG.

Lemma 4.7. Let E be an elliptic curve over Zp. Let r be 1 or 2 according as E is CL or
not. Let ψ : E(R)→ R be a generator of Xr(G). Then

(1) ψ is surjective and defined over Zp.
(2) kerψ = p∞E(R) : p∞.
(3) kerψ + pE(R) = E(R)tors + pE(R) =: E(R)p-div.
(4) ψ−1(pR) = E(R)tors + pE(R) =: E(R)p-div.
(5) (kerψ) ∩ E(Zur

p ) = E(Zur
p )tors.
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Proof.

(1) Surjectivity follows from [4, Theorem 1.10]. That ψ is defined over Zp follows from
its construction in [3].

(2) If E has ordinary reduction, then [3, Theorem B’, p. 312] shows that (kerψ)/p∞E(R)
is a finite cyclic p-group; this implies the non-trivial inclusion “⊂”. If E has super-
singular reduction, we are done by [4, Corollary 1.12].

(3) The non-trivial inclusion is “⊂”. If P ∈ kerψ, by (2) there exists n such that
pnP = pn+1Q for some Q ∈ E(R). So P − pQ ∈ E(R)tors and we are done.

(4) This follows from (3) and (1).
(5) If E has ordinary reduction, then by Theorem 1.2 and Remark 1.3 on p. 209 of [4],

we have p∞E(R)∩E(Zur
p ) ⊂ E(Zur

p )tors; combining this with (2) yields the nontrivial
inclusion (kerψ)∩E(Zur

p ) ⊂ E(Zur
p )tors of (5). Now assume that E has supersingular

reduction. If ap is the trace of Frobenius on EFp then the map φ2 − apφ+ p : R→ R
is injective. By [4, Theorem 1.10, p. 212], the restriction of ψ to the kernel of the
reduction map red: E(R) → E(k) is injective. In other words, ker(ψ) ∩ ker(red) =
{0}. Equivalently, red restricts to an injection kerψ → E(k). Since E(k) is torsion,
so is kerψ.

�

We now describe an explicit generator ψ of Xr(AR), where A is an elliptic curve over Zp,
and r is 1 or 2 according as AR is CL or not. Fix a 1-form ω generating the Zp-module
H0(A,Ω1). This uniquely specifies a Weierstrass model y2 = x3 + ax+ b for A over Zp such
that ω = dx/y. Let T := −x/y. So T is an étale coordinate at the origin 0 of A, vanishing
at 0. Let L(T ) ∈ Qp[[T ]] be the logarithm of the formal group of A associated to T , so
dL(T ) = ω ∈ Zp[[T ]] dT and L(0) = 0. If A is CL, let up be the unique root in pZp of the
polynomial x2 − apx+ p. By [7, Theorem 7.22] and [4, Theorem 1.10], we may take

(4.8) ψ :=

{
1
p
(φ2 − apφ+ p)L(T ) ∈ R[[T ]][T ′, T ′′ ]̂ , if A is not CL;

1
p
(φ− up)L(T ) ∈ R[[T ]][T ′ ]̂ , if A is CL.

4.4. δ-Fourier expansions. See [5]. We start by reviewing background on classical Fourier
expansions as in [13, p. 112]. (The discussion there involves the modular curve parametrizing
elliptic curves with an embedding of µN rather than Z/NZ as here. But, the two modular
curves are isomorphic over Z[1/N, ζN ]: see [13, p. 113].) The cusp ∞ on S := X1(N) arises
from a Z[1/N, ζN ]-valued point; so if p � 0 (specifically, p - N), then it gives rise to an R-
point, which may be viewed as a closed immersion s∞ : SpecR→ SR. Let [∞] = s∞(SpecR).
Let S̃R be the completion of SR along [∞]. The Tate generalized elliptic curve Tate(q)/R[[q]]
equipped with the standard immersion αcan of µN,R ' (Z/NZ)R is a point in S(R[[q]])

that reduces mod q to s∞. For p � 0 there is an induced isomorphism Spf R[[q]] ' S̃R.
Therefore, for any open subset U ⊂ SR containing [∞] we have an induced Fourier q-
expansion homomorphism

O(U \ [∞])→ R((q)) := R[[q]][1/q].

More generally, suppose that we are given a modular-elliptic correspondence S
Π←− X

Φ−→
A. Let M be the ramification index of Π at x∞. As before, we assume p� 0. Then we have
Spf R[[q]] ' X̃R, where q := q1/M and X̃R is the completion of XR along the closure [x∞]

17



of x∞. Moreover, for any open set U ⊂ XR containing [x∞] we have a Fourier q-expansion
homomorphism

O(U \ [x∞])→ R((q)).

Next we move to the “δ-theory”. Let q′, q′′, . . . , q(r), . . . be new indeterminates. Define

Sr∞ := R((q))̂ [q′, q′′, . . . , q(r) ]̂ .

For each r, extend φ : R → R to a ring homomorphism φ : Sr∞ → Sr+1
∞ denoted F 7→ F φ by

requiring
qφ := qp + pq′, (q′)φ := (q′)p + pq′′, . . . ,

and define δ : Sr∞ → Sr+1
∞ by

(4.9) δF :=
F φ − F p

p
.

By the universality property of the sequence {Or(U \ [∞])}r≥0 (see [7, Proposition 3.3]),
there exists a unique sequence of ring homomorphisms

(4.10) Or(U \ [∞])→ Sr∞,

called δ-Fourier expansion maps and denoted g 7→ g∞, such that (δg)∞ = δ(g∞) for all g.

More generally, given a modular-elliptic correspondence S
Π←− X

Φ−→ A, define rings

Srx∞ := R((q))̂ [q′, . . . , q(r) ]̂

where q′, . . . , q(r) are new variables. Again there are natural maps φ, δ : Srx∞ → Sr+1
x∞ defined

exactly as above and there are δ-Fourier expansion maps

Or(U \ [x∞])→ Srx∞

commuting with δ, and denoted g 7→ gx∞ . There are natural maps Sr∞ → Srx∞ . Since
SpecR[q, q−1]→ SpecR[q, q−1] is étale, (4.6) implies

Srx∞ ' R((q))̂ [q′, . . . , q(r) ]̂ .

4.5. δ-Serre-Tate expansions. See [6, 7]. Assume that we are given a Shimura-elliptic

correspondence S
Π←− X

Φ−→ A, and that p � 0. By the proof of Lemma 2.6 in [6], there
exist infinitely many k-points ȳ0 ∈ S(k) whose associated triple (Ȳ , ī, ᾱ) is such that

(1) Ȳ is ordinary, and
(2) if θ̄ is the unique principal polarization compatible with ī, then (Ȳ , θ̄) is isomorphic

to the polarized Jacobian of a genus-2 curve.

So we may choose a point ȳ0 ∈ S(k) as above such that moreover, there exists x̄0 ∈ X̄(k)
with Π(x̄0) = ȳ0 such that both Π and Φ are étale at x̄0: here we use p � 0 to know that
Π⊗ k and Φ⊗ k are separable.

Let Y be the canonical lift of Ȳ . Since End(Y ) ' End(Ȳ ), the embedding ī : OD →
End(Ȳ ) induces an embedding i : OD → End(Y ). Also the level U structure ᾱ lifts to a
level U structure on (Y, i). Let y0 := (Y, i, α) ∈ S(R). Since Π is étale at x̄0, there exists
x0 ∈ X(R) such that x0 mod p = x̄0 and Π(x0) = y0.

Let Ȳ ∨ be the dual of Ȳ . By [6, Lemma 2.5], there exist Zp-bases of the Tate modules
Tp(Ȳ ) and Tp(Ȳ

∨), corresponding to each other under θ̄, such that any fake elliptic curve
over R lifting (Ȳ , ī) has a diagonal Serre-Tate matrix diag(q, qdisc(D)) with respect to these
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bases. Fix such bases. They define an isomorphism between the completion of SR along
the section y0 and Spf R[[t]]. The Serre-Tate parameter q corresponds to the value of 1 + t.
Since Π is étale at x̄0 we have an induced isomorphism between the completion of X along
the section x0 and Spf R[[t]]. As in Section 4.4 define rings

Srx0 ' R[[t]][t′, . . . , t(r) ]̂

and maps φ, δ : Srx0 → Sr+1
x0

; then for any affine open set U ⊂ X containing the image of the
section x0 we have natural δ-Serre-Tate expansion maps

(4.11) Or(U)→ Srx0 ,

denoted g 7→ gx0 , that commute with φ and δ.

4.6. Pullbacks by Φ of δ-characters. Assume that we are given a modular-elliptic or a

Shimura-elliptic correspondence S
Π←− X

Φ−→ A. Recall that A is defined over a number
field F0. We suppose that p � 0 and p splits completely in F0. Then AR comes from an
elliptic curve over Zp. Define ap and (if AR is CL) u as in Section 4.3. Let ψ be as in (4.8).
The composition

(4.12) f ] : X(R)
Φ→ A(R)

ψ→ R.

is in Or(XR). In what follows we compute the δ-Fourier expansion f ]x∞ ∈ Srx∞ (in the
modular-elliptic case) or the δ-Serre-Tate expansion f ]x0 ∈ S

r
x0

(in the Shimura-elliptic case).

4.6.1. Modular-elliptic case. Suppose that S = X1(N). We have Φ∗ : R[[T ]]→ R[[q]]. Define
bn ∈ F0 ∩R by (∑

n≥1

bnq
n−1

)
dq := d(Φ∗(L(T ))) = Φ∗(dL(T )) = Φ∗ω.

so

(4.13)
∑
n≥1

bn
n
qn = Φ∗(L(T )).

Applying Φ∗ to (4.8) and substituting (4.13) yields

(4.14) f ]x∞ = Φ∗ψ =


1
p

∑
n≥1

(
bφ

2

n

n
qnφ

2 − ap b
φ
n

n
qnφ + p bn

n
qn
)
, if A is not CL;

1
p

∑
n≥1

(
bφn
n
qnφ − up bn

n
qn
)
, if A is CL.

In both cases, f ]x∞ ∈ R[[q]][q′, q′′ ]̂ . Applying the substitution homomorphism

R[[q]][q′, q′′ ]̂ → R[[q]]

G 7→ G\ := G(q, 0, 0) = G|q′=q′′=0,

we obtain

(4.15) (f ]x∞)\ =


1
p

∑
n≥1

(
bφ

2

n/p2

n/p2
− ap

bφ
n/p

n/p
+ p bn

n

)
qnM , if A is not CL;

1
p

∑
n≥1

(
bφ
n/p

n/p
− up bn

n

)
qn, if A is CL,
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where bγ := 0 if γ ∈ Q \ Z. (In particular, the right hand side of (4.15) has coefficients in
R, which is not a priori obvious.)

Let us consider the special case when S
Π←− X

Φ−→ A arises from a modular parametriza-
tion associated to the newform f =

∑
anq

n, so S = X = X1(N), Π = Id, x∞ =∞, M = 1,
and q = q. We may take ω so that Φ∗ω =

∑
anq

n−1dq; then bn = an for all n. Since f is a
newform, the an satisfy the usual relations [41, Theorem 3.43] (we use p � 0 to know that
p - N):

apim = apiam for (p,m) = 1,(4.16)

api−1ap = api + papi−2 for i ≥ 2.(4.17)

Lemma 4.18. Assume that S
Π←− X

Φ−→ A arises from a modular parametrization attached
to f .

(1) With notation as in (3.12) and (3.13), the following holds in Zp[[q]]:

(4.19) (f ]∞)\ =

{
f (−1)(q), if A is not CL;

−uf (−1)
[u] (q), if A is CL.

(2) With notation as in (3.30) and (3.31), the following holds in k[[q]][q′, q′′]:

(4.20) f ]∞ =


f (−1)(q) +

(
q′

qp

)p (
f

(0)
[ap](q)

)p2
− āp

(
q′

qp

)(
f

(0)
[ap](q)

)p
, if A is not CL;

−ūf (−1)
[u] (q) +

(
q′

qp

)(
f

(0)
[ap](q)

)p
, if A is CL.

Proof. We shall prove (4.20) in the case where AR is not CL. The other three statements are
proved similarly (and are actually easier).

To simplify notation, let � stand for any element of Zp[[q]][q
−1, q′, q′′ ]̂ . For any γ, β ∈

Zp[[q]][q
−1, q′, q′′ ]̂ , any ` ∈ Z≥2, and any m ∈ Z≥1 we have

(4.21) (1 + pγ + p2β)mp
`−2

= 1 +mp`−1γ + p`�.

(Writing (1 + pγ + p2β)m as 1 + pγ′ lets us reduce to the case β = 0 and m = 1, which is
proved by induction on `.)

By (4.14) we get

f ]∞ =
1

p

[∑ an
n

(
qp

2

+ p(q′)p + p2�
)n
− ap

∑ an
n

(qp + pq′)
n

+ p
∑ an

n
qn
]

=
1

p

[∑ an
n

(
1 + p(

q′

qp
)p + p2�

)n
qp

2n − ap
∑ an

n

(
1 + p

q′

qp

)n
qpn + p

∑ an
n
qn
]

=
∑[

an/p2

n/p

(
1 + p

(
q′

qp

)p
+ p2�

)n/p2
− ap

an/p
n

(
1 + p

q′

qp

)n/p
+
an
n

]
qn

=:
∑

γnq
n,

where ar = 0 for r ∈ Q \ Z.
If (n, p) = 1, then γn = an/n.
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If n = pm with (m, p) = 1, then (4.16) and (4.21) yield

γn =
apam
pm

− ap
am
pm

(
1 + pm

q′

qp
+ p2�

)
≡ −apam

q′

qp
(mod p).

If n = p`m with ` ≥ 2 and (m, p) = 1, then (4.16), (4.17), and (4.21) yield

γn =
ap`−2am
p`−1m

(
1 +mp`−1

(
q′

qp

)p
+ p`�

)
−
apap`−1am
p`m

(
1 +mp`

q′

qp
+ p`+1�

)
+
ap`am
p`m

≡ a`−2
p am

(
q′

qp

)p
− a`pam

q′

qp
(mod p).

Therefore

f ]∞ ≡
∑

(m,p)=1

am
m
qm−ap

q′

qp

∑
(m,p)=1

amq
mp+

∑
`≥2

∑
(m,p)=1

am

(
a`−2
p

(
q′

qp

)p
− a`p

q′

qp

)
qmp

`

(mod p),

and the first case of (4.20) follows via a trivial algebraic manipulation. �

Remark 4.22. The right hand side of (4.20) belongs to the subring k[[q]][q′] of k[[q]][q′, q′′]. In

the case where S
Π←− X

Φ−→ A does not necessarily arise from a modular parametrization,
an argument similar to the one in the proof of Lemma 4.18 still yields

(4.23) f ]x∞ ∈ k[[q]][q′].

4.6.2. Shimura-elliptic case. Suppose that S = XD(U). Recall that we fixed x0 ∈ X(R)
and a corresponding δ-Serre-Tate expansion map O2(XR) → S2

x0
= R[[t]][t′, t′′ ]̂ , denoted

G 7→ Gx0 . Let z0 = Φ(x0) ∈ A(R). Let λ : AR → AR be the translation by −z0. Recall
the étale coordinate T on AR at 0; use Tz0 := λ∗T as étale coordinate at z0. Now we have

R[[T ]]
λ∗→ R[[Tz0 ]]

Φ∗→ R[[t]]. Define bn ∈ F0 ∩R by(∑
n≥1

bnt
n−1

)
dt := d(Φ∗λ∗(L(T ))) = Φ∗λ∗d(L(T )) = Φ∗λ∗ω,

so

(4.24)
∑
n≥1

bn
n
tn = Φ∗λ∗(L(T )).

Since Φ is étale at x0, we have b1 6= 0; scaling ω, we may assume that b1 = 1. Since ψ is a
group homomorphism, we have ψ−ψ(z0) = λ∗ψ. Add the constant ψ(z0) to both sides, and
apply Φ∗ to obtain

f ]x0 = Φ∗ψ = ψ(z0) + Φ∗λ∗ψ.

Evaluate Φ∗λ∗ψ by applying Φ∗λ∗ to (4.8) and substituting (4.24) into the right hand side:
the final result is

(4.25) f ]x0 =

ψ(z0) + 1
p

∑
n≥1

(
bφ

2

n

n
tnφ

2 − ap b
φ
n

n
tnφ + p bn

n
tn
)
, if A is not CL;

ψ(z0) + 1
p

∑
n≥1

(
bφn
n
tnφ − up bn

n
tn
)
, if A is CL.

An argument similar to the one in the proof of Lemma 4.18 shows that

(4.26) f ]x0 ∈ k[[t]][t′].
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4.7. δ-modular forms: modular-elliptic case. We recall some concepts from [5, 7, 1].
The ring of δ-modular functions [5] is

M r := R[a
(≤r)
4 , a

(≤r)
6 ,∆−1 ]̂ ,

where a
(≤r)
4 is a tuple of variables (a4, a

′
4, a
′′
4, . . . , a

(r)
4 ) and a

(≤r)
6 is similar, and ∆ := −26a3

4−
2433a2

6. If g ∈M0 \ pM0, define

M r
{g} := M r[g−1 ]̂ = R[a

(≤r)
4 , a

(≤r)
6 ,∆−1, g−1 ]̂ .

An element of M r or M r
{g} is defined over Zp if it belongs to the analogously defined ring

with Zp in place of R. Define δ : M r → M r+1 and δ : M r
{g} → M r+1

{g} as δ : Sr∞ → Sr+1
∞ was

defined in Section 4.4. Let j : −21233a3
4/∆, let i := 2633 − j, and let t := a6/a4. (This t is

unrelated to the t used in δ-Serre-Tate expansions.) By [5, Proposition 3.10], we have

M r
{a4a6} = R[j(≤n), j−1, i−1, t(≤r), t−1 ]̂ .

If w =
∑
niφ

i ∈ Z[φ], define degw =
∑
ni. If moreover λ ∈ R, define λw :=

∏
(λφ

i
)ni .

For w ∈ Z[φ], say that f in M r or M r
{g} is of weight w if

(4.27) f(λ4a4, λ
6a6, δ(λ

4a4), δ(λ6a6), . . .) = λwf(a4, a6, a
′
4, a
′
6, . . .),

for all λ ∈ R. Let M r(w) be the set of f ∈ M r of weight w, and define M r
{g}(w) similarly.

In [5], elements of M r
{g}(w) were called δ-modular forms of weight w (holomorphic outside

g = 0).
If f ∈ M r

{g}(w) and E is an elliptic curve given by y2 = x3 + Ax + B with A,B ∈ R

and g(A,B) ∈ R×, then define f(A,B) ∈ R by making the substitutions a4 7→ A, a6 7→ B,
a′4 7→ δA, a′6 7→ δB, a′′4 7→ δ2A, and so on. Recall from [5] that f is called isogeny covariant
if for any isogeny u of degree prime to p from an elliptic curve y2 = x3 + A1x + B1 with
g(A,B) ∈ R× to an elliptic curve y2 = x3 + A2x + B2 with g(A2, B2) ∈ R× that pulls back
dx/y to dx/y we have

f(A1, B1) = deg(u)− deg(w)/2f(A2, B2).

By [5, Corollary 3.11], M r
{a4a6}(0) = R[j(≤r), j−1, i−1 ]̂ . More generally, if m ∈ 2Z and

g ∈M0(m), define g̃ := gt−m/2; then

(4.28) M r
{a4a6g}(0) = R[j(≤r), j−1, i−1, g̃−1 ]̂ .

Also define the open subscheme Y (1)g := SpecR[j, j−1, i−1, g̃] of the modular curve Y (1)R :=
SpecR[j]. If we define

(4.29) b := a2
6/a

3
4 = −223−3 + 28j−1.

then R[j, j−1, i−1] = R[b, b−1, (4+27b)−1], so b is an étale coordinate on Y (1)g, and Y1(N)R →
Y (1)R is étale over Y (1)g. Suppose that in addition we are given a modular-elliptic corre-

spondence S
Π←− X

Φ−→ A. Then we may (and do) choose g so that the composition

v : XR
Π→ X1(N)R → X(1)R is étale above Y (1)g. Set

(4.30) X† := v−1(Y (1)g).
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The pull-back of b to X†, which we will still call b, is an étale coordinate on X†. By (4.6),
we have natural isomorphisms

(4.31) O(X†)̂ [b′, . . . , b(r) ]̂ ' Or(X†),

where b′, . . . , b(r) are new indeterminates. We view (4.31) as an identification. Similarly,
since j is an étale coordinate on Y (1), (4.6) and (4.28) yield

(4.32) M r
{a4a6g}(0) ' Or(Y (1)g) ⊂ Or(X†).

Since X† is standard in the sense of Definition 3.16, we have the δ-Fourier expansion map

(4.33) Or(X†)→ Srx∞ .

Composing (4.32) and (4.33) yields δ-Fourier expansion maps

(4.34) M r
{a4a6g}(0)→ Srx∞ .

Let E4(q) and E6(q) be the normalized Eisenstein series of weights 4 and 6: “normalized”
means with constant coefficient equal to 1. We have natural ring homomorphisms, also
referred to as δ-Fourier expansion maps [5],

M r → Sr∞(4.35)

g 7→ g∞ = g(q, q′, . . . , q(r)),

characterized by the properties that they send a4 and a6 to −2−43−1E4(q) and 2−53−3E6(q),
respectively, and commute with δ. There exists a unique Ep−1 ∈M0(p−1) such that Ep−1(q)
is the normalized Eisenstein series of weight p− 1.

By (4.1) and (7.26) in [5], there exists a unique f 1 ∈ M1(−1 − φ), defined over Zp, such
that

(4.36) f 1(q, q′) =
1

p
log

qφ

qp
:=
∑
n≥1

(−1)n−1n−1pn−1

(
q′

qp

)n
∈ R((q))̂ [q′ ]̂ .

As explained in [5, pp. 126–129], f 1 is isogeny covariant and may be interpreted as a (char-
acteristic zero) arithmetic Kodaira-Spencer class.

Lemma 4.37. Let E be an elliptic curve given by y2 = x3 + Ax + B with A,B ∈ R. With
notation as above, f 1(A,B) = 0 if and only if E is CL.

Proof. See [7, Proposition 7.15]. �

Define

(4.38) t
φ+1
2 := t

p+1
2

(
tφ

tp

)1/2

= t
p+1
2

(
1 + p

δt

tp

)1/2

= t
p+1
2

∑
j≥0

(
1/2

j

)
pj
(
δt

tp

)j
;

this function is an element of M1
{a4a6}(1 + φ). Next define

(4.39) f [ := f 1 · t
φ+1
2 ∈M1

{a4a6}(0) ⊂M1
{a4a6g}(0) ⊂ O1(X†).

The maps in (4.34) and (4.35) are compatible, so

(4.40) f [∞ ∈ q′R((q))̂ [q′ ]̂ ⊂ q′R((q))̂ [q′ ]̂ .
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Finally, by the main theorem of [20],

(4.41) f 1 = cEp−1∆−p(2ap4a
′
6 − 3ap6a

′
4) + f0 + pf1,

for some c ∈ R×, f0 ∈M0(−1− p), and f1 ∈M1. On the other hand, (4.29) implies

bφ =

(
a2

6

a3
4

)φ
=

(ap6 + pa′6)2

(ap4 + pa′4)3
,

so a calculation using the definition in (4.9) yields

(4.42) δb = a−4p
4 ap6(2ap4a

′
6 − 3ap6a

′
4) + ph

for some h ∈M1
{a4a6}. Set a0 := cEp−1∆−pa4p

4 a
−p
6 . Then combining (4.41) and (4.42) yields

(4.43) f [ = f 1 · t
φ+1
2 = a0t

p+1
2 δb+ f0t

p+1
2 + ph1,

for some h1 ∈M1
{a4a6}. Let α = a0t

p+1
2 ∈M0

{a4a6}(0). Then by (4.43) and (4.5), respectively,
we obtain, for n = 0 and n = 1,

(4.44) δnf [ = αp
n

δn+1b+ βn + pγn,

for some βn ∈Mn
{a4a6}(0) and γn ∈Mn+1

{a4a6}(0).

Lemma 4.45. Assume that the element g ∈ M0(m) is in Ep−1M
0. Then f [ and δf [ are

algebraically independent over O(X̄†), and the natural maps

O(X̄†)[f []→ O1(X†)⊗R k(4.46)

O(X̄†)[f [, δf []→ O2(X†)⊗R k(4.47)

O(X†)̂ → O2(X†)/(f [, δf [)(4.48)

are isomorphisms.

Proof. By (4.36), (4.38), and (4.39), we have

(4.49) f [∞ = t
p+1
2∞ q′/qp,

which involves q′, so the algebraic independence follows. Reducing (4.31) mod p gives iso-

morphisms like (4.46) and (4.47) but with b′ and b′′ on the left in place of f [ and δf [. To
change variables, observe that since g ∈ Ep−1M

0, the element α is invertible in O(X†); thus

(4.44) implies O(X̄†)[f [] ' O(X̄†)[b′] and O(X̄†)[f [, δf [] ' O(X̄†)[b′, b′′]. This proves (4.46)
and (4.47).

Now (4.47) implies that (4.48) induces an isomorphism mod p, Since both sides of (4.48)
are p-adically complete and separated rings, (4.48) is surjective. The δ-Fourier expansion
map O2(X†) → R((q))̂ [q′, q′′ ]̂ followed by the evaluation map mapping q′ and q′′ to 0
induces a map O2(X†)/(f [, δf [) → R((q)), by (4.40). The composition of (4.48) with this
is simply the Fourier expansion map, since elements of O(X†)̂ have Fourier expansions in
R((q)). So the Fourier expansion principle implies that (4.48) is injective. �

Corollary 4.50. The series f (0)(q) and f
(0)
[ap](q) are Fourier expansions of weight-2 quotients

of modular forms.
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Proof. We have f (0)(q) =
(
θp−1f̄

)
/Ēp+1

p−1 , which is the Fourier expansion of a weight-2 quo-

tient. We handle the second series in an indirect way, using f ]. Although f ] ∈ O2(X†), we

have f ] ∈ O1(X†)⊗R k by (4.23). So (4.46) identifies f ] with a polynomial in O(X̄†)[f [] ⊂
L[f [], where L := k(X1(N)). We can find this polynomial explicitly from the δ-Fourier

expansion, since elements of L have expansions in k((q)) while f [∞ involves q′: see (4.49). By
Lemma 4.20 and (4.49),

f ]∞ =


f (−1)(q) + t

− p
2+p
2∞

(
f

(0)
[ap](q)

)p2
f [∞

p
− āpt

− p+1
2∞

(
f

(0)
[ap](q)

)p
f [∞, if A is not CL;

−ūf (−1)
[u] (q) + t

− p+1
2∞

(
f

(0)
[ap](q)

)p
f [∞, if A is CL.

In either case, taking the coefficient of f [∞ shows that āpt
− p+1

2∞

(
f

(0)
[ap](q)

)p
is the Fourier

expansion of an element of L. Since t is a weight 2 quotient, āp

(
f

(0)
[ap](q)

)p
is the Fourier

expansion of a weight p + 1 quotient, and hence (by dividing by Ēp−1) also of a weight-2
quotient. By (3.31),

−āp
(
f

(0)
[ap](q)

)p
+ f

(0)
[ap](q) = f (0)(q);

now f
(0)
[ap](q) is the Fourier expansion of a weight-2 quotient since the other terms are. �

Remark 4.51. The proof that f
(0)
[ap](q) is a Fourier expansion of a quotient of modular forms

used the theory of δ-modular forms; we know no direct proof.

Recall the Igusa curve I1(N) and its quotient J defined in Section 3.8.

Lemma 4.52. The Fourier series of any modular form f on X1(N) over k is also the
Fourier series of a rational function g ∈ k(I1(N)). If the weight of f is even, then we may
take g ∈ k(J).

Proof. By [17, Proposition 2.2], there is a line bundle ω on X1(N) such that for each i ∈ Z,
the global sections of ωi are the modular forms of weight i. We denote by ω also the pullback
of ω to I1(N) or J . By [17, p. 461], the sections of ωi on I1(N) or J have naturally defined
Fourier expansions, compatible with the Fourier expansions of modular forms on X1(N).
There is a section a of ω on I1(N) whose Fourier expansion is 1: see [17, Proposition 5.2].
Given a modular form f of weight i on X1(N), let g := f/ai ∈ k(I1(N)).

The action of F×p on I1(N) lifts to an action of F×p on ω, and −1 ∈ F×p sends a to −a
(see [17, Proposition 5.2(5)]), so if i is even, f/ai ∈ k(J). �

Recall the definition of M r
{g}(w) from the end of the first paragraph of Section 4.7. By Con-

struction 3.2 and Theorem 5.1 of [1], there exist unique δ-modular forms f∂ ∈M1
{Ep−1}(φ−1)

and f∂ ∈ M1
{Ep−1}(1 − φ), defined over Zp, with δ-Fourier expansions identically equal to 1.

Moreover, these forms are isogeny covariant and f∂ · f∂ = 1. Furthermore, the reduction
f∂ ∈M1 ⊗ k equals the image of Ēp−1 ∈Mp−1 in M1 ⊗ k. For λ ∈ R×, define

(4.53) fλ := (f 1)φ − λf 1(f∂)−φ−1 ∈M2
{Ep−1}(−φ− φ

2).
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Since f1 and f∂ are isogeny covariant, so is fλ. Furthermore consider the series

t
φ2+φ

2 := t
p2+p

2

(
tφ

tp

)1/2
(
tφ

2

tp2

)1/2

∈M2
{a4a6}(φ+ φ2),

and define

(4.54) f [λ := fλ · t
φ2+φ

2 ∈M2
{a4a6Ep−1}(0).

The main reason for considering these forms comes from the following

Lemma 4.55. Let E1 be an elliptic curve y2 = x3+A1x+B1 over R with ordinary reduction.
Then

(1) There exists λ ∈ R× such that fλ(A1, B1) = 0.
(2) If λ is as in (1) and there is an isogeny of degree prime to p between E1 and an

elliptic curve E2 over R given by y2 = x3 + A2x+B2, then fλ(A2, B2) = 0.
(3) If in addition, A2B2 6≡ 0 (mod p), then f [λ(A2, B2) = (δf [λ)(A2, B2) = · · · = 0.

Proof.

(1) If f 1(A1, B1) = 0, any λ ∈ R× will do. If f 1(A1, B1) 6= 0, set

λ :=
f 1(A1, B1)φ

f 1(A1, B1)
f∂(A1, B1)φ+1;

the numerator and denominator of the first factor have the same p-adic valuation
and f∂(A1, B1) ≡ Ēp−1(Ā, B̄) 6= 0, so λ ∈ R×.

(2) Scaling A2 and B2 by suitable elements of R×, we may assume that the isogeny pulls
back dx/y to dx/y. Now use the isogeny covariance of fλ.

(3) By (4.54), f [λ(A2, B2) = 0. Now use δ0 = 0.

�

Set σ := q′/qp. Then (4.36), (4.53), and (4.54) yield

(4.56) f 1
∞ = σ, fλ,∞ = σp − λσ, and f [λ,x∞ = t

p2+p
2∞ (σp − λσ).

In what follows we assume that X† = U \ [x∞] where U has an étale coordinate τ ∈ O(U)
such that [x∞] is scheme-theoretically given by τ : we can arrange this by shrinking X†. Then
R[[q]] = R[[τ ]], so

R((τ))̂ [τ ′, . . . , τ (r) ]̂ = R((q))̂ [q′, . . . , q(r) ]̂ = R((q))̂ [q′, . . . , q(r) ]̂ .

Also Or(X†) = O(X†)̂ [τ ′, . . . , τ (r) ]̂ . Since

(4.57) f [λ ∈ O(X̄†)[τ ′, τ ′′] ∩ k((τ))[τ ′] = O(X̄†)[τ ′] = O1(X†)⊗R k,
we may define a quotient ring

(4.58) A‡ := (O1(X†)⊗R k)/(f [λ)

and a scheme X̄‡ := SpecA‡. View A‡ as an algebra over A† := O(X†)⊗ k = O(X̄†).

Lemma 4.59. The k((q))-algebra A‡ ⊗A† k((q)) is a product of p copies of k((q)).
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Proof. We have

A‡ ⊗A† k((q)) =
(
O(X̄†)[τ ′]/(f [λ)

)
⊗A† k((τ))

= k((τ))[τ ′]/(f [λ)

= k((q))[q′]/(f [λ,x∞)

= k((q))[σ]/(σp − λ̄σ)

'
p∏
i=1

k((q)),

since σp − λ̄σ =
∏p

i=1(σ − λi) for some λi ∈ k. Explicitly, the last isomorphism is given by

(4.60) q′ 7→ (λ1q
p, . . . , λpq

p).

�

Lemma 4.61. One can choose X† so that X̄‡ → X̄† is a finite étale cover of degree p.

Proof. By definition, X̄‡ → X̄† is of finite type. Lemma 4.59 shows that it is étale of degree
p above the generic point of X̄†. Therefore X̄‡ → X̄† is finite étale of degree p over some
open neighborhood of the generic point. �

In case our correspondence arises from a modular parametrization one has the following
variant of Lemma 4.59.

Lemma 4.62. Assume S
Π←− X

Φ−→ A arises from a modular parametrization and let
L = k(X1(N)). Then

A‡ ⊗A† L ' L×A+ ×A−

where
A± := L[y]/

(
y(p−1)/2 − Ēp−1/t

(p−1)/2
)
.

Proof. By (4.46), we have A‡ ⊗A† L ' L[f []/(f [λ). On the other hand

f [λ = t
p2+p

2

[
(f 1)p − λ̄f 1(f∂)−p−1

]
= (f [)p − λt

p2−1
2 Ē−p−1

p−1 f [

= f [
[
(f [)(p−1)/2 +

√
λt(p−1)/2Ē−1

p−1(t(p−1)/2/Ēp−1)(p−1)/2
]

·
[
(f [)(p−1)/2 −

√
λt(p−1)/2Ē−1

p−1(t(p−1)/2/Ēp−1)(p−1)/2
]
,

so the result follows. �

4.8. δ-modular forms: Shimura-elliptic case. We continue using the notation and as-
sumptions of Sections 4.5 and 4.6. Assume that the U in (4.11) is small enough that the
line bundle of fake 1-forms on U is trivial. (See [7, p. 230] for the definition of this line
bundle: there it is called the “line bundle of false 1-forms”.) Let q := 1 + t ∈ R[[t]] and write
q′ = δ(1 + t), q′′ = δ2(1 + t), and so on. Define

Ψ = Ψ(t, t′) :=
1

p
log

qφ

qp
=
q′

qp
− p

2

(
q′

qp

)2

+ · · · ∈ R[[t]][t′ ]̂ .
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Lemma 4.63. There exists f [ ∈ O1(U) such that

(4.64) f [x0 = u(t)φ+1 ·Ψ(t, t′) ∈ q′R[[t]][t′ ]̂

for some u(t) ∈ R[[t]]×, and

(4.65) f [(P ) = 0 for P ∈ Π−1(CL) ∩ U(R).

Proof. Use (8.116), (8.82), and Proposition 8.61 in [7]. (In the notation of [7], one takes f [

to be the value of the “δ-modular form” f 1
crys at the pull back to U of the universal fake

elliptic curve equipped with some invertible fake 1-form; again f 1
crys should be viewed as an

arithmetic Kodaira-Spencer class.) �

Lemma 4.66. There exists a neighborhood X† ⊂ U of the section x0 such that



where C0(τ) ∈ k[[τ ]] and C1(τ, τ ′) ∈ k[[τ ]][τ ′]. On the other hand, by (4.6), we have f [ ∈
O(Ū)[τ ′] and δf [ ∈ O(Ū)[τ ′, τ ′′]. Thus v̄(τ), C0(τ), and C1(τ, τ ′) are images of elements
v̄ ∈ O(Ū), C0 ∈ O(Ū), and C1 ∈ O(Ū)[τ ′], respectively, such that

(4.73) f [ = v̄τ ′ + C0, and δf [ = v̄pτ ′′ + C1.

Lift v̄ to v ∈ O(U). Let X† be the complement in U of the closed subscheme defined by v.
Since v̄(τ) has a nonzero constant term, v̄ does not vanish at x̄0, so X† contains the section
x0. The proof now follows the proof of Lemma 4.45, using (4.73) in place of (4.44). �

Remark 4.74. Using [7, pp. 268–269], for Ū contained in the ordinary locus one can construct
forms f [λ ∈ O2(U) analogous to the ones in (4.54). (In the notation of [7], one takes f [λ to
be the Shimura analogues of the forms in (4.53) evaluated at a basis of the module of
fake 1-forms on U .) The analogues of Lemmas 4.55, 4.59, and 4.61 still hold with Fourier
expansions replaced by Serre-Tate expansions. The corresponding statements and their
proofs are analogous to the ones in the modular-elliptic case.

4.9. Proofs of the local results.

Proof of Theorem 3.5. Assume that we are given either a modular-elliptic or a Shimura-

elliptic correspondence S
Π←− X

Φ−→ A. Assume that p is sufficiently large and p splits
completely in F0. In the Shimura-elliptic case we also assume that the places v|p are not
anomalous for A. In the modular-elliptic case, choose g as in Lemma 4.45 and define X† as
in (4.30). In the Shimura-elliptic case, choose X† as in Lemma 4.66. By Lemma 4.45 or 4.66,
there exists Φ† ∈ O(X†)̂ such that

(4.75) f ] − Φ† = h0f
[ + h1δf

[,

for some hj ∈ O2(X†). Suppose that P1, . . . , Pn ∈ Π−1(CL) ∩ X†(R) and m1, . . . ,mn ∈ Z.
By Lemma 4.37 or 4.63, we have f [(Pi) = 0, so δf [(Pi) = 0. Thus

(4.76) f ](Pi) = Φ†(Pi).

Now (4.76) implies

(4.77)
∑

miΦ
†(Pi) =

∑
mif

](Pi) =
∑

miψ(Φ(Pi)) = ψ
(∑

miΦ(Pi)
)
.

Equation (4.77) and Lemma 4.7(4) imply the second of the two equivalences in Theorem 3.5.
We now prove the first equivalence in Theorem 3.5. Let Q :=

∑
miΦ(Pi). If Q ∈

A(R)tors, then ψ(Q) = 0 and (4.77) implies
∑
miΦ

†(Pi) = 0. Conversely, suppose that∑
miΦ

†(Pi) = 0; then Q ∈ kerψ. Since CL ⊆ S(Q), we have Pi ∈ X(Q) ∩ X(R), so
Q ∈ A(Q) ∩ A(R) ⊂ A(Zur

p ). So Lemma 4.7(5) implies Q ∈ A(R)tors.

To complete our proof, we need to check that Φ† /∈ k.
Assume first that we are in the modular-elliptic case. By (4.40),

(4.78) δf [∞ ∈ (q′, q′′)R((q))̂ [q′, q′′ ]̂ .

Taking δ-Fourier expansions in (4.75), taking \ (i.e., setting q′ = q′′ = 0), and using (4.40)
and (4.78), we obtain

(4.79) Φ†x∞ = (f ]x∞)\.
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Let e be the ramification index of Φ: X → A at x∞. Then the be ∈ F0 of Section 4.6.1 is
nonzero. We may assume that p is large enough that e, be 6≡ 0 (mod p). By (4.79) and (4.15),
the coefficient of qe in Φ†x∞ is be

e
or −u be

e
, where u 6≡ 0 (mod p); in either case this coefficient

is nonzero mod p. Thus Φ†x∞ /∈ k. Hence Φ† /∈ k.
Finally, assume that we are in the Shimura-elliptic case. By (4.64),

(4.80) δf [x0 ∈ (q′, q′′)R[[t]][t′, t′′ ]̂ .

By (4.5),

(4.81)
q′ = t′ −G1(t)
q′′ = t′′ −G2(t, t′),

for some G1(t) ∈ Z[t] and G2(t, t′) ∈ Z[t, t′]. Denote by G 7→ G\ the substitution homomor-
phism

R[[t]][t′, t′′ ]̂ → R[[t]]

sending t′ to G1(t) and t′′ to G2(t, t′). Then (q′)\ = (q′′)\ = 0, so (4.64) and (4.80) imply
(f [x0)\ = (δf [x0)\ = 0. Taking δ-Serre-Tate expansions in (4.75), taking \, and substituting
(4.25), we obtain

(4.82) Φ†x0 =

ψ(z0) + 1
p

∑
n≥1

(
bφ

2

n

n
((tφ

2
)\)

n − ap b
φ
n

n
((tφ)\)

n + p bn
n
tn
)
, if A is not CL;

ψ(z0) + 1
p

∑
n≥1

(
bφn
n

((tφ)\)
n − up bn

n
tn
)
, if A is CL.

Substituting the two formulas

(tφ)\ = (qφ − 1)\ = (qp + pq′ − 1)\ = qp − 1 = (1 + t)p − 1 = pt+ · · ·+ tp, and

(tφ
2

)\ = (qφ
2 − 1)\ = ((qp + pq′)p + p((q′)p + pq′′)− 1)\ = qp

2 − 1 = (1 + t)p
2 − 1 = p2t+ · · ·+ tp

2

,

and recalling from Section 4.6.2 that b1 = 1, we deduce that the coefficient of t in Φ†x0 is
1−ap +p if AR is not CL, and 1−u if AR is CL. This coefficient is nonzero mod p, since our
non-anomalous assumption implies ap 6≡ 1 (mod p) and we have ūāp = 1 in the CL case. So

Φ†x0 /∈ R + pR[[t]]. Hence Φ† /∈ k. �

Proof of Theorem 3.17. Assume, in the proof of Theorem 3.5, that our modular-elliptic cor-

respondence S
Π←− X

Φ−→ A satisfies S = X = X1(N), Π = Id, and Φ is a modular
parametrization attached to a newform f . We may choose g := Ep−1 in Section 4.7; then

X̄† = Y1(N)
ord
\ {x | j(x) = 0, 1728}. Now (4.19) and (4.79) give the formula for Φ†∞. �

The following lemma was needed to prove Theorem 3.24; the notation is as in Theo-
rem 3.24.

Lemma 4.83. Suppose that Θ ∈ F . Assume that for every P ∈ P and every prime l 6= p
we have

(4.84)
∑
i

Θ(P̄
(l)
i )− alΘ(P̄ ) = 0.

Then Θ = λ̄f (−1) for some λ̄ ∈ k.
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Proof. Since Θ is regular on X1(N)
ord

, there exists m ∈ Z≥1 such that Ḡ := Ēm
p−1Θ is a

modular form over k on Γ1(N). View modular forms as functions on the set of triples (E,α, ω)
where E is an elliptic curve over k, where α : Z/nZ ↪→ E(k) is an injective homomorphism,
and ω is a nonzero 1-form on E. Given P ∈ P and a prime l 6= p, choose (E,α, ω) such that

(E,α) represents P , and choose (Ei, αi, ωi) such that (Ei, αi) represents P
(l)
i and such that

ωi pulls back to ω under the l-isogeny E → Ei. Then Ēp−1(Ei, αi, ωi) = Ēp−1(E,α, ω) by [7,
p. 269], for instance. Multiplying (4.84) by this yields∑

i

Ḡ(Ei, αi, ωi) = alḠ(E,α, ω).

By [17, p. 452] or [21, p. 90], the left hand side equals (lT (l)Ḡ)(E,α, ω). Since P is infinite,
it follows that lT (l)Ḡ = alḠ for all l 6= p. On the other hand, Ḡ(q) = Θ(q), and UΘ = 0,
so UḠ = 0. Furthermore Ḡ is invariant under the diamond operators. Thus Ḡ is a Hecke
eigenform with the same eigenvalues as θp−2f̄ , so by [17, p. 453], we have Ḡ(q) = λ̄·(θp−2f̄)(q)

for some λ̄ ∈ k. Thus Θ(q) = λ̄f (−1)(q), so Θ = λ̄f (−1). �

Proof of Theorem 3.25. Assume that we have a modular-elliptic correspondence. PickQ ∈ C
represented by (EQ, αQ) where EQ is given by y2 = x3 +Ax+B. By Lemma 4.55(1), there
exists λ ∈ R× such that fλ(A,B) = 0. Let X† ⊂ X satisfy the conclusions of Lemmas 4.45

and 4.61. View f [λ and f ] as elements of O2(X†); then f [λ, f
] ∈ O1(X†) ⊗R k by (4.57) and

(4.23), respectively. Let Φ‡ be the image of f ] in the ring A‡ = O(X̄‡) of (4.58).

Claim. Φ‡ is non-constant on each irreducible component of X̄‡.
If not, there is a minimal prime P of A‡ such that the image of Φ‡ in A‡/P , and hence

in (A‡/P) ⊗A† k((q)), is in k. By Lemma 4.59, (A‡/P) ⊗A† k((q)) is a nonzero product of
copies of k((q)). By (4.60), the element

f ]x∞ ∈ k[[q]][q′] ⊂ k((q))[q′]

is sent into an element of k by at least one of the k((q))-algebra homomorphisms

(4.85) k((q))[q′]→ k((q)),

denoted s 7→ s∗ and defined by (q′)∗ := λiq
p. Since q = qM , we have

q′ = δ(qM) =
(qp + pq′)M − qpM

p
≡Mqp(M−1)q′ (mod p),

so q′ ≡M−1q−p(M−1)q′ (mod p). Thus

(q′)∗ = M−1q−p(M−1)λiq
p = M−1λiq

p ∈ qpk[[q]].

Hence

(f ]x∞)∗ ∈ (f ]x∞)\ + qpk[[q]],

where we recall that \ means setting q′ = 0. Let e be the ramification index of Φ at x∞.

Exactly as in the proof of Theorem 3.5, since p� 0, the coefficient of qe in (f ]x∞)\ is nonzero.

So (f ]x∞)∗ is not in k, a contradiction. This ends the proof of our Claim.
Now consider the set C := Π−1(C) ∩ X†(R) and let P1 ∈ C, Q1 := Π(P1). Let EQ1 be

given by y2 = x3 +A1x+B1. By choice of X†, we have A1B1 6≡ 0 (mod p). By Lemma 4.55,
f [λ(P1) = 0. Therefore the homomorphism O1(X†) → R sending a function to its value
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at P1 induces a homomorphism A‡ → k, which may be viewed as a point σ(P1) ∈ X̄‡(k)
mapping to P1 ∈ X̄†(k). This defines σ : C →→ X̄‡(k). By definition of σ(P1) and Φ‡,

f ](P1) = Φ‡(σ(P1)). Now, for P1, . . . , Pn ∈ C,
n∑
i=1

miΦ‡(σ(Pi)) =
n∑
i=1

mif ](Pi)

=
n∑
i=1

miψ(Φ(Pi))

= ψ

(
n∑
i=1

miΦ(Pi)

)
,

so the desired equivalence follows from Lemma 4.7(4).
The case of Shimura-elliptic correspondences is entirely similar, given Remark 4.74. We

skip the details but point out one slight difference in the computations. The proof of the
analogue of the Claim above, uses a k[[t]]-algebra homomorphism

k[[t]][t′]→ k[[t]],

denoted s 7→ s∗, defined by requiring (q′)∗ = λiq
q, where q = 1 + t and q′ = δ(1 + t). Then

one must check that for f ]x0 as in (4.25), the coefficient of t in (f ]x0)∗ is nonzero mod p. This
coefficient can be computed explicitly, and, unlike in the modular-elliptic case, its expression
has contributions from all the terms with n ≥ 1. Nevertheless all the contributions from
terms with n ≥ 2 turn out to be 0 mod p, and the coefficient in question turns out to be
congruent mod p to either 1− ap or 1− u, and hence is nonzero mod p. �

The following will be used to prove Theorem 1.6:

Lemma 4.86. Under the assumptions of Theorem 1.6 there is a constant γ depending only
on N such that all the fibers of the reduction mod p map C → C are finite of cardinality at
most γ.

Proof. Assume that we are in the modular-elliptic case; the Shimura-elliptic case follows by
the same argument. Suppose that Q1, Q2 ∈ C are such that Q̄1 = Q̄2 ∈ S(k). Let Qi be
represented by (Ei, αi), so there is an isogeny u : E1 → E2 of degree

∏
l
ej
j where the lj are

inert in KQ.
We claim that E1 ' E2. Since Ē1 ' Ē2, we may view ū as an element of End Ē1, which

may be identified with a subring of the ring of integers O of KQ. The norm of this element
equals deg ū = deg u, but the only elements of O whose norm is a product of inert primes
are those in Z · O×. Hence u factors as E1

n→ E1
ε→ E2 for some n ∈ Z and ε of degree 1. In

particular, E1 ' E2.
By the claim, Lemma 4.86 holds with γ equal to the number of possible Γ1(N)-structures

on an elliptic curve. �

Proof of Theorem 1.6. By Lemma 4.86, the map

Φ(Π−1(C)) ∩ Γ→ Φ(Π−1(C)) ∩ Γ
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has finite fibers of cardinality bounded by a constant independent of Γ. On the other hand,
by Corollary 3.29, the target of this map has cardinality at most cpr for some c independent
of Γ. �

Proof of Theorem 3.32. Assume, in the proof of Theorem 3.25, that we have a modular-
elliptic correspondence arising from a modular parametrization attached to f . Part (1)
follows from Lemma 4.62. Part (2) follows comparing Fourier expansions of the two sides:

apply the substitution maps as in (4.85) to f ]∞ given in (4.14) to obtain the p different series

Φ‡∞i = (f ]∞)∗ = Φ†(q) + λiΦ††(q) ∈ k((q))

where λ1, . . . , λp ∈ k are the zeros of xp − λ̄x as in the proof of Lemma 4.59. �

Appendix A. Non-existence of reciprocity in the global case

Let S
Π←− X

Φ−→ A be a modular-elliptic or a Shimura-elliptic correspondence and let
X† ⊂ X be a dense open subscheme. Ideally we would like a description of the group
of divisors

∑
miPi on X† supported in Π−1(CM) such that

∑
miΦ(Pi) ∈ A(Q)tors. More

precisely, in analogy with the “local” result Theorem 3.5, one may ask if there exists a regular
function Φ† on X† such that for any divisor

∑
miPi on X† supported in Π−1(CM) we have

that
∑
miΦ(Pi) ∈ A(Q)tors if and only if

∑
miΦ

†(Pi) = 0. We could refer to such a Φ† as a
reciprocity function for CM points.

A.1. Non-existence of global reciprocity functions for isogeny classes and CM
points. But even in the “most classical” case of modular-elliptic correspondences arising
from a newform, no such function exists:

Theorem A.1 (Non-existence of reciprocity functions for CM points). Let Φ : X1(N)→ A
be a modular parametrization. Assume that there is a non-empty open subscheme X† ⊂
X1(N) and a regular function Φ† ∈ O(X†) having the property that for any P1, . . . , Pn ∈
CM∩X†(Q) and any m1, . . . ,mn ∈ Z we have

n∑
i=1

miΦ(Pi) ∈ A(Q)tors ⇒
n∑
i=1

miΦ
†(Pi) = 0 ∈ Q.

Then Φ† = 0.

Theorem A.1 follows immediately from the following isogeny class analogue applied to an
isogeny class of CM points.

Theorem A.2 (Non-existence of reciprocity functions for isogeny classes). Let Φ: S =
X1(N)→ A be a modular parametrization. Let C ⊂ S(Q) be an isogeny class and let Φ† be
a rational function on S none of whose poles is in C. Assume that for any P1, . . . , Pn ∈ C
and any m1, . . . ,mn ∈ Z we have

(A.3)
n∑
i=1

miΦ(Pi) ∈ A(Q)tors ⇒
n∑
i=1

miΦ
†(Pi) = 0 ∈ Q.

Then Φ† = 0.
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Proof. We use Hecke correspondence notation as in Section 3.2. Extend Φ linearly to a
homomorphism Φ∗ : Div0(X1(N)(Q)) → A(Q). Then Φ∗ ◦ T (l)∗ = al · Φ∗; see [14, p. 242].

For any point P ∈ C we have T (l)∗(P −∞) =
∑
P

(l)
i −

∑
P

(l)
i0 with P

(l)
i0 cusps. We get

(A.4)

al · Φ(P ) = al(Φ∗(P −∞))

= Φ∗(T (l)∗(P −∞))

= Φ∗(
∑
P

(l)
i −

∑
P

(l)
i0 )

=
∑

Φ(P
(l)
i )−

∑
Φ(P

(l)
i0 )

By the Manin-Drinfeld theorem (see [23, p. 62], for instance), Φ(P
(l)
i0 ) ∈ A(Q)tors, so (A.4)

yields

(A.5)
∑

Φ(P
(l)
i )− al · Φ(P ) ∈ A(Q)tors.

By (A.3), we obtain
∑

i Φ
†(P

(l)
i )−al ·Φ†(P ) = 0. Now Lemma A.6 below implies Φ† = 0. �

Lemma A.6. Let S = X1(N). Let f =
∑
anq

n be a weight-2 newform on Γ1(N). let
C ⊂ S(Q) be an isogeny class. Let Φ† be a rational function on S none of whose poles are
in C. Assume that for infinitely many primes l and for any P ∈ C we have

(A.7)
∑
i

Φ†(P
(l)
i )− alΦ†(P ) = 0.

Then Φ† = 0.

Proof. Assume that Φ† 6= 0. The function

(T (l)Φ†)(x) :=
∑

Φ†(x
(l)
i ),

defined for all but finitely many x ∈ S(C), is a rational function on S by [39, p. 55]. For
the infinitely many given l, the rational functions T (l)Φ† and Φ† agree on the infinite set C
so they coincide. Since Φ† may be viewed as a ratio of modular forms over Q, each of which
is a Q-linear combination of newforms whose Fourier coefficients are algebraic integers, the
Fourier expansion ϕ(q) of Φ† is in OK,S((q)) for some ring of S-integers in some number
field K, with S finite. We may restrict attention to primes l - N not lying under any prime
in S. We may assume also that the leading coefficient of ϕ(q) is prime to l. The q-values
corresponding to the elliptic curves l-isogenous to the one corresponding to q itself are ql

and the l-th roots of q, so taking Fourier expansions in T (l)Φ† = Φ† yields

(A.8) ϕ(ql) +
l−1∑
b=0

ϕ(ζbq1/l) = alϕ(q),

where ζ is a primitive l-th root of 1. Let vq be the valuation on Q((q)). Comparing leading
terms in (A.8) yields vq(ϕ) ≥ 0; and if vq(ϕ) = 0, then l + 1 = al, which contradicts

|al| ≤ 2
√
l < l + 1. Thus vq(ϕ) > 0.

The series
∑l−1

b=0 ϕ(ζbq1/l) is divisible by l, so

(A.9) ϕ(ql) ≡ alϕ(q) (mod lOK,S [[q]].)
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The leading coefficient of ϕ(ql) equals that of ϕ(q), so it is prime to l. Then (A.9) shows
that al is prime to l. Now (A.9) contradicts vq(ϕ) > 0. �

A.2. Non-existence of geometric reciprocity functions. Finally we prove that there
are no purely geometric reasons for the existence of reciprocity functions; thus the existence
of reciprocity functions in the local setting is a truly arithmetic phenomenon.

Theorem A.10 (Non-existence of geometric reciprocity functions). Let Φ: X → A be a
non-constant morphism between smooth projective curves over an algebraically closed field k
of characteristic p ≥ 0, where A is an elliptic curve. Let n ≥ 3, and let a1, . . . , an be nonzero
integers not all divisible by p. Suppose that X† ⊂ X is an affine open subset and Φ† ∈ O(X†)
is a regular function such that for any P1, . . . , Pn ∈ X†(k) we have

(A.11)
n∑
i=1

aiΦ(Pi) = 0 =⇒
n∑
i=1

aiΦ
†(Pi) = 0.

Then Φ† is constant. In particular, if
∑n

i=1 ai is not divisible by p, then Φ† = 0.

Remark A.12. Theorem A.10 fails for both n = 1 and n = 2. Let A be any elliptic curve over
k, let X = A, let Φ be the identity, and let X† ( X any nonempty affine open subset. For
n = 1, one obtains a counterexample by taking a1 = 1 and Φ† ∈ O(X†) any non-constant
regular function vanishing at the origin (if the origin is in X†). For n = 2, one obtains
a counterexample by taking a1 = 1, a2 = −1, and Φ† ∈ O(X†) any non-constant regular
function. Alternatively, for n = 2, one can take a1 = a2 = 1 and Φ† a nonconstant rational
function that is anti-invariant for the negation map on X (shrink X† if necessary), such as
the y-coordinate on a short Weierstrass model in characteristic not 2; this shows that the
final sentence of Theorem A.10 can fail too.

Proof of Theorem A.10. Without loss of generality, p - a1. To prove that Φ† is constant, it
will suffice to show that Φ† is regular at every P ∈ X(k).

Fix P . Let Y be the inverse image of {0} under the morphism

β : X × (X†)n−1 → A

(P1, . . . , Pn) 7→
∑

aiΦ(Pi).

Let πi : Y → X be the i-th projection. The morphism π1 : Y → X is surjective since given
P1, if we choose P4, . . . , Pn ∈ X†(k) arbitrarily, then there are only finitely many choices of
P2 ∈ X† such that the equation β(P1, . . . , Pn) = 0 forces P3 /∈ X†. In particular, we can
find a smooth irreducible curve C and a morphism γ : C → Y such that π1(γ(C)) is a dense
subset of X containing P .

By (A.11), we have
∑
aiΦ

†(Pi) = 0 for all (P1, . . . , Pn) ∈ Y ∩ (X†)n. In particular,

n∑
i=1

aiΦ
†(πi(γ(c))) = 0

is an identity of rational functions of c ∈ C. Since Φ† is regular on X†, the last n − 1
summands are regular on C. Therefore the first summand is regular too. So a1Φ† is regular
on π1(γ(C)). Since a1 6= 0 in k, and P ∈ π1(γ(C)), the function Φ† is regular at P . �
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