THE SET OF NONSQUARES IN A NUMBER FIELD IS DIOPHANTINE

BJORN POONEN

ABSTRACT. Fix a number field k. We prove that $k^{\times} - k^{\times 2}$ is diophantine over k. This is deduced from a theorem that for a nonconstant separable polynomial $P(x) \in k[x]$, there are at most finitely many $a \in k^{\times}$ modulo squares such that there is a Brauer-Manin obstruction to the Hasse principle for the conic bundle X given by $y^2 - az^2 = P(x)$.

1. INTRODUCTION

Throughout, let k be a global eld; φ escasionally we impose additional conditions on its characteristic. Warning: we write $k^n = \frac{a_n}{n} k$ and $k^{-n} = \{a^n : a \in k \}$.

1.1. Diophantine sets. A subset $A \subseteq k^n$ is diophantine over k if there exists a closed subscheme $V \subseteq \mathbb{A}_k^{n+m}$ k^{n+m} such that A equals the projection of $V(k)$ under $k^{n+m} \to k^n$. The complexity of the collection of diophantine sets over a eld k determines the diculty of solving polynomial equations over k. For instance, it follows from [\[Mat70\]](#page-4-0) that if $\mathbb Z$ is diophantine over Q, then there is no algorithm to decide whether a multivariable polynomial equation with rational coe cients has a solution in rational numbers. Moreover, diophantine sets can be built up from other diophantine sets. In particular, diophantine sets over k are closed under taking nite unions and intersections. Therefore it is of interest to gather a library of diophantine sets.

1.2. Main result. Our main theorem is the following:

Theorem 1.1. For any number field k, the set $k - k^2$ is diophantine over k.

In other words, there is an algebraic family of varieties $(V_t)_{t2k}$ such that V_t has a k-point if and only if t is not a square. This result seems to be new even in the case $k = \mathbb{Q}$.

Corollary 1.2. For any number field k and for any $n \in \mathbb{Z}$ ₀, the set k $-k^{2^n}$ is diophantine over k.

Proof. Let $A_n = k - k^{2^n}$. We prove by induction on n that A_n is diophantine over k. The base case $n = 1$ is Theorem [1.1.](#page-0-0) The inductive step follows from

$$
A_{n+1} = A_1 \cup \{ t^2 : t \in A_n \text{ and } -t \in A_n \}.
$$

Date: October 12, 2008; minor correction March 23, 2014.

²⁰⁰⁰ Mathematics Subject Classi cation. Primary 14G05; Secondary 11G35, 11U99, 14G25, 14J20.

Key words and phrases. Brauer-Manin obstruction, nonsquares, diophantine set, Châtelet surface, conic bundle, Hasse principle, rational points.

This research was supported by NSF grants DMS-0301280 and DMS-0841321. This article has been published in Math Res. Lett. 16 (2009), no. 1, 165–170.

1.3. Brauer-Manin obstruction. The main ingredient of the proof of Theorem [1.1](#page-0-0) is the fact the Brauer-Manin obstruction is the only obstruction to the Hasse principle for certain Châtelet surfaces over number elds, so let us begin to explain what this means. Let $\quad_ k$ be the set of nontrivial places of k. For $v \in k$, let k_v be the completion of k at v. Let **A** be the adele ring of k . For a projective k -variety X , we have $X({\mathbf A}) = \left\lceil \frac{w_{2}}{k} \right\rceil_{k} X(k_{v})$; one says that there is a Brauer-Manin obstruction to the Hasse principle for X if $X(A) \neq \emptyset$ but $X(A)^{Br} = \emptyset$. See [\[Sko01,](#page-4-1) §5.2].

1.4. Conic bundles and Châtelet surfaces. Let $\mathcal E$ be a rank-3 vector sheaf over a base variety B. A nowhere-vanishing section $s \in (B, Sym^2 \mathcal{E})$ de nes a subscheme X of $\mathbb{P} \mathcal{E}$ whose bers over B are (possibly degenerate) conics. As a special case, we may take $(\mathcal{E}, s) =$ $(\mathcal{L}_0 \oplus \mathcal{L}_1 \oplus \mathcal{L}_2, s_0 + s_1 + s_2)$ where each \mathcal{L}_i is a line sheaf on B, and the $s_i \in (B, \mathcal{L}_i^2)$ $_i^2) \subset$ $(B, Sym^2 \mathcal{E})$ are sections that do not simultaneously vanish on B.

We specialize further to the case where $B = \mathbb{P}^1$, $\mathcal{L}_0 = \mathcal{L}_1 = \mathcal{O}$, $\mathcal{L}_2 = \mathcal{O}(n)$, $s_0 = 1$, $s_1 = -a$, and $s_2 = -P(w, x)$ where $a \in k$ and $P(w, x) \in (\mathbb{P}^1, \mathcal{O}(2n))$ is a separable binary form of degree 2n. Let $P(x) := P(1, x) \in k[x]$, so $P(x)$ is a separable polynomial of degree $2n - 1$ or $2n$. We then call X the conic bundle given by

$$
y^2 - az^2 = P(x).
$$

A Châtelet surface is a conic bundle of this type with $n = 2$, i.e., with deg P equal to 3 or 4. See also [\[Poo09\]](#page-4-2).

The proof of Theorem [1.1](#page-0-0) relies on the Châtelet surface case of the following result about families of more general conic bundles:

Theorem 1.3. Let k be a global field of characteristic not 2. Let $P(x) \in k[x]$ be a nonconstant separable polynomial. Then there are at most finitely many classes in k /k² represented by $a \in k$ such that there is a Brauer-Manin obstruction to the Hasse principle for the conic bundle X given by $y^2 - az^2 = P(x)$.

 $Remark$ 1.4. Theorem [1.3](#page-1-0) is analogous to the classical fact that for an integral inde nite ternary quadratic form $q(x, y, z)$, the set of nonzero integers represented by q over \mathbb{Z}_n for all p but not over $\mathbb Z$ fall into mitely many classes in $\mathbb Q$ / $\mathbb Q$ ². J.-L. Colliot-Thelene and F. Xu explain how to interpret and prove this fact (and its generalization to arbitrary number elds) in terms of the integral Brauer-Manin obstruction: see [\[CTX07,](#page-4-3) §7], especially Proposition 7.9 and the very end of §7. Our proof of Theorem [1.3](#page-1-0) shares several ideas with the arguments there.

1.5. Definable subsets of k_v and their intersections with k. The proof of Theorem [1.1](#page-0-0) requires one more ingredient, namely that certain subsets of k de ned by local conditions are diophantine over k . This is the content of Theorem [1.5](#page-1-1) below, which is proved in more generality than needed. By a *k*-definable subset of k_v^n , we mean the subset of k_v^n de ned by some rst-order formula in the language of elds involving only constants from k , even though the variables range over elements of k_v .

Theorem 1.5. Let k be a number field. Let k_v be a nonarchimedean completion of k. For any k-definable subset A of k_v^n , the intersection $A \cap k^n$ is diophantine over k.

1.6. Outline of paper. Section [2](#page-2-0) shows that Theorem [1.5](#page-1-1) is an easy consequence of known results, namely the description of de nable subsets over k_v , and the diophantineness of the valuation subring $\mathcal O$ of k de ned by v. Section [3](#page-2-1) proves Theorem [1.3](#page-1-0) by showing that for most twists of a given conic bundle, the local Brauer evaluation map at one place is enough to rule out a Brauer-Manin obstruction. Finally, Section [4](#page-3-0) puts everything together to prove Theorem [1.1.](#page-0-0)

2. Subsets of global fields defined by local conditions

Lemma 2.1. Let $m \in \mathbb{Z}_{>0}$ be such that char $k \nmid m$. Then $k_v^m \cap k$ is diophantine over k.

Proof. The valuation subring O of k de ned by v is diophantine over k: see the rst few paragraphs of §3 of [\[Rum80\]](#page-4-4). The hypothesis char $k \nmid m$ implies the existence of $c \in k$ such that $1 + c\mathcal{O} \subset k_v^{m}$; x such a c. The denseness of k in k_v implies $k_v^{m} \cap k = (1 + c\mathcal{O})k^{-m}$. The latter is diophantine over k .

Proof of Theorem [1.5.](#page-1-1) Call a subset of k_v^n simple if it is of one of the following two types: $\{\vec{x} \in k_v^n : f(\vec{x}) = 0\}$ or $\{\vec{x} \in k_v^n : f(\vec{x}) \in k_v^m\}$ for some $f \in k[x_1, \ldots, x_n]$ and $m \in \mathbb{Z}_{>0}$. It follows from the proof of [\[Mac76,](#page-4-5) Theorem 1] (see also [\[Mac76,](#page-4-5) §2] and [\[Den84,](#page-4-6) §2]) that any k -de nable subset A is a boolean combination of simple subsets. The complement of a simple set of the rst type is a simple set of the second type (with $m = 1$). The complement of a simple set of the second type is a union of simple sets, since k_v^{-m} has $\,$ nite index in $k_v^{}$. Therefore any k -de nable A is a nite union of nite intersections of simple sets. Diophantine sets in k are closed under taking nite unions and nite intersections, so it remains to show that for every simple subset A of k_v^n , the intersection $A \cap k$ is diophantine. If A is of the rst type, then this is trivial. If A is of the second type, then this follows from Lemma [2.1.](#page-2-2) \Box

3. Family of conic bundles

Given a k-variety X and a place v of k , let Hom $^{\theta}$ (Br $X,$ Br k_v) be the set of $f \in$ Hom(Br $X,$ Br k_v) such that the composition Br $\,k\,\,\rightarrow\,\,\text{Br}\,X\,\,\stackrel{f}{\rightarrow}\,\,\text{Br}\,k_v$ equals the map induced by the inclusion $k \leftrightarrow k_v$. The v-adic evaluation pairing Br $X \times X(k_v) \rightarrow$ Br k_v induces a map $X(k_v) \to \text{Hom}^{\theta}(\text{Br } X, \text{Br } k_v).$

Lemma 3.1. With notation as in Theorem [1.3,](#page-1-0) there exists a finite set of places S of k, depending on P(x) but not a, such that if $v \notin S$ and $v(a)$ is odd, then $X(k_v) \rightarrow$ Hom $\sqrt[\ell]{\mathsf{Br}\,X,\mathsf{Br}\,k_v}$) is surjective.

Proof. The function eld of \mathbb{P}^1 is $k(x)$. Let Z be the zero locus of $P(w, x)$ in \mathbb{P}^1 . Let G be the group of $f \in k(x)$ having even valuation at every closed point of $\mathbb{P}^1 - Z$. Choose $P_1(x), \ldots, P_m(x) \in G$ representing a \mathbb{F}_2 -basis for the image of G in $k(x)$ / $k(x)$ 2k . We may assume that $P_m(x) = P(x)$. Choose S so that each $P_i(x)$ is a ratio of polynomials whose nonzero coe cients are S -units, and so that S contains all places above 2.

Let $\kappa(X)$ be the function eld of X. A well-known calculation (see [\[Sko01,](#page-4-1) §7.1]) shows that the class of each quaternion algebra $(a, P_i(x))$ in Br $\kappa(X)$ belongs to the subgroup Br X, and that the cokernel of Br $k \to Br X$ is an \mathbb{F}_2 -vector space with the classes of $(a, P_i(x))$ for $i \leq m - 1$ as a basis.

Suppose that $v \notin S$ and $v(a)$ is odd. Let $f \in \text{Hom}^{\ell}(\text{Br }X,\text{Br }k_v)$. The homomorphism f is determined by where it sends $(a, P_i(x))$ for $i \leq m-1$. We need to nd $R \in X(k_v)$ mapping to f.

Let \mathcal{O}_v be the valuation ring in k_v , and let \mathbb{F}_v be its residue eld. For $i \leq m-1$, choose $c_i \in \mathcal{O}_v$ whose image in \mathbb{F}_v is a square or not, according to whether f sends $(a, P_i(x))$ to 0 or $1/2$ in $\mathbb{Q}/\mathbb{Z} \simeq$ Br k_v . Since $v(a)$ is odd, we have $(a, c_i) = f((a, P_i(x)))$ in Br k_v .

View $\mathbb{P}^1 - Z$ as a smooth \mathcal{O}_v -scheme_r and let Y be the nite etale cover of $\mathbb{P}^1 - Z$ whose function eld is obtained by adjoining $\lceil \overline{c_iP_i(x)} \rceil$ for $i\leq m-1$ and also $\lceil \overline{P(x)} \rceil$. Then the generic $\,$ ber $\,Y_{k_v}\, :=\, Y \times_{\,O_v} k_v\,$ is geometrically integral. $\,$ Assuming that S was chosen to include all v with small \mathbb{F}_v , we may assume that $v \notin S$ implies that Y has a (smooth) \mathbb{F}_v point, which by Hensel's lemma lifts to a k_v -point Q . There is a morphism from Y_{k_v} to the smooth projective model of $y^2=\overline{P(x)}$ over k_v , which in turn embeds as a closed subscheme of X_{k_v} , as the locus where z = 0. Let R be the image of Q under $Y(k_v)\to X(k_v)$, and let $\alpha = x(R) \in k_v$. Evaluating $(a, P_i(x))$ on R yields $(a, P_i(\alpha))$, which is isomorphic to (a, c_i) since $c_i P_i(\alpha) \in k_v^2$. Thus R maps to f, as required.

Lemma 3.2. Let X be a projective k-variety. If there exists a place v of k such that the $map\ X(k_v) \to \text{Hom}^0(\text{Br } X, \text{Br } k_v)$ is surjective, then there is no Brauer-Manin obstruction to the Hasse principle for X.

Proof. If $X(\mathbf{A}) = \emptyset$, then the Hasse principle holds. Otherwise, pick $Q = (Q_w) \in X(\mathbf{A})$, where $Q_w \in X(k_w)$ for each w. For $A \in \text{Br } X$, let $\text{ev}_A \colon X(L) \to \text{Br } L$ be the evaluation map for any eld extension L of k. Let inv_w: Br $k_w \to \mathbb{Q}/\mathbb{Z}$ be the usual inclusion map. De ne

$$
\eta: \text{ Br } X \to \mathbb{Q}/\mathbb{Z} \simeq \text{Br } k_v
$$

$$
A \mapsto -\quad \text{ inv}_w \text{ ev}_A(Q_w).
$$

$$
w \in v
$$

By reciprocity, $\eta \in \mathsf{Hom}^{\theta}(\mathsf{Br}\, X,\mathsf{Br}\, k_v).$ The surjectivity hypothesis yields $R \in X(k_v)$ giving rise to η . De ne Q^{\emptyset} = (Q^{\emptyset}_w) \in $X({\mathbf A})$ by Q^{\emptyset}_w := Q_w for w \neq v and Q^{\emptyset}_v := R . Then $Q^{\theta} \in X(\mathbf{A})^{\mathrm{Br}}$, so there is no Brauer-Manin obstruction.

Proof of Theorem [1.3.](#page-1-0) Let S be as in Lemma [3.1.](#page-2-3) Enlarge S to assume that Pic $\mathcal{O}_{k,S}$ is trivial. Then the set of $a \in k$ such that $v(a)$ is even for all $v \notin S$ has the same image in k / k^2 as the nitely generated group $\mathcal{O}_{k, S}$ so the image is nite.

Suppose that $a \in k$ has image in k / k^{-2} lying outside this nite set. Then we can x $v \notin S$ such that $v(a)$ is odd. Let X be the corresponding surface. Combining Lemmas [3.1](#page-2-3) and [3.2](#page-3-1) shows that there is no Brauer-Manin obstruction to the Hasse principle for X . \Box

4. The set of nonsquares is diophantine

Proof of Theorem [1.1.](#page-0-0) For each place v of k, de ne $S_v := k \cap k_v^2$ and $N_v := k - S_v$. By Theorem [1.5,](#page-1-1) the sets S_v and N_v are diophantine over k.

By [\[Poo09,](#page-4-2) Proposition 4.1], there is a Châtelet surface

$$
X_1: y^2 - bz^2 = P(x)
$$

over k, with $P(x)$ a product of two irreducible quadratic polynomials, such that there is a Brauer-Manin obstruction to the Hasse principle for X_1 . For $t \in k$, let X_t be the (smooth projective) Châtelet surface associated to the a ne surface

$$
U_t: y^2 - tbz^2 = P(x).
$$

We claim that the following are equivalent for $t \in k$:

- (i) U_t has a k-point.
- (ii) X_t has a k-point.
- (iii) X_t has a k_v -point for every v and there is no Brauer-Manin obstruction to the Hasse principle for X_t .

The implications (i) \implies (ii) \implies (iii) are trivial. The implication (iii) \implies (ii) follows from [\[CTCS80,](#page-4-7) Theorem B]. Finally, in [\[CTCS80\]](#page-4-7), the reduction of Theorem B to Theorem A combined with Remarque 7.4 shows that (ii) implies that X_t is k -unirational, which implies (i).

Let A be the (diophantine) set of $t \in k$ such that (i) holds. The isomorphism type of U_t depends only on the image of t in k $\{/ k^{-2}$, so A is a union of cosets of k^{-2} in k . We will compute A by using (iii).

The a ne curve $y^2 = P(x)$ is geometrically integral so it has a k_v -point for all places v outside a nite set F. So for any $t \in k$, the variety X_t has k_v -point for all $v \notin F$. Since X_1 has a k_v -point for all v and in particular for $v\in F$, if $t\in [-_{v\geq F}S_v]$ then X_t has a k_v -point for all v .

Let $B := A \cup_{v \geq F}^{\infty} N_v$. If $t \in k - B$, then X_t has a k_v -point for all v , and there is a Brauer-Manin obstruction to the Hasse principle for X_t . By Theorem [1.3,](#page-1-0) $k_{\parallel}-B$ consists of nitely many cosets of k^{-2} , one of which is k^{-2} itself. Each coset of k^{-2} is diophantine over k , so taking the union of B with all the nitely many missing cosets except k^{-2} shows that $k - k^{-2}$ is diophantine.

Acknowledgements

I thank Jean-Louis Colliot-Thelene and Anthony Varilly-Alvarado for a few comments, and Alexandra Shlapentokh for suggesting some references.

REFERENCES

- [CTCS80] Jean-Louis Colliot-Thélène, Daniel Coray, and Jean-Jacques Sansuc, Descente et principe de Hasse pour certaines varietes rationnelles, J. reine angew. Math. 320 (1980), 150–191 (French). MR592151 (82f:14020) ↑[4](#page-3-0)
- [CTX07] Jean-Louis Colliot-Thélène and Fei Xu, Brauer-Manin obstruction for integral points of homoge-neous spaces and representation of integral quadratic forms, December 12, 2007. preprint. ↑[1.4](#page-1-2)
- [Den84] J. Denef, The rationality of the Poincare series associated to the p-adic points on a variety, Invent. Math. 77 (1984), no. 1, 1–23. MR751129 (86c:11043) ↑[2](#page-2-2)
- [Mac76] Angus Macintyre, On de nable subsets of p-adic elds, J. Symbolic Logic 41 (1976), no. 3, 605– 610. MR0485335 (58 #5182) ↑[2](#page-2-2)
- [Mat70] Yu. Matiyasevich, The Diophantineness of enumerable sets, Dokl. Akad. Nauk SSSR 191 (1970), 279–282 (Russian). MR0258744 (41 #3390) ↑[1.1](#page-0-1)
- [Poo09] Bjorn Poonen, Existence of rational points on smooth projective varieties, J. Eur. Math. Soc. (JEMS) 11 (2009), no. 3, 529–543. MR2505440 ↑[1.4,](#page-1-3) [4](#page-3-0)
- [Rum80] R. S. Rumely, *Undecidability and de nability for the theory of global elds*, Trans. Amer. Math. Soc. 262 (1980), no. 1, 195–217. MR583852 (81m:03053) ↑[2](#page-2-2)
- [Sko01] Alexei Skorobogatov, Torsors and rational points, Cambridge Tracts in Mathematics, vol. 144, Cambridge University Press, Cambridge, 2001. MR1845760 (2002d:14032) ↑[1.3,](#page-1-4) [3](#page-2-3)

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA