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1. Statement of results

Let K be a field of characteristic p > 0 equipped with a valuation v : K∗ → G taking values
in an ordered abelian group G. Let OK = {α ∈ K : v(α) ≥ 0} and mK = {α ∈ K : v(α) > 0}
be the valuation ring and maximal ideal, respectively, and suppose that the residue field
OK/mK is finite, with q elements.

Theorem 1. If f(x) = a0x
n0 + a1x

n1 + · · · + akx
nk is a polynomial with k + 1 nonzero

coefficients ai ∈ K∗, then f has at most qk distinct zeros in K.

This upper bound is sharp: if K is Fq((T )) with the usual discrete valuation v : K∗ → Z,
if V ⊂ K is an Fq-subspace of dimension k, and if c ∈ K is nonzero, then the polynomial

f(x) := c
∏

α∈V (x− α) has the form a0x + a1x
q + · · ·+ akx

qk
for some a0, a1, . . . , ak ∈ K∗.

Theorem 1 is the case d = 1 of the following generalization, which bounds the number of
distinct zeros of bounded degree. Let µ(n) be the Möbius µ-function.

Theorem 2. Fix d ≥ 1. If f(x) = a0x
n0 + a1x

n1 + · · · + akx
nk is a polynomial with k + 1

nonzero coefficients ai ∈ K∗, then the number of distinct zeros of f in K of degree at most
d over K is at most

∑d
j=1

∑
i|j qikµ(j/i).

This upper bound is sharp as well, for every q, k, and d. Let K = Fq((T )) and v be as
before. Let F be a finite field containing Fqi for i ≤ d. Let V ⊂ F((T )) be a k-dimensional
F-vector space that is Gal(F/Fq)-stable (or equivalently, has an F-basis of elements of K).
Then equality is attained in Theorem 2 for f(x) := c

∏
α∈V (x − α) for any c ∈ K∗. (The

inner sum in Theorem 2 performs the inclusion-exclusion to count zeros of exact degree j.)
We make no claim that these are the only polynomials that attain equality; in fact there

are many others. For example, if K, V , and f are as in the previous paragraph, and if
the F-basis of V consists of elements of K of distinct valuation, with all these valuations
divisible by a single integer e ≥ 1, then f(xe) also attains equality, as a short argument
involving Hensel’s lemma shows. Other examples can be constructed using the observation
that if f(x) ∈ K[x] has N zeros in a given field extension L of K, one of which is 0, then
the same holds for xmf(1/x) when m > deg f .

Remark. H. W. Lenstra, Jr. [Le1] proves related facts for finite extensions L of Qp, using
very different methods. One of his results is that for any such L and any positive integer
k, there exists a positive integer B = B(k, L) with the following property: if f ∈ L[x] is a
nonzero polynomial with at most k + 1 nonzero terms and f(0) 6= 0, then f has at most B
zeros in L, counted with multiplicities. His bound B(k, L) is explicit, but almost certainly
not sharp. Finding a sharp bound seems difficult in general, although Lenstra does this for
the case k = 2 and L = Q2 (the bound then is 6). He also applies his local result to bound
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uniformly the number of factors of given degree over number fields. In [Le2] he shows that
if f is represented sparsely, then these factors can be found in polynomial time.

Remark. We cannot count multiplicities in either of our theorems and hope to obtain a bound
depending only on k and K (and d, for Theorem 2), because of examples like f(x) = (1+x)qm

with m →∞. Requiring that f not be a p-th power would not eliminate the problem, because
one could also take f(x) = (1 + x)qm+1.

2. Proof of Theorem 1

By a disk in a valued field K, we mean either an “open disk” D(x0, g) := {x ∈ K :
v(x − x0) > g}, or a “closed disk” D(x0, g) := {x ∈ K : v(x − x0) ≥ g} where x0 ∈ K and
g ∈ G.

Let σ1, σ2, . . . , σt be the non-vertical segments of the Newton polygon of f . Let −gj ∈ G⊗
Q be the slope of σj. If e1, e2, . . . , er are the exponents of the monomials in f corresponding
to points on a given σj, define Nj as the largest integer for which the images of (1 + x)e1 ,
(1 +x)e2 , . . . , (1 +x)er in Fp[x]/(xNj ) are linearly dependent over Fp. We say that the σj are
in a proper order if N1 ≥ N2 ≥ · · · ≥ Nt. This particular ordering is crucial to the proof, but
it is hard to motivate its definition. It was discovered by analyzing proofs of many special
cases of Theorem 1. For instance, if the Newton polygon of f has k non-vertical segments
(each associated with exactly two exponents), then the segments are being ordered according
to the p-adic absolute values of their horizontal lengths.

Lemma 3. Let L be a field of characteristic p > 0 with a valuation v : L∗ → G. Suppose
f(x) = a0x

n0 + a1x
n1 + · · · + akx

nk ∈ L[x] with each ai nonzero. List the segments of the
Newton polygon of f in a proper order as above. Fix u and let −gu ∈ G⊗Q
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is a tree, whose leaves are the singleton subsets of S. We would obtain the same tree if we
required the disks D to be open (resp. closed), since S is finite.

Suppose r and S are as in Lemma 3. Let T0 > T1 > · · · > T` be the longest chain in T .
Then T` is a leaf, and #T` = 1. Choose r0 ∈ D(r, gu) \ S closer to the element of T` than to
any other element of S. For various g > gu, the set S ∩D(r0, g) can equal T0, T1, . . . , T`, or
∅. Hence

#{v(α− r0) : α ∈ S} ≥ ` + 1.

On the other hand, Lemma 3 applied to r0 yields

#{v(α− r0) : α ∈ S} ≤ k + 1− u.

Combining these, we have that the length ` = `(T ) of the tree satsifies ` ≤ k − u.
Suppose S0 ∈ T is not a leaf (i.e. #S0 > 1), and let g = min{v(s− t) : s, t ∈ S0}, so that

for any s ∈ S0, D(s, g) is the smallest disk containing S0. Then the children of S0 in the tree
are nonempty sets of the form S ∩D(x0, g) for some x0 ∈ D(s, g). In particular the number
of children is at most the size of the residue field of L.

Proof of Theorem 1. Let notation be as in Lemma 3, but take L = K. By the theory of
Newton polygons, each nonzero zero of f has valuation equal to gu for some u. Let us now
fix u and let Zu be the number of zeros in K of valuation gu. We may assume gu ∈ G, since
otherwise Zu = 0. Then {x ∈ K : v(x) = gu} is the union of q− 1 open disks Dj of the form
D(xj, gu). As above, the tree corresponding to the set of zeros in Dj has length at most
k − u, and each vertex has at most q children. Hence the tree has at most qk−u leaves, and
Zu ≤ (q − 1)qk−u. Allowing for the possibility that 0 also is a zero of f , we find that the
number of zeros of f in K is at most

1 +
t∑

u=1

Zu ≤ 1 +
t∑

u=1

(q − 1)qk−u ≤ 1 +
k∑

u=1

(q − 1)qk−u = qk.

�

3. Valuation theory

Before proving Theorem 2, we will need to recall some facts from valuation theory. We
write (K, v) for a field K with a valuation v. We say that (L, w) is an extension of (K, v)
if K ⊆ L and w|K = v. In this case, when we say that L has the same value group (resp.
residue field) as K, we mean that the inclusion of value groups (resp. residue fields) induced
from the inclusion of (K, v) in (L, w) is an isomorphism. Recall that any valuation on a field
K admits at least one extension to any field containing K. An abelian group G is divisible
if for all g ∈ G and n ≥ 1, the equation nx = g has a solution x in G.

Proposition 4. Any valued field can be embedded in another valued field having the same
residue field, but divisible value group.

Proof. Let v : K∗ → G be the original valuation. If G is not already divisible, then there
exists g ∈ G and a prime number n such that nx = g has no solution in G. Pick α ∈ K∗ with
v(α) = g, and extend v to a valuation on L = K(α1/n). Let e and f denote the ramification
index and residue class degree for L/K. Then e = n, and the inequality ef ≤ n (Lemma 18
in Chapter 1 of [Sch]) forces f = 1. An easy Zorn’s lemma argument now shows that v
extends to a valuation v : M∗ → G⊗Q where M is an extension with the same residue field
as K, but with divisible value group. �
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Recall that (L, w) is called an immediate extension of (K, v) if

(1) (L, w) is an extension of (K, v);
(2) (L, w) has the same value group as (K, v); and
(3) (L, w) has the same residue field as (K, v).

Also recall that (K, v) is called maximally complete if it has no nontrivial immediate exten-
sions.

Proposition 5. Every valued field has a maximally complete immediate extension.

Proof. This is an old result of Krull: see Theorem 5 of Chapter 2 in [Sch]. �

Proposition 6. Suppose that (K, v) is maximally complete of characteristic p > 0, and that
Fq is contained in the residue field. Then Fq can be embedded in K.

Proof. Apply a suitable version of Hensel’s lemma (combine Theorems 6 and 7 of Chapter 2
of [Sch]) to the factorization of xq − x over Fq. �

Proposition 7. Suppose that (K, v) is maximally complete of characteristic p > 0, with
divisible value group G and with residue field Fq. If L ⊂ K is a finite extension of K of
degree n, then L is the compositum of Fqn and K in K.

Proof. Extend v to L. Theorem 11 in Chapter 2 of [Sch] shows that L is maximally complete,
and that ef = n holds for L/K. Since G is divisible, there are no ordered abelian groups G′

with 1 < (G′ : G) < ∞. Hence e = 1, f = n, and the residue field of L is Fqn . Proposition 6
implies that the subfield Fqn of K is contained in L. But the compositum of the linearly
disjoint fields Fqn and K in K is already n-dimensional over K, so the compositum must
equal L. �

Remark. Lenstra notes that if one is interested in proving Theorem 2 only for polynomials
over K0 = Fq((T )), then one can circumvent the theory of maximally complete fields by
choosing σ ∈ Gal(K0/K0) that acts as x 7→ xq on Fq, and by taking K to be the fixed
field of σ. This K contains K0, still has residue field Fq, and satisfies the conclusion of
Proposition 7.

4. Proof of Theorem 2

In proving Theorem 2, we may first apply Propositions 4 and 5 to assume that the value
group G is divisible and that (K, v) is maximally complete (still with residue field Fq). Let
F = Fqd! ⊂ K. Proposition 7 shows that all elements of K of degree at most d over K lie

inside the compositum L := F ·K of fields in K. Extend v to L.
For each g ∈ G, choose βg ∈ K with v(βg) = g. Now suppose D := D(x0, g) is a closed

ball in L. Let I be the subgroup of Gal(L/K) ∼= Gal(F/Fq) that maps D into D. Division
by βg induces an isomorphism of I-modules D(0, g)/D(0, g) ∼= F, so the cohomology group
H1(I,D(0, g)/D(0, g)) is trivial. The long exact sequence associated with the exact sequence

0 → D(0, g)

D(0, g)
→ L

D(0, g)
→ L

D(0, g)
→ 0

of I-modules shows that D contains an open disk D(x1, g) mapped to itself by I. We then
have a bijection of I-sets φD : D/D(0, g) → F that maps the coset y +D(0, g) to the residue
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class of (y − x1)/βg. We assume that the elements βg and the maps φD are fixed once and
for all.

Now let gu, r, and S be as in Lemma 3, and let T be the tree associated to S as in
Section 2, so that `(T ) ≤ k−u. We now describe a labelling of the vertices of T by elements
of F. Recall that if S0 ∈ T is not a leaf, and if D = D(s, g) is the smallest disk containing
S0, then the children of S0 are nonempty sets of the form S ∩ D(x0, g) for some x0 ∈ D.
Label each child by φD(D(x0, g)). Note that the children of S0 are labelled with distinct
elements of F. Finally, label the root of T with the residue of r/βgu in F∗.

Let R be the set of all roots of f in L, and let F[X]<k denote the set of polynomials of
the form a0 + a1X + · · · + ak−1X

k−1 with ai ∈ F. We now define a map Φ : R → F[X]<k.
First, if 0 ∈ R, define Φ(0) = 0 ∈ F[X]<k. If z ∈ R is nonzero, then v(z) = gu for some u.
Let T0 > T1 > · · · > Tn be the maximal chain ending at Tn = {z} in the tree T associated
to S := R ∩ D(z, gu). Define Φ(z) = Xu−1

∑n
i=0 label(Ti)X

i. Since n ≤ `(T ) ≤ k − u, we
have Φ(z) ∈ F[X]<k.

Lemma 8.

(1) The map Φ : R → F[X]<k is injective.
(2) If z ∈ R is of degree j over K, then Φ(z) ∈ Fqj [X].

Proof. To prove injectivity, we describe how to reconstruct z from Φ(z). If Φ(z) = 0, then
z must be 0. Otherwise its lowest degree monomial involves Xu−1 where v(z) = gu. Hence,
assuming from now on that z 6= 0, we can reconstruct v(z) from Φ(z). Next, the coefficient
of Xu−1 determines which (nontrivial) coset of D(0, gu) in D(0, gu) z belongs to. The other
coefficients uniquely determine a path ending at the leaf {z} in the tree associated to this
coset. Thus Φ(z) determines z.

For the second part, it suffices to show that if H is the subgroup of Gal(L/K) fixing
z ∈ R, then H (or equivalently the isomorphic subgroup of Gal(F/Fq)) fixes the coefficients
of Φ(z) also. We may assume z 6= 0. Let gu = v(z), and let T0 > T1 > · · · > Tn = {z}
be the maximal chain in the tree T associated to the coset z + D(0, gu) in which z lies.
Since H preserves the coset z + D(0, gu), H fixes the label of T0. Now suppose 1 ≤ i ≤ n.
The smallest disk containing Ti−1 is of the form D := D(z, g) for some g > gu, so H is
contained in the subgroup I ⊆ Gal(L/K) preserving this disk. The label of the child Ti is
φD(z + D(0, g)), and φD respects the action of H ⊆ I, so H fixes this label. This holds for
all i, so H fixes all coefficients of Φ(z). �

Lemma 8 shows that the number of zeros of f in K of degree at most d is less than or
equal to the number of polynomials in F[X]<k that are defined over Fqj for some j ≤ k. The
number of such polynomials defined over Fqj but no subfield is

∑
i|j qikµ(j/i), by Möbius

inversion. Theorem 2 follows upon summing over j.
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