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Abstract. We give the �rst examples of in�nite sets of primes S such that Hilbert’s Tenth
Problem over Z[S−1] has a negative answer. In fact, we can take S to be a density 1
set of primes. We show also that for some such S there is a punctured elliptic curve E′

over Z[S−1] such that the topological closure of E′(Z[S−1]) in E′(R) has in�nitely many
connected components.

1. Introduction

Hilbert’s Tenth Problem, in modern terms, was to �nd an algorithm (Turing machine) to
decide, given a polynomial equation f(x1, . . . , xn) = 0 with coe�cients in Z, whether it has
a solution with x1, . . . , xn ∈ Z. Y. Matijasevi�c [Mat70], building on earlier work of M. Davis,
H. Putnam, and J. Robinson [DPR61], showed that no such algorithm exists. If one replaces
Z in both places by a di�erent commutative ring R (let us assume its elements can be and
have been encoded for input into a Turing machine), one obtains a di�erent question, called
Hilbert’s Tenth Problem over R, whose answer depends on R. These problems are discussed
in detail in [DLPVG00].

In particular, the answer for R = Q is unknown. Hilbert’s Tenth Problem over Q is
equivalent to the general problem of deciding whether a variety over Q has a rational point.
One approach to proving that Hilbert’s Tenth Problem over Q has a negative answer would
be to deduce this from Matijasevi�c’s theorem for Z, by showing that Z is diophantine over
Q in the following sense:

Definition 1.1. Let R is a ring, and A ⊆ Rm. Then A is diophantine over R if and only if
there exists a polynomial f in m+ n variables with coe�cients in R such that

A = { a ∈ Rm | ∃x ∈ Rn such that f(a, x) = 0 }.
On the other hand, Mazur conjectures that if X is a variety over Q, then the topological

closure of X(Q) in X(R) has only �nitely many components [Maz92],[Maz95]. This would
imply that Z is not diophantine over Q. More generally, Cornelissen and Zahidi [CZ00] have
shown that Mazur’s Conjecture implies that there is no diophantine model of Z over Q.

Definition 1.2. A diophantine model of Z over Q is a set A ⊆ Qn that is diophantine
over Q with a bijection Z→ A under which the graphs of addition and multiplication on Z
correspond to subsets of A3 ⊆ Q3n that are diophantine over Q.
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This is important, because the existence of such a diophantine model, together with Mati-
jasevi�c’s Theorem, would imply a negative answer for Hilbert’s Tenth Problem over Q.

This paper studies Hilbert’s Tenth Problem over rings between Z and Q. Such rings are
in bijection with subsets of the set P of prime numbers. Namely, given S ⊆ P , one has the
ring Z[S−1], and conversely, given a subring R between Z and Q, one has R = Z[S−1] where
S = P ∩R×.

Using quadratic forms as in J. Robinson’s work, one can show that for any prime p the
ring Z(p) of rational numbers with denominators prime to p is diophantine over Q [KR92,
Proposition 3.1]. A short argument using this shows that for �nite S, Hilbert’s Tenth Problem
over Z[S−1] has a negative answer.

In this paper, we give the �rst examples of in�nite subsets S of P for which Hilbert’s
Tenth Problem over Z[S−1] has a negative answer. In fact, we show that there exist such
S of natural density 1, so in one sense, we are approaching a negative answer for Q. (See
Section 6 for the de�nition of natural density.) Previously, Shlapentokh proved that if K is a
totally real number �eld or a totally complex degree-2 extension of a totally real number �eld,
then there exists a set of places S of K of Dirichlet density arbitrarily close to 1− [K : Q]−1

such that if OK;S is the subring of elements of K that are integral at all places outside S,
then Hilbert’s Tenth Problem over OK;S has a negative answer [Shl97],[Shl00],[Shl02]. But
for K = Q, this gives nothing beyond Matijasevi�c’s Theorem.

More generally, we prove the following:

Theorem 1.3. There exist disjoint recursive sets of primes T1 and T2, both of natural density
0, such that for any set S of primes containing T1 and disjoint from T2, the following hold:

(1) There exists an a�ne curve E ′ over Z[S−1] such that the topological closure of
E ′(Z[S−1]) in E ′(R) is an in�nite discrete set.

(2) The set of positive integers with addition and multiplication admits a diophantine
model over Z[S−1].

(3) Hilbert’s Tenth Problem over Z[S−1] has a negative answer.

Remark 1.4.

(i) Arguably (3) is the most important of the three parts. We have listed the parts in
the order they will be proved.

(ii) A subset T ⊆ Z is recursive if and only if there exists an algorithm (Turing machine)
that takes as input an integer t and outputs YES or NO according to whether t ∈ T .

(iii) We use natural density instead of Dirichlet density in order to have a slightly stronger
statement. See [Ser73, VI.4.5] for the de�nition of Dirichlet density and its relation
to natural density.

Previously, Shlapentokh [Shl03] used norm equations to prove that there exist sets S ⊆ P
of Dirichlet density arbitrarily close to 1 for which there exists an a�ne variety X over Z[S−1]
such that the closure of X(Z[S−1]) in X(R) has in�nitely many connected components. (She
also proved an analogous result for localizations of the ring of integers of totally real number
�elds and totally complex degree-2 extensions of totally real number �elds. For number �elds
with exactly one conjugate pair of nonreal embeddings, she obtained an analogous result,
but with density only 1/2.)

Question 4.1 of [Shl03] asked whether over Q one could do the same for some S ⊆ P of
Dirichlet density exactly 1. Part (1) of our Theorem 1.3 gives an a�rmative answer (take
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S = P −T2). In fact, it was the attempt to answer Shlapentokh’s Question 4.1 that inspired
this paper, so the author thanks her for asking the right question.

The rest of this paper is devoted to proving Theorem 1.3. The strategy is to take an elliptic
curve E over Q such that E(Q) is generated by one point P of in�nite order, and to construct
T1 (resp. T2) so that certain prime multiples (resp. at most �nitely many other integer
multiples) of P have coordinates in Z[S−1]. Using Vinogradov’s result on the equidistribution
of the prime multiples of an irrational number modulo 1, we can prescribe the approximate
locations of the prime multiples of P in E(R). If we prescribe them so that their y-coordinates
approximate the set of positive integers su�ciently well, then approximate addition and
approximate squaring on the set A of these y-coordinates make A into a diophantine model
of the positive integers.

Shlapentokh and the author plan eventually to write a joint paper generalizing Theorem 1.3
to other number �elds, and to places other than the real place.

2. Elliptic curve setup

Let E be an elliptic curve over Q of rank 1. To simplify the arguments, we will assume
moreover that E(Q) ' Z, that E(R) is connected, and that E does not have complex
multiplication. For example, these conditions hold for the smooth projective model of y2 =
x3 + x + 1. Let P be a generator of E(Q). Fix a Weierstrass equation y2 = x3 + ax + b for
E, where a, b ∈ Z.

Let E ′ = SpecZ[S−1bad][x, y]/(y2 − (x3 + ax + b)), where Sbad is a �nite set of primes such
that E ′ is smooth over Z[S−1bad]. In particular, 2 ∈ Sbad. Enlarge Sbad if necessary so that
P ∈ E ′(Z[S−1bad]).

3. Denominators of x-coordinates

For nonzero n ∈ Z, let dn ∈ Z>0 be the prime-to-Sbad part of the denominator of x(nP );
that is, dn is the product one obtains if one takes the prime factorization of the denominator
of x(nP ) and omits the powers of primes in Sbad. De�ne d0 = 0. The notation m | n means
n ∈ mZ.

Lemma 3.1.

(a) For any r ∈ Z, the set {n ∈ Z : r | dn } is a subgroup of Z.
(b) There exists c ∈ R>0 such that log dn = (c−o(1))n2 as n→∞ (cf. [Sil88, Lemma 8]).

Proof. (a) We may reduce to the case where r = pe for some prime p 6∈ Sbad and e ∈ Z>0.
Thus it su�ces to show that the set Ee := {Q ∈ E(Qp) : vp(x(Q)) ≤ −e } ∪ {O} is a
subgroup of E(Qp), where vp : Q∗p → Z is the p-adic valuation. The set E1 is the kernel of
the reduction map E(Qp) → E(Fp) (extend E to a smooth proper curve over Zp to make
sense of this). Since p > 2, the formal logarithm λ : E1 → pZp is an isomorphism [Sil92,
IV.6.4]. By [Sil92, IV.5.5, IV.6.3], vp(λ(Q)) = vp(z(Q)) for all Q ∈ E1, where z = −x/y is the
standard parameter for the formal group. By [Sil92, pp. 113{114], x = −2z−2+· · · ∈ Zp((z)),
so vp(x(Q)) = −2vp(z(Q)) = −2vp(λ(Q)). Thus Ge corresponds under λ to pde=2eZp, and is
hence a subgroup.

(b) The number log dn is the logarithmic height h(nP ), except that in the sum de�ning
the height, the terms corresponding to places in Sbad ∪ {∞} have been omitted. A standard
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diophantine approximation result (see Section 7.4 of [Ser97]) implies that each such term

contributes at most a fraction o(1) of the height, as n → ∞. If ĥ is the canonical height,

then h(nP ) = ĥ(nP ) +O(1) = ĥ(P )n2 +O(1). Take c = ĥ(P ), which is positive, since P is
not torsion. �

Remark 3.2. The bottom of p. 306 in [Aya92] relates the denominators of x(nP ) in lowest
terms to the sequence of values of division polynomials evaluated at P . The study of divisi-
bility properties of the latter sequence is very old: results were claimed in the 19th century
by Lucas (but apparently not published), and proofs were given in [War48].

For n ∈ Z, let Sn be the set of prime factors of dn. If m,n ∈ Z, then (m,n) denotes their
greatest common divisor.

Corollary 3.3. If m,n ∈ Z, then S(m;n) = Sm ∩ Sn. In particular, if (m,n) = 1, then Sm

and Sn are disjoint.

Proof. Lemma 3.1(a) implies the �rst statement. Since P ∈ E ′(Z[S−1bad]), we have S1 = ∅,
and the second statement follows. �

Lemma 3.4. If ` and m are primes, and max{`,m} is su�ciently large, then S‘m−(S‘∪Sm)
is nonempty.

Proof. If p | dm, or equivalently vp(x(mP )) < 0, then using the formal logarithm λ as in the
proof of Lemma 3.1(a) we obtain

vp(d‘m) = −vp(x(`mP )) = 2vp(λ(`mP )) = 2vp(`λ(mP )) = vp(`2dm).

If S‘m − (S‘ ∪ Sm) were empty, then for each p | d‘m we could apply either this result or the
analogue with ` and m interchanged, and hence deduce d‘m | `2m2d‘dm. This contradicts
Lemma 3.1(b) if max{`,m} is su�ciently large. �

Remark 3.5. Our Lemma 3.4 is a special case of Lemma 9 of [Sil88] (except for the minor
di�erences that [Sil88] requires E to be in minimal Weierstrass form and considers the full
denominator instead of its prime-to-Sbad part). The method of proof is the same. These
results may viewed as elliptic analogues of Zsigmondy’s Theorem: see [Eve02].

4. Definition of T1 and T2

For each prime number `, let a‘ be the smallest a ∈ Z>0 such that d‘a > 1. By
Lemma 3.1(b), a‘ exists, and a‘ = 1 for all ` outside a �nite set L of primes. Baker’s
method [Ser97, Chapter 8] lets us compute the �nite set E ′(Z[S−1bad]), so the set L and the
values a‘ for ` ∈ L are computable.

Let p‘ = maxS‘a where a = a‘. For primes ` and m (possibly equal), Lemma 3.4 lets us
de�ne p‘m = max (S‘m − (S‘ ∪ Sm)) when max{`,m} is su�ciently large. Let `1 < `2 < . . .
be a sequence of primes outside L. (The `i will be constructed in Section 7 with certain
properties, but for now these properties are not relevant.) The plan will be to force `iP ∈
E ′(Z[S−1]) for all i, by requiring each S‘i to be contained in S. On the other hand, we must
require other primes to lie outside S to make sure that not too many other multiples of P
end up in E ′(Z[S−1]).

Let T1 = Sbad ∪
⋃

i≥1 S‘i . Let T a
2 be the set of p‘ for all primes ` 6∈ {`1, `2, . . . }. If `1 is

su�ciently large, we may de�ne T b
2 = { p‘i‘j : 1 ≤ j ≤ i } and T c

2 = { p‘‘i : ` ∈ L, i ≥ 1 }.
Finally, let T2 = T a

2 ∪ T b
2 ∪ T c

2 .
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5. Properties of T1 and T2

Proposition 5.1. The sets T1 and T2 are disjoint.

Proof. By de�nition of p‘ and p‘m, Sbad∩T2 = ∅. If ` 6= `i, then (`a` , `i) = 1, so Corollary 3.3
implies p‘ 6∈ S‘i . Thus T1 ∩ T a

2 = ∅. If i 6∈ {j, k}, then Corollary 3.3 implies p‘j‘k 6∈ S‘i ,

while if i ∈ {j, k} then p‘j‘k 6∈ S‘i by de�nition of p‘j‘k . Thus T1 ∩ T b
2 = ∅. If i 6= j, then

Corollary 3.3 implies p‘‘j 6∈ S‘i , while if i = j, then p‘‘i 6∈ S‘i by de�nition of p‘j‘k . Thus
T1 ∩ T c

2 = ∅. �

Proposition 5.2. If S contains T1 and is disjoint from T2, then E ′(Z[S−1]) is the union of
{±`iP : i ≥ 1 } and some subset of the �nite set

{
rP : r |

∏
‘∈L `

a`−1
}

.

Proof. Because the equation of E relates the x- and y-coordinates, a point nP belongs to
E ′(Z[S−1]) if and only if Sn ⊆ S. In particular, S‘i ⊆ T1 ⊆ S, so ±`iP ∈ E ′(Z[S−1]).

Any point outside

{±`iP : i ≥ 1 } ∪
{
rP : r |

∏
‘∈L `

a`−1
}

is nP for some n divisible by one of the following:

• `a` for some ` not in the sequence `1, `2, . . . ,
• `i`j for some 1 ≤ j ≤ i, or
• ``i for some ` ∈ L and i ≥ 1.

Lemma 3.1(a) implies then that Sn contains a prime of T a
2 , T b

2 , or T c
2 , respectively, so

Sn 6⊆ S. �

6. Natural density

The natural density of a subset T ⊆ P is de�ned as

lim
X→∞

#{p ∈ T : p ≤ X}
#{p ∈ P : p ≤ X}

,

if the limit exists. One de�nes upper natural density similarly, using lim sup instead of lim.

Lemma 6.1. If α ∈ R − Q, then { `α mod 1 : ` is prime } is equidistributed in [0, 1]. That
is, for any interval I ⊆ [0, 1], the set of primes ` for which (`α mod 1) belongs to I has
natural density equal to the length of I.

Proof. See p. 180 of [Vin54]. �

Let y(`P ) ∈ Q denote the y-coordinate of `P ∈ E(Q).

Corollary 6.2. If I ⊆ R is an interval with nonempty interior, then the set of primes ` for
which y(`P ) ∈ I has positive natural density.

Proof. Since E(R) is a connected compact 1-dimensional Lie group over R, we can choose
an isomorphism E(R) → R/Z as topological groups. Since P is of in�nite order, its image
in R/Z is represented by an irrational number. The subset of E(R) having y-coordinate in
I corresponds to a nontrivial interval in R/Z. Now apply Lemma 6.1. �
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7. Construction of the `i

For prime `, de�ne

µ‘ = sup
X∈Z≥2

#{p ∈ S‘ : p ≤ X}
#{p ∈ P : p ≤ X}

.

The supremum is attained for some X ≤ maxS‘, so µ‘ is computable for each `.

Lemma 7.1. For any ε > 0, the natural density of { ` : µ‘ > ε } is 0.

Proof. For X ∈ R, let π(X) := #{p ∈ P : p ≤ X}. If ` is a prime and µ‘ > ε, then we can
choose X‘ ∈ Z≥2 such that

#{p ∈ S‘ : p ≤ X‘}
π(X‘)

> ε.

For M ∈ Z≥2, let UM be the set of primes ` such that µ‘ > ε and X‘ ∈ [M, 2M). If
` ∈ UM , then

#{p ∈ S‘ : p ≤ 2M} ≥ #{p ∈ S‘ : p ≤ X‘} > επ(X‘) ≥ επ(M).

But the S‘ are disjoint by Corollary 3.3, so

π(2M) ≥
∑

‘∈UM

#{p ∈ S‘ : p ≤ 2M} ≥ επ(M)#UM .

Thus by the Prime Number Theorem, #UM = O(1) as M →∞. If 2k−1 ≤ N < 2k, then

#{ ` : µ‘ > ε and X‘ ≤ N } ≤ #U2 + #U4 + #U8 + · · ·+ #U2k = O(k) = O(logN)

as N →∞. If µ‘ > ε then by de�nition of X‘,

π(X‘) <
#S‘

ε
≤ log2 d‘

ε
= O(`2)

as `→∞ by Lemma 3.1(b), so X‘ = O(`2 log `) by the Prime Number Theorem. Combining
the previous two sentences shows that

#{ ` ≤ Y : µ‘ > ε } = #{ ` ≤ Y : µ‘ > ε and X‘ ≤ O(Y 2 log Y ) }
= O(logO(Y 2 log Y )),

which is o(π(Y )) as Y →∞. �

De�ne the `i inductively as follows. Given `1, . . . , `i−1, let `i be the smallest prime outside
L such that all of the following hold:

(1) `i > `j for all j < i,
(2) µ‘i ≤ 2−i,
(3) p‘i‘j > 2i for all j ≤ i,
(4) p‘‘i > 2i for all ` ∈ L, and
(5) |y(`iP )− i| ≤ 1/(10i).

Proposition 7.2. The sequence `1, `2, . . . is well-de�ned and computable.
6



Proof. By induction, we need only show that for each i, there exists `i as above. By Corol-
lary 6.2, the set of primes satisfying (5) has positive natural density. By Lemma 7.1, (2)
fails for a set of natural density 0. Therefore it will su�ce to show that (1), (3), and (4) are
satis�ed by all su�ciently large `i.

For �xed j ≤ i, the primes p‘i‘j for varying values of `i are distinct by Corollary 3.3, so
eventually they are greater than 2i. The same holds for p‘‘i for �xed ` ∈ L. Thus by taking
`i su�ciently large, we can make all the p‘i‘j and p‘‘i greater than 2i.

Each `i can be computed by searching primes in increasing order until one is found satis-
fying the conditions. �

8. Recursiveness of T1 and T2

The set {`1, `2, . . . } is recursive, since it is a strictly increasing sequence whose terms can
be computed in order. This is needed for the proofs in this section.

Proposition 8.1. The set T1 is recursive.

Proof. Since Sbad is �nite, it su�ces to give an algorithm for deciding whether a prime
p 6∈ Sbad belongs to

⋃
i≥1 S‘i . We have p ∈

⋃
i≥1 S‘i if and only if p | d‘i for some i, which

holds if and only if the order np of the image of P in E(Fp) divides `i for some i. The
order np can be computed, and np 6= 1, since P ∈ E ′(Z[S−1bad]). So we simply check whether
np ∈ {`1, `2, . . . }. �

Lemma 8.2. If ` is prime, then ` | #E(Fp`).

Proof. By de�nition of p‘, the point `a`P reduces to 0 in E(Fp`) but `a`−1P does not. �

Proposition 8.3. The set T a
2 is recursive.

Proof. If p ∈ T a
2 , then p = p‘ for some ` 6∈ {`1, `2, . . . }, and then ` | #E(Fp) by Lemma 8.2.

Therefore to test whether a prime p 6∈ Sbad belongs to T a
2 , compute #E(Fp) and its prime

factors: one has p ∈ T a
2 if and only if there is a prime factor ` such that ` 6∈ {`1, `2, . . . } and

p‘ = p. �

Proposition 8.4. The sets T b
2 and T c

2 are recursive.

Proof. By condition (3) in the de�nition of `i, if a prime p belongs to T b
2 , it must equal p‘i‘j

for some 1 ≤ j ≤ i with 2i < p. Thus to test whether a prime p belongs to T b
2 , simply

compute p‘i‘j for 1 ≤ j ≤ i < log2 p.
The proof that T c

2 is recursive is similar, using condition (4). �

Thus T1 and T2 are recursive.

9. The densities of T1 and T2

Proposition 9.1. The set T1 has natural density 0.

Proof. For �xed r ∈ Z>0, the set
⋃

i>r S‘i di�ers from T1 in only �nitely many primes, so
it su�ces to show that the former has upper natural density tending to 0 as r → ∞. By
de�nition of µ‘i , the upper natural density is bounded by

∑
i>r µ‘i ≤

∑
i>r 2−i = 2−r, which

tends to 0 as r →∞. �

Proposition 9.2. The sets T b
2 and T c

2 have natural density 0.
7



Proof. Suppose 2m ≤ X < 2m+1. By condition (3) de�ning `i, the only primes of the form
p‘i‘j that might be ≤ X are those with 1 ≤ j ≤ i ≤ m. There are at most O(m2) =

O((logX)2) of these, which is negligible compared to π(X). Thus T b
2 has natural density 0.

The proof for T c
2 is similar. �

The rest of this section is devoted to the proof that T a
2 has natural density 0. Recall that

T a
2 consists of primes of the form p‘. If the sequence of p‘ grew faster than the sequence

of primes `, then T a
2 would have density 0. But Lemma 8.2 implies only that p‘ is at least

about the size of `. The strategy for strengthening this bound will be to show that numbers
of the form #E(Fp) are typically divisible by many primes. For n ∈ Z>0, let ω(n) be the
number of distinct prime factors of n.

Lemma 9.3. For any t ≥ 1, the natural density of { p : ω(#E(Fp)) < t } is 0.

Proof. For a prime `, let E[`] denote the group of points of order dividing ` on E. Then
` | #E(Fp) if and only if the image of the Frobenius element at p under Gal(Q/Q) →
AutE[`] has a nonzero �xed vector. Since E does not have complex multiplication, the
image of Gal(Q/Q) in

∏
‘ AutE[`] is open. (This follows from [Ser72].) Thus Gal(Q/Q)→∏

‘6∈L′ AutE[`] is surjective for some �nite L′ ⊆ P . A calculation shows that the fraction of

elements of AutE[`] ' GL2(F‘) having a nonzero �xed vector is

`3 − 2`

(`2 − 1)(`2 − `)
=

1

`
+O

(
1

`2

)
.

The sum of this over ` diverges, so as C →∞, the fraction of elements of
∏

‘<C;‘6∈L′ AutE[`]
having fewer than t components with a nonzero �xed vector tends to 0. Applying the
Chebotarev Density Theorem (see Th�eor�eme 1 of [Ser81] for a version using natural density)
and letting C →∞, we obtain the result. �

Proposition 9.4. The set T a
2 has natural density 0.

Proof. Because of Lemma 9.3, it su�ces to show that the upper natural density of

T a;t
2 := { p ∈ T a

2 : ω(#E(Fp)) ≥ t }
tends to 0 as t→∞.

Suppose p = p‘ ∈ T a;t
2 . By Lemma 8.2, ` | #E(Fp). By de�nition of T a;t

2 , the integer
#E(Fp) is divisible by at least t−1 other primes, so 2t−1` ≤ #E(Fp). There exists a degree-
2 map E → P1 over Fp, so #E(Fp) ≤ 2(p+ 1) ≤ 4p. Combining the previous two sentences
yields ` ≤ 23−tp. Since every element of T a;t

2 is p‘ for some `, we have

#{ p ∈ T a;t
2 : p ≤ X } ≤ π(23−tX) = (23−t + o(1)) π(X)

as X →∞. Thus by de�nition, the upper natural density of T a;t
2 is at most 23−t. This goes

to 0 as t→∞. �

Thus T1 and T2 have natural density 0.

10. Proof of Theorem 1.3

By Proposition 5.2, E ′(Z[S−1]) di�ers from {±`iP : i ≥ 1 } by at most a �nite set. Since
y(±`iP ) is within 1/10 of ±i, any bounded subset of R2 contains at most �nitely many
points of E ′(Z[S−1]). Part (1) of Theorem 1.3 follows.
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We next construct a diophantine model A of the positive integers over Z[S−1]. The set of
nonzero elements of Z[S−1] is diophantine (see Theorem 4.2 of [Shl94]), and we can represent
elements of Q as fractions of elements of Z[S−1] with nonzero denominator. Therefore
equations over Q can be rewritten as systems of equations over Z[S−1], and there is no harm
in using them in our diophantine de�nitions. In particular, we may use the predicate x ≥ y,
since it can be encoded as (∃z1, z2, z3, z4 ∈ Q)(x = y + z21 + z22 + z23 + z24).

For i ∈ Z>0, de�ne yi := y(`iP ). Let A = {y1, y2, . . . }. Then A is diophantine over Z[S−1],
because it consists of the nonnegative elements of the set of y-coordinates of E ′(Z[S−1]) minus
a �nite set. We have a bijection Z>0 → A taking i to yi.

It remains to show that the graphs of addition and multiplication on Z>0 correspond to
diophantine subsets of A3. We know |yi−i| ≤ 1/(10i) ≤ 1/10, so the idea is that the addition
on Z>0 should correspond to the operation of adding elements of A and then rounding to the
nearest element of A. A similar idea will work for squaring, and we will get multiplication
from addition and squaring.

Lemma 10.1. Let m,n, q ∈ Z>0. Then

(1) m+ n = q if and only if |ym + yn − yq| ≤ 3/10.
(2) m2 = n if and only if |y2m − yn| ≤ 4/10.

Proof.
(1) The quantity ym+yn−yq di�ers from the integer m+n−q by at most 1/10+1/10+1/10.
(2) The quantity y2m − yn di�ers from the integer m2 − n by at most

|y2m −m2|+ |yn − n| ≤

∣∣∣∣∣
(
m+

1

10m

)2

−m2

∣∣∣∣∣+
1

10

≤ 4

10
. �

Lemma 10.1 shows that the two predicates m + n = q and m2 = n on Z>0 correspond to
diophantine predicates on A. Building with these, we can show the same for mn = q, since

mn = q ⇐⇒ (m+ n)2 = m2 + n2 + q + q.

This completes the proof of part (2) of Theorem 1.3. Part (3) follows from (2) and Matija-
sevi�c’s Theorem.

Acknowledgements

I thank Thanases Pheidas and the referee for helpful comments, in particular for simplify-
ing the diophantine de�nition of multiplication at the end. I thank also Gunther Cornelissen
and Graham Everest for suggesting references for Section 3, and Alexandra Shlapentokh for
suggesting some improvements in the exposition.

References

[Aya92] Mohamed Ayad, Points S-entiers des courbes elliptiques, Manuscripta Math. 76 (1992), no. 3-4,
305{324.

[CZ00] Gunther Cornelissen and Karim Zahidi, Topology of Diophantine sets: remarks on Mazur’s
conjectures, Hilbert’s tenth problem: relations with arithmetic and algebraic geometry (Ghent,
1999), Amer. Math. Soc., Providence, RI, 2000, pp. 253{260.

9



[DLPVG00] Jan Denef, Leonard Lipshitz, Thanases Pheidas, and Jan Van Geel (eds.), Hilbert’s tenth prob-
lem: relations with arithmetic and algebraic geometry, American Mathematical Society, Prov-
idence, RI, 2000, Papers from the workshop held at Ghent University, Ghent, November 2{5,
1999.

[DPR61] Martin Davis, Hilary Putnam, and Julia Robinson, The decision problem for exponential dio-
phantine equations, Ann. of Math. (2) 74 (1961), 425{436.

[Eve02] Graham Everest, Zsigmondy’s theorem for elliptic curves, preprint, 11 October 2002.
[KR92] Ki Hang Kim and Fred W. Roush, An approach to rational Diophantine undecidability, Pro-

ceedings of Asian Mathematical Conference, 1990 (Hong Kong, 1990) (River Edge, NJ), World
Sci. Publishing, 1992, pp. 242{248.

[Mat70] Yuri V. Matijasevi�c, The Diophantineness of enumerable sets, Dokl. Akad. Nauk SSSR 191
(1970), 279{282.

[Maz92] Barry Mazur, The topology of rational points, Experiment. Math. 1 (1992), no. 1, 35{45.
[Maz95] Barry Mazur, Speculations about the topology of rational points: an update, Ast�erisque (1995),

no. 228, 4, 165{182, Columbia University Number Theory Seminar (New York, 1992).
[Ser72] Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent.

Math. 15 (1972), no. 4, 259{331.
[Ser73] Jean-Pierre Serre, A course in arithmetic, Springer-Verlag, New York, 1973, Translated from

the French, Graduate Texts in Mathematics, No. 7.
[Ser81] Jean-Pierre Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes
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