
DRINFELD MODULES WITH NO SUPERSINGULAR PRIMES

BJORN POONEN

Abstract. We give examples of Drinfeld modules φ of rank 2 and higher over Fq(T ) that
have no primes of supersingular reduction. The idea is to construct φ so that the associated
mod ` representations are incompatible with the existence of supersingular primes. We also
answer a question of Elkies by proving that such obstructions cannot exist for elliptic curves
over number fields.

Elkies [El1] proved that if E is an elliptic curve over Q, then there are infinitely many
primes p for which the mod p reduction of E is supersingular. Later [El3] he extended his
argument to prove the analogous statement for elliptic curves over number fields having a
real place. But over other number fields the question is still open.1 In this note, we show
that the analogous statement for Drinfeld modules over Fq(T ) is false: we exhibit Drinfeld
modules having no primes of supersingular reduction. The obstruction is obtained from the
mod ` representations associated to a Drinfeld module. The final section, which may be read
independently of the rest of the paper, proves that such obstructions cannot exist for elliptic
curves over number fields.

1. Drinfeld modules

The following definitions are to remain in force for the rest of the paper, except for the
final section. Let p be a prime, and let q be a power of p. Let A = Fq[T ] and K = Fq(T ).
Let L be an A-field; i.e., a field equipped with a ring homomorphism ι : A → L. The ring
of Fq-linear endomorphisms over L of the additive group scheme over L can be described
explicitly as the ring of Fq-linear polynomials; i.e., polynomials f(x) ∈ L[x] satisfying the
polynomial identities f(x + y) = f(x) + f(y) and f(εx) = εf(x) for all ε ∈ Fq. We identify
this ring with the ring L{τ} of twisted polynomials over L, where τ (which we think of as
the q-th power Frobenius operator) satisfies τα = αqτ for α ∈ L. The identification will be
written as follows: if f ∈ L{τ}, then f(x) will denote the Fq-linear polynomial obtained by
“applying the operator f to x.”

A Drinfeld module over L is a ring homomorphism

φ : A → L{τ}
a 7→ φa
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1As Elkies explains, there is reason to believe that handling the case of elliptic curves over totally imaginary
number fields may be genuinely more difficult: heuristics predict far fewer supersingular primes for certain
elliptic curves over these fields.
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such that for all a ∈ A the coefficient of τ 0 in φa is ι(a), and such that for some a ∈ A,
φa 6= ι(a) ∈ L{τ}. The rank r of φ is the exponent of the highest power of τ that appears
in φT . (See [DH], [Ge2], [Go], or [Ha] for an introduction to Drinfeld modules.)

Now temporarily suppose that L is a finite A-field of order qm. The kernel of ι is generated
by an irreducible element p ∈ A. The qm-th power Frobenius acts on the Tate modules of a
rank r Drinfeld module φ over L, and the characteristic polynomial P (X) of the action is a
polynomial of degree r with coefficients in A, whose constant term is necessarily divisible by
p. The Drinfeld module φ is said to be ordinary if the linear coefficient of P (X) is nonzero
modulo p. At the other extreme, φ is said to be supersingular if P (X) is congruent to Xr

modulo p. (See [Ge] or [Go] for other equivalent characterizations of supersingularity.)

Remarks. If r = 1, then φ is both ordinary and supersingular. If r = 2, then φ is either
ordinary or supersingular (but not both), depending on whether the “trace of Frobenius” is
divisible by p. If r ≥ 3, then φ may be ordinary, supersingular, or something in between:
there is a range of possibilities corresponding to the various shapes that the p-adic Newton
polygon of P (X) can take.

Now suppose instead that L is a finite extension of K considered as an A-field with ι being
the inclusion, that φ is a rank r Drinfeld module over L, and that q is a prime of L. If the
coefficients of φT are integral at q and if the leading coefficient is a q-adic unit, then we may
“reduce φ modulo q” in order to obtain a rank r Drinfeld module over the residue field Fq.
One says that φ has good reduction at q if there exists a Drinfeld module ψ isomorphic2 to φ
over L that can be reduced in this way; otherwise φ has bad reduction at q. Any given φ will
have good reduction except at finitely many primes of L. If φ has good reduction at q, then
we say that q is an ordinary (or supersingular) prime of φ if the reduction is ordinary (resp.
supersingular). Our convention will be that if φ has bad reduction at q, then q is neither
ordinary nor supersingular.

Finally, if p is a prime of a global field L, then Frobp will denote a Frobenius element of
the absolute Galois group Gal(Lsep/L).

2. A simple example

The following will be the prototype for our constructions. Despite its simplicity, many
features of the general construction are already present here, and the reader would be well-
advised to understand this example thoroughly before proceeding.

Proposition 1. Suppose that q is odd. Let φ be the rank 2 Drinfeld module over K with

φT = T (1− τ)2 = T − 2Tτ + Tτ 2.

Then φ has no primes of supersingular reduction.

Proof. Since the T -adic valuation of the leading coefficient of φT is not divisible by q2 − 1,
φ has bad reduction at (T ). Let p be a finite prime of K other than (T ). The T -torsion of
φ is the 2-dimensional Fq-vector space ker((1− τ)2), which lies in Fq and has a basis {1, α}
where αq − α = 1. The action of x 7→ xq on this basis is given by

[
1 1
0 1

]
∈ GL2(Fq). The

action of Frobp ∈ Gal(Ksep/K) on the same space is the (deg p)-th power of x 7→ xq, so it
is represented by a matrix of the form

[
1 ∗
0 1

]
. Thus the characteristic polynomial of Frobp

is congruent to (X − 1)2 modulo T . In particular, its linear coefficient a is nonzero. But it

2A morphism between Drinfeld modules is an Fq-linear polynomial that respects the A-module structures;
see [Go].
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follows from part 5 of Theorem 4.12.8 in [Go] that a is an element of A of degree at most
(deg p)/2, so a cannot be divisible by p. Hence φ is ordinary at p. �

Remark. When considered over Fq(T
1/(q2−1)), φ acquires good reduction at the place above

(T ), and the reduction is supersingular.

Remarks . The j-invariant of φ in Proposition 1 is 4T q, so this example contradicts the
main theorem (1.1.6) of [Br]. This is due only to a minor miscalculation in the proof
of Lemma (4.1.2) in [Br]: the exponent of (−ω(π)) in the right hand side of (4.1.4) and
also (4.1.3) should be (deg b + 1)(q − 1)/2 instead of (deg b + (q − 1)/2)(q − 1)/2. Redoing
the argument shows that (4.1.11) should be replaced by(

π

Nπ

)
=

(
π, Tf

∞

) ∏
p∈S

(
π

p

)
,

so that the “exceptional j-invariants” f for which the method of [Br] does not apply directly
are those for which Tf is a square in Fq((1/T )). A similar correction must be made to [Da],
but only because that paper makes use of [Br].

Remark. It is impossible to construct a rank 2 Drinfeld module over Fq(T ), q odd, with good
ordinary reduction everywhere. A rank 2 Drinfeld module over Fq(T ) with good reduction
everywhere is isomorphic to one of the form

φT = T + aτ + bτ 2

with b ∈ F∗
q. The T−1-adic valuation of j(φ) = aq+1/b is then even, so φ has infinitely many

supersingular primes by Brown’s theorem (as modified above).

3. More general examples

In this section, we present more examples of Drinfeld modules having no primes of su-
persingular (or non-ordinary) reduction. It is not our intention to list all possibilities in
which some mod I representation is incompatible with the existence of supersingular (resp.
non-ordinary) primes. Instead the point we make here is simply that there are many.

Lemma 2. Let a1, a2, . . . , ar be elements of K∗, and φ be the rank r Drinfeld module over
K with

φT = T (1− a1τ)(1− a2τ) · · · (1− arτ).

If φ has good reduction at (T ), then the reduction is ordinary.

Proof. Let v be the discrete valuation on O := Fq[[T ]]. If φ has good reduction at (T ), then
for some u ∈ K∗, the isomorphic Drinfeld module ψ with

(1) ψT = u−1φTu = T (1− uq−1a1τ)(1− uq−1a2τ) · · · (1− uq−1arτ)

has coefficients in O and leading coefficient in O∗. Let V = {α ∈ ker(ψT ) | v(α) > 0 }, which
is an Fq-subspace of ker(ψT ). Since the T -adic valuation of the linear coefficient of ψT (x) is 1,
the theory of Newton polygons implies that

∏
α∈V,α 6=0(x−α) is a nontrivial irreducible factor

of ψT (x) over O. In particular, V is an irreducible representation of the decomposition group
D at (T ). But the factorization (1) of ψT gives a full flag in ker(ψT ) that is D-stable (even
Gal(Ksep/K)-stable), so the composition factors of ker(ψT ) as D-module are 1-dimensional
over Fq. Hence dimFq V = 1, and this is equivalent to ψ being ordinary at (T ). �
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Theorem 3. Suppose r ≥ 2, and write r = r0p
k with gcd(r0, p) = 1. Suppose that m is a

positive divisor of q− 1 such that r0m does not divide q− 1. Let a1, a2, . . . , ar be elements of
K∗ such that ai/a1 is an m-th power in K for each i. Let φ be the rank r Drinfeld module
over K with

φT = T (1− a1τ)(1− a2τ) · · · (1− arτ).

Then φ has no primes of supersingular reduction.

Proof. By Lemma 2, φ cannot be supersingular at (T ). The action of Galois on ker(1− aiτ)
is given by a character χi : Gal(Ksep/K) → F∗

q mapping σ to σβi/βi where βi ∈ Ksep satisfies

βq−1
i = a−1

i . The semisimplification of the mod T representation ρ of Gal(Ksep/K) associated
to φ is the direct sum of the χi.

If p 6= (T ) is a prime of good reduction for φ, then ρ is unramified at p. Hence each χi is
unramified at p. The characteristic polynomial

P (X) := Xr + b1X
r−1 + b2X

r−2 + · · ·+ br ∈ A[x]

of Frobp is congruent to
∏r

i=1(X − χi(Frobp)) modulo T .
If in addition φ is supersingular at p, then for 0 < j ≤ r the coefficient bj is divisible by

p. But part 5 of Theorem 4.12.8 in [Go] implies that deg bj is at most (j/r) deg p, so bj = 0
for 0 < j < r. There exist two roots of the polynomial Xr + br modulo T whose ratio is
a primitive r0-th root of unity ζ ∈ Fq, so we have χi(Frobp)/χj(Frobp) = ζ for some i and
j. In particular, r0 divides the order of the character χi/χj. On the other hand, ai/aj is
an m-th power in K∗, so the order of χi/χj divides (q − 1)/m. Thus r0 divides (q − 1)/m,
which contradicts the hypothesis. �

Remark. For any c ∈ Fq one can easily create similar examples in which it is the action of
Galois on the (T +c)-torsion that is incompatible with the existence of supersingular primes.

Remark. Näıve heuristics (counting for each p the supersingular characterstic polynomials
as a fraction of the number of all possible characteristic polynomials) suggest that if r ≥ 4,
then any rank r Drinfeld module φ over K with End(φ) = A will have at most finitely
many supersingular primes. More sophisticated heuristics (analogous to those in [LT]) seem
likely to suggest the same. Recent results of Pink [Pi] determine, for any Drinfeld module
(having any endomorphism ring), the density of primes for which the Newton polygon of the
characteristic polynomial of Frobenius assumes a given shape. (But of course, [Br] shows
that the set of primes in question can be infinite even when the density is zero.)

Theorem 4. Let a1, a2, . . . , ar be elements of K∗. Let φ be the rank r Drinfeld module over
K with

φT = T (1− a1τ)(1− a2τ) · · · (1− arτ).

If
∑r

i=1 η(ai) is nonzero for every homomorphism η : K∗ → F∗
q, then φ has ordinary reduction

at every prime p of good reduction.

Proof. We retain the notation of the proof of Theorem 3. Lemma 2 handles the case p = (T ),
so suppose p is a prime of good reduction for φ other than (T ). By Kummer theory, the
condition on the ai is equivalent to

∑r
i=1 χi(σ) 6= 0 ∈ Fq for all σ ∈ Gal(Ksep/K). Applying

this to σ = Frob−1
p and multiplying by

∏r
i=1 χi(Frobp) ∈ F∗

q, we deduce that the linear
coefficient br−1 of the characteristic polynomial P (X) of Frobp is nonzero modulo T . As
before, it follows that br−1 is nonzero modulo p, so φ has ordinary reduction at p. �
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Remark. The condition on the ai in Theorem 4 is automatically satisfied if gcd(r, p) = 1 and
ai/a1 is a (q − 1)-th power for each i. In particular, for each r ≥ 2 and q with gcd(r, q) = 1
we obtain infinitely many non-K-isomorphic examples.

4. Open questions

Suppose that I is a nonzero ideal of A, and that φ is a Drinfeld module over K. We will
say that the associated mod I representation

ρI : Gal(Ksep/K) → GLr(A/I)

is compatible with the existence of infinitely many supersingular (or non-ordinary) primes
if there are infinitely many primes p of K for which ρI(Frobp) is conjugate to the action of
Frobenius on the I-torsion of a supersingular (resp. non-ordinary) Drinfeld module over the
residue field kp. The examples we have given in previous sections of Drinfeld modules with no
supersingular (or non-ordinary) primes had the property that their mod T representations
were incompatible with the existence of supersingular (resp. non-ordinary) primes. We can
ask if the only obstructions are of this type:

Question 1. Let φ be a Drinfeld module over K. If for every nonzero ideal I of A, the
mod I representation associated to φ is compatible with the existence of infinitely many
non-ordinary primes, then does φ necessarily have infinitely many non-ordinary primes?

In the analogous question for supersingularity, we should restrict the rank, because of the
heuristics mentioned in the previous section.

Question 2. Let φ be a Drinfeld module over K of rank r ≤ 3. If for every nonzero ideal
I of A, the mod I representation associated to φ is compatible with the existence of infin-
itely many supersingular primes, then does φ necessarily have infinitely many supersingular
primes?

The heuristics suggest a positive answer to the following, at least once the rank is allowed
to be at least 4.

Question 3. Does there exist a Drinfeld module φ over K whose mod I representations
are all compatible with the existence of infinitely many supersingular primes, but which
nevertheless has only finitely many supersingular primes?

In cases where obstructions exist, we can ask whether they can always be found at a
uniformly bounded level:

Question 4. Fix q and r. Does there exist a nonzero ideal I0 of A with the following
property: if φ is a rank r Drinfeld module over K, and if for some I the associated mod I
representation is incompatible with the existence of infinitely many supersingular (or non-
ordinary) primes, then the same is true for the mod I0 representation?

Finally, it would of course be possible to study similar problems for Drinfeld modules over
finite extensions of K.

5. The lack of obstruction for elliptic curves

In light of the examples of this paper, an obvious question is whether there exist elliptic
curves over number fields for which one of the associated mod n representations creates
an obstruction to the existence of infinitely many supersingular primes. Elkies raised this
question already in [El2] (see question 2 on page 35). We prove in Theorem 6 below that
there are no elliptic curves for which such obstructions exist. But first we need a lemma
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saying that certain mod n representations that “look supersingular” actually come from
supersingular elliptic curves.

Lemma 5. Suppose n > 0 and 8|n. Let p be a prime with p ≡ −1 (mod n), and let q = pd

for some d ≥ 1. If d is even, let M be the identity I ∈ GL2(Z/nZ). If d is odd, let M be
any element of GL2(Z/nZ) such that M2 = I and detM = −1 ∈ Z/nZ. Then there exists
a supersingular elliptic curve E over Fq for which the action of Frobenius on E[n] is given
by a matrix conjugate to M .

Proof. First suppose d is even. Let E be any elliptic curve over Fp with #E(Fp) = p+1. Then
E is supersingular, and the square of the p-th power Frobenius isogeny on E is multiplication
by −p, which fixes E[n] pointwise, so E[n] ⊂ E(Fq), as desired.

If d is odd, the conditions M2 = I and detM = −1 (and 8|n) force M to be conjugate to
either A0 :=

[
1 0
0 −1

]
or A1 :=

[
1 1
0 −1

]
in GL2(Z/nZ). Let E be an elliptic curve y2 = x3 − cx

over Fp with c 6= 0. By assumption, p ≡ −1 (mod 4), so E is supersingular. The action
of the q-th power Frobenius on E[n] is represented by a matrix F satisfying F 2 = I and
detF = q = −1 ∈ Z/nZ, so F is conjugate to A0 or A1. Moreover we can make F conjugate
to the desired Ai by choosing c to be a square or not in F∗

p, since this choice determines the
conjugacy class of F mod 2. �

Theorem 6. Suppose that E is an elliptic curve over a number field K. Let

ρ : Gal(K/K) → GL2(Z/nZ)

be the associated mod n representation for some fixed n ≥ 1. Then there exist infinitely many
primes p of K for which ρ(Frobp) is conjugate to the action of Frobenius on the n-torsion of
a supersingular elliptic curve E ′ over the residue field kp.

Proof. We may assume 8|n. Let L be a Galois extension of Q containing K(E[n]). Fix an
embedding L ↪→ C, and let σ ∈ Gal(L/Q) be the restriction of complex conjugation. By
the Chebotarev Density Theorem, there exist infinitely many primes p of Q for which all of
the following hold:

(1) p is unramified in L. (It follows from this that p does not divide n.)
(2) Frobp ∈ Gal(L/Q) is conjugate to σ. (This condition is the crucial one.3)
(3) p is not divisible by any prime of bad reduction of E.

We will show that if p is any prime of K lying above such p, then ρ(Frobp) is conjugate to
the action of Frobenius on the n-torsion of a supersingular elliptic curve E ′ over the residue
field kp.

Fix such p and p, and let d be the degree of p over p. The Weil pairing gives a primitive
n-th root of unity ζ in L. Since ζp = Frobp(ζ) = σ(ζ) = ζ−1, we find that p ≡ −1 (mod n).
After replacing σ by a Gal(L/Q)-conjugate if necessary, we have σd = Frobp ∈ Gal(L/K).
We obtain the desired E ′ by applying Lemma 5 to M = ρ(Frobp). �

Remark. It seems that the reason one cannot rule out the existence of supersingular primes
based on the mod n representations is that such an argument would also rule out the existence
of the primes above infinity, which act as if they were supersingular!

Theorem 6 gives credence to the conjecture that every elliptic curve over a number field
has infinitely many supersingular primes.

3Interestingly, the same condition appears in Ribet’s work on “raising the level” (see [Ri] and [Ri2,
Lemma 7.1]) and in Kolyvagin’s work.
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