LATTICES IN TATE MODULES

BJORN POONEN AND SERGEY RYBAKOV

Abstract. Refining a theorem of Zarhin, we prove that given a g -dimensional abelian variety X and an endomorphism u of X, there exists a matrix $A \in M_{2q}(\mathbb{Z})$ such that each Tate module $T_{\ell}X$ has a \mathbb{Z}_{ℓ} -basis on which the action of U is given by A.

1. Introduction

Let X be an abelian variety of dimension g over a field k of characteristic $p \geq 0$. Let End X be its endomorphism ring. Let $\text{End}^{\circ} X := (\text{End} X) \otimes \mathbb{Q}$. Define Tate modules

$$
T_{\ell} = T_{\ell} X := \underleftarrow{\lim}_{n} X[\ell^{n}](\overline{k}) \qquad V_{\ell} = V_{\ell} X := T_{\ell} X \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell} \qquad \text{for each } \ell \neq p
$$

$$
\mathbb{T} = \mathbb{T} X := \prod_{\ell \neq p} T_{\ell} X \qquad \mathbb{V} = \mathbb{V} X := \mathbb{T} X \otimes_{\mathbb{Z}} \mathbb{Q} = \prod_{\ell \neq p} (V_{\ell} X, T_{\ell} X);
$$

these are free rank 2g modules over \mathbb{Z}_{ℓ} , \mathbb{Q}_{ℓ} , $\hat{\mathbb{Z}}^{(p)} := \prod_{\ell \neq p} \mathbb{Z}_{\ell}$, and $\mathbb{A}^{(p)} := \hat{\mathbb{Z}}^{(p)} \otimes_{\mathbb{Z}} \mathbb{Q} :=$ $\prod'_{\ell \neq p}(\mathbb{Q}_\ell, \mathbb{Z}_\ell)$, respectively (all products and restricted products are over the finite primes ℓ , excluding p if $p > 0$).

Definition 1.1. Given rings $R \subseteq R'$ and corresponding modules $M \subseteq M'$, say that M is an R-lattice in M' if M has an R-basis that is an R'-basis for M' .

Zarhin [\[Zar20,](#page-2-0) Theorem 1.1] proved that given $u \in$ End[°] X, there exists a matrix $A \in$ $M_{2q}(\mathbb{Q})$ such that for every $\ell \neq p$, there is a \mathbb{Q}_{ℓ} -basis of V_{ℓ} on which the action of u is given by A; equivalently, there exists a u-stable Q-lattice in the $(\prod_{\ell\neq p} \mathbb{Q}_\ell)$ -module $\prod_{\ell\neq p} V_\ell$. Our main theorem refines this as follows:

Theorem 1.2.

- (a) For each $u \in$ End° X, there exists a u-stable Q-lattice $V \subset V$.
- (b) For each $u \in \text{End } X$, there exists a u-stable \mathbb{Z} -lattice $T \subset \mathbb{T}$.

The following restatement of [\(b\)](#page-0-0) answers a question implicit in [\[Zar20,](#page-2-0) Remark 1.2]:

Corollary 1.3. Let $u \in \text{End } X$. Then there exists a matrix $A \in M_{2g}(\mathbb{Z})$ such that for every $\ell \neq p$, there is a \mathbb{Z}_{ℓ} -basis of $T_{\ell}X$ on which the action of u is given by A .

Date: July 13, 2021.

²⁰²⁰ Mathematics Subject Classication. Primary 14K02; Secondary 14K05.

Key words and phrases. Abelian variety, Tate module, endomorphism.

This article arose out of a discussion initiated at the virtual conference "Arithmetic, Geometry, Cryptography and Coding Theory" hosted by the Centre International de Rencontres Math´ematiques in Luminy in 2021. B.P. was supported in part by National Science Foundation grant DMS-1601946 and Simons Foundation grants #402472 and #550033.

2. Proof

Lemma 2.1. Let E be a number eld contained in End° X. Let $\mathcal{O} = E \cap$ End X. Let $h = 2(\dim X)/[E:\mathbb{Q}]$. Then

- (i) The $(E \otimes_{\mathbb{Q}} \mathbb{Q}_\ell)$ -module V_ℓ is free of rank h.
- (ii) For each $\ell \nmid p$ disc \mathcal{O} , the $(\mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Z}_\ell)$ -module T_ℓ is free of rank h.
- (iii) The $(E \otimes_{\mathbb{Q}} \mathbb{A}^{(p)})$ -module $\mathbb {V}$ is free of rank h.

Proof.

- (i) This is [\[Rib76,](#page-2-1) Theorem 2.1.1].
- (ii) Fix $\ell \nmid p$ disc \mathcal{O} , where disc \mathcal{O} is the discriminant of \mathcal{O} . For each prime λ of \mathcal{O} dividing ℓ , let $\mathcal{O}_{\lambda} \subset E_{\lambda}$ be the completions of $\mathcal{O} \subset E$ at λ . Since $\ell \nmid \text{disc } \mathcal{O}$, the ring \mathcal{O}_{λ} is a discrete valuation ring with fraction field E_{λ} , and

$$
E \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell} \simeq \prod_{\lambda \mid \ell} E_{\lambda} \quad \text{ and } \quad \mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Z}_{\ell} \simeq \prod_{\lambda \mid \ell} \mathcal{O}_{\lambda}.
$$

These induce decompositions

$$
V_{\ell} = \prod_{\lambda | \ell} V_{\lambda} \quad \text{ and } \quad T_{\ell} = \prod_{\lambda | \ell} T_{\lambda}.
$$

By [\(i\)](#page-1-0), $\dim_{E_\lambda} V_\lambda = h$. Since T_λ is a torsion-free finitely generated \mathcal{O}_{λ} -module that spans V_{λ} , it is free of rank h over \mathcal{O}_{λ} . Thus $T_{\ell} = \prod_{\lambda|\ell} T_{\lambda}$ is free of rank h over $\mathcal{O}\otimes_{\mathbb{Z}}\mathbb{Z}_\ell\simeq \prod_{\lambda|\ell}\mathcal{O}_\lambda.$

(iii) We have
$$
E \otimes_{\mathbb{Q}} \mathbb{A}^{(p)} = \prod' (E \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}, \mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Z}_{\ell}),
$$
 so (iii) follows from (i) and (ii).

Proof of Theorem [1.2.](#page-0-1)

(a) We work in the category of abelian varieties over k up to isogeny. By $[Zar20,$ Theorem 2.4], u is contained in a subring of End[∘] X isomorphic to $\prod_i \mathcal{M}_{r_i}(E_i)$ for some number fields E_i . Then X is isogenous to $\prod Y_i^{r_i}$ for some abelian varieties Y_i with $E_i \subseteq \text{End}^{\circ} Y_i$. If we can find an E_i -stable Q-lattice $V_i \subset \mathbb{V}Y_i$ for each i, then we may take $V = \prod V_i^{r_i}$. In other words, we have reduced to the case that $u \in E \subseteq \text{End}^{\circ} X$ for some number field E. By Lemma $2.1(iii)$ $2.1(iii)$,

$$
\mathbb{V}=W\otimes_{\mathbb{Q}}(E\otimes_{\mathbb{Q}}\mathbb{A}^{(p)})
$$

for some Q-vector space W. Then $V := W \otimes_{\mathbb{Q}} E$ is a u-stable Q-lattice in V.

(b) Given $u \in \text{End } X$, choose V as in [\(a\)](#page-0-2). We have

$$
\mathbb{Q} \cap \hat{\mathbb{Z}}^{(p)} = \mathbb{Z}[1/p],
$$

which we interpret as Z if $p = 0$. Then $V \cap \mathbb{T}$ is a $\mathbb{Z}[1/p]$ -lattice in \mathbb{T} . Since $\mathbb{Z}[u] \subset \text{End } X$ is a finite Z-module, the Z|u|-submodule generated by any Z|||p|-basis of $V \cap \mathbb{T}$ is a u-stable \mathbb{Z} -lattice.

3. Generalizations and counterexamples

In Theorem [1.2,](#page-0-1) suppose that instead of fixing one endomorphism u , we consider a Q-subalgebra $R \subset \text{End}^{\circ} X$ (or subring $R \subset \text{End} X$) and ask for an R-stable Q-lattice (respectively, $\mathbb{Z}\text{-lattice}$), i.e., one that is r-stable for every $r \in R$.

- 1. If R is contained in a subring of End[∘] X isomorphic to $\prod_i M_{r_i}(E_i)$ for some number fields E_i , then the proof of Theorem [1.2](#page-0-1) shows that an R-stable lattice exists.
- 2. Serre observed that if X is an elliptic curve such that $\text{End}^{\circ} X$ is a quaternion algebra, then for $R = \text{End}^{\circ} X$, there is no R-stable Q-lattice in any V_{ℓ} , since R cannot act on a 2-dimensional Q-vector space.
- 3. If R is assumed to be commutative, then the conclusions of Theorem [1.2](#page-0-1) can still fail. For example, suppose that Y is an elliptic curve such that $\text{End}^{\circ} Y$ is a quaternion algebra B, and $X = Y^2$, and

$$
R = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} : a \in \mathbb{Q} \text{ and } b \in B \right\} \subset M_2(B) = \text{End}^{\circ} X.
$$

The ideal $\begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix}$ has square zero, so R is commutative. For each nonzero $b \in B$, we have

$$
\left(\begin{smallmatrix} 0 & b \\ 0 & 0 \end{smallmatrix}\right) X = 0 \times Y, \quad \text{so} \quad \left(\begin{smallmatrix} 0 & b \\ 0 & 0 \end{smallmatrix}\right) \mathbb{V} X = 0 \times \mathbb{V} Y,
$$

which is of rank 2.

Suppose that there is an R-stable Q-lattice V in $\mathbb{V}X$. Let $W := V \cap (0 \times \mathbb{V}Y)$, which is a Q-vector space of dimension at most 2. Then, for every nonzero $b \in B$, the image $\left(\begin{smallmatrix} 0 & b \\ 0 & 0 \end{smallmatrix}\right)$ V is a 2-dimensional Q-lattice in $0 \times \mathbb{V}Y$, contained in W, and hence equal to W. Thus we obtain a Q-linear injection

$$
\left(\begin{smallmatrix} 0 & B \\ 0 & 0 \end{smallmatrix}\right) \hookrightarrow \text{Hom}(V/W, W) \subset \text{End } V.
$$

It is an isomorphism since

$$
\dim\left(\begin{smallmatrix} 0 & B \\ 0 & 0 \end{smallmatrix}\right) = 4 = \dim \text{Hom}(V/W, W).
$$

Since $\dim_{\mathbb{Q}}(\begin{smallmatrix}0&b\0&0\end{smallmatrix})V=2$ for each nonzero $b\in B$, we have $\dim_{\mathbb{Q}}f(V)=2$ for each nonzero

$$
f \in \text{Hom}(V/W, W) \subset \text{End } V
$$
,

which is absurd. Thus there is no R-stable Q-lattice in $\mathbb{V}X$.

References

- [Rib76] Kenneth A. Ribet, Galois action on division points of Abelian varieties with real multiplications, Amer. J. Math. 98 (1976), no. 3, 751–804, DOI 10.2307/2373815. MR457455 ↑[2](#page-1-4)
- [Zar20] Yuri G. Zarhin, On matrices of endomorphisms of abelian varieties, Mathematics Research Reports 1 (2020), 55–68. \uparrow [1,](#page-0-3) [2](#page-1-4)

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA

Email address: poonen@math.mit.edu URL: <http://math.mit.edu/~poonen/>

Institute for information transmission problems of the Russian Academy of Sciences

Interdisciplinary Scientific Center J.-V. Poncelet (ISCP) Email address: rybakov.sergey@gmail.com