
APPENDIX A

Induction

Let’s explore the idea of induction a bit before getting into the formalities.

Example A.1 A simple inductive proof Suppose that A(n) is an assertion that depends on

n. For example, take A(n) to be the assertion “n! > 2n”. In attempting to decide whether or not

A(n) is true, we may first try to check it for some small values of n. In this example, A(1) = “1! > 21”

is false, A(2) = “2! > 22” is false, and A(3) = “3! > 23” is false; but A(4) = “4! > 24” is true. We

could go on like this, checking each value of n in turn, but this becomes quite tiring.

If we’re smart, we can notice that to show that A(5) is true, we can take the true statement

A(4) = “4! > 24” and multiply it by the inequality 5 > 2 to get 5! > 25. This proves that A(5) is

true without doing all of the multiplications necessary to verify A(5) directly. Since 6 > 2 and A(5)

is true, we can use the same trick to verify that A(6) is true. Since 7 > 2, we could use the fact that

A(6) is true to show that A(7) is true. This, too, becomes tiring.

If we think about what we are doing in a little more generality, we see that if we have verified

A(n−1) for some value of n > 2, we can combine this with n > 2 to verify A(n). This is a “generic”

or “general” description of how the validity of A(n−1) can be transformed into the validity of A(n).

Having verified that A(4) is true and given a valid generic argument for transforming the validity

of A(n − 1) into the validity of A(n), we claim that the statement “n! > 2n if n > 3” has been

proved by induction. We hope you believe that this is a proof, because the alternative is to list the

infinitude of cases, one for each n.

Here is a formulation of induction:

Theorem A.1 Induction Let A(m) be an assertion, the nature of which is dependent on

the integer m. Suppose that we have proved A(n) for n0 ≤ n ≤ n1 and the statement

“If n > n1 and A(k) is true for all k such that n1 ≤ k < n, then A(n) is true.”

Then A(m) is true for all m ≥ n0.

Definition A.1 The statement “A(k) is true for all k such that n1 ≤ k < n” is called the

induction assumption or induction hypothesis and proving that this implies A(n) is called

the inductive step. The values of n with n0 ≤ n ≤ n1 are called the base cases.

361

362 Appendix A Induction

In many situations, n0 = n1 and n1 = 0 or 1; however, this is not always true. In fact, our
example requires a different value of n1. Before reading further, can you identify n1 in Example A.1?

Can you identify the induction assumption?

∗ ∗ ∗ Stop and think about this! ∗ ∗ ∗

In our example, we started by proving A(4) = “4! > 24”, so n1 = 4. The induction assumption is:

k! > 2k is true for all k such that 4 ≤ k < n.

Remark. Sometimes induction is formulated differently. One difference is that people sometimes
use n + 1 in place of n. Thus the statement in the theorem would be

“If n ≥ n1 and A(k) is true for all n1 ≤ k ≤ n, then A(n + 1) is true.”

Another difference is that some people always formulate it with n0 = 1. Finally, some people restrict
the definition of induction even further by allowing you to use only A(n) to prove A(n + 1) (or,

equivalently, only A(n − 1) to prove A(n)), rather than the full range of A(k) for n0 ≤ k ≤ n.
Putting these changes together, we obtain the following more restrictive formulation of induction

that is found in some texts:

Corollary Restricted induction Let A(m) be an assertion, the nature of which is dependent

on the integer m. Suppose that we have proved A(1) and the statement

“If n > 1 and A(n − 1) is true then, A(n) is true.”

Then A(m) is true for all m ≥ 1.

Since this is a special case of Theorem A.1, we’ll just simply use Theorem A.1. While there is never

need to use a simpler form of induction than Theorem A.1, there is sometimes a need for a more
general forms of induction. Discussion of these generalizations is beyond the scope of the text.

Example A.2 A summation We would like a formula for the sum of the first n integers. Let

us write S(n) = 1 + 2 + . . . + n for the value of the sum. By a little calculation,

S(1) = 1, S(2) = 3, S(3) = 6, S(4) = 10, S(5) = 15, S(6) = 21.

What is the general pattern? It turns out that S(n) = n(n+1)
2 is correct for 1 ≤ n ≤ 6. Is it true in

general? This is a perfect candidate for an induction proof with

n0 = n1 = 1 and A(n) : “S(n) = n(n+1)
2 .” A.1

Let’s prove it. We have shown that A(1) is true. In this case we need only the restricted induction

hypothesis; that is, we will prove the formula for S(n) by using the formula for S(n − 1). Here it is
(the inductive step):

S(n) = 1 + 2 + · · · + n =
(

1 + 2 + · · · + (n − 1)
)

+ n

= S(n − 1) + n =
(n − 1)

(

(n − 1) + 1
)

2
+ n by A(n − 1),

=
n(n + 1)

2
by algebra.

This completes the proof.

363

Example A.3 Divisibility We will prove that for all integers x > 1 and all positive integers n,
x− 1 divides xn − 1. In this case n0 = n1 = 1, A(n) is the statement that x− 1 divides xn − 1. Since
A(1) states that x− 1 divides x− 1 it is obvious that A(1) is true. Now for the induction step. How
can we rephrase A(n) so that it involves A(n − 1)? After a bit of thought, you may come up with

xn − 1 = x(xn−1 − 1) + (x − 1). A.2

Once this is discovered, the rest is easy:

• By A(n − 1), xn−1 − 1 is divisible by x − 1, thus x(xn−1 − 1) is divisible by x − 1.

• Also, x − 1 divides x − 1.

• Thus the sum in (A.2) is divisible by x − 1.

This completes the proof.
We could have used the same proof as this one for the statement that the polynomial x − 1

divides the polynomial xn − 1 for all positive integers n.

In the last example, the hardest part was figuring out how to use A(n− 1) in the proof of A(n).
This is quite common:

Observation The difficult part of a proof by induction is often figuring out how to use the
inductive hypothesis.

Simple examples of inductive proofs may not make this clear. Another difficulty that can arise, as
happened in Example A.2, may be that we are not even given a theorem but are asked to discover it.

Example A.4 An integral formula We want to prove the formula
∫ 1

0

xa(1 − x)bdx =
a! b!

(a + b + 1)!

for nonnegative integers a and b.
What should we induct on? We could choose a or b. Let’s use b. Here it is with b replaced with

n to look more like our usual formulation:
∫ 1

0

xa(1 − x)ndx =
a! n!

(a + n + 1)!
. A.3

This is our A(n). Also n0 = n1 = 0, the smallest nonnegative integer. You should verify that A(0)
is true, thereby completing the first step in the inductive proof. (Remember that 0! = 1.)

How can we use our inductive hypothesis to prove A(n)? This is practically equivalent to asking
how to manipulate the integral in (A.3) so that the power of (1− x) is reduced. Finding the answer
depends on a knowledge of techniques of integration. Someone who has mastered them will realize
that integration by parts could be used to reduce the degree of 1− x in the integral. Let’s do it. In-
tegration by parts states that

∫

u dv = uv −
∫

v du. We set u = (1 − x)n and dv = xadx. Then

du = −n(1 − x)n−1, v = xa+1

a+1 and

∫ 1

0

xa(1 − x)ndx =
(1 − x)nxa+1

a + 1

∣

∣

∣

∣

1

0

+
n

a + 1

∫ 1

0

xa+1(1 − x)n−1dx

=
n

a + 1

∫ 1

0

xa+1(1 − x)n−1dx.

The last integral can be evaluated by A(n − 1) and so
∫ 1

0

xa(1 − x)ndx =
n

a + 1

(a + 1)! (n − 1)!

((a + 1) + (n − 1) + 1)!
=

a! n!

(a + n + 1)!
.

This completes the inductive step, thereby proving (A.3).

364 Appendix A Induction

We now do a more combinatorial inductive proof. This requires a definition from the first chap-
ter. If A is a set, let |A| stand for the number of elements in A.

Definition A.2 Cartesian Product If C1, . . . , Ck are sets, the Cartesian product of the

sets is written C1 × · · · × Ck and consists of all k long lists (x1, . . . , xk) with xi ∈ Ci for

1 ≤ i ≤ k.

Example A.5 Size of the Cartesian product We want to prove

|C1 × · · · × Cn| = |C1| · · · |Cn|. A.4

This is our A(n). Since this is trivially true for n = 1, it is reasonable to take n0 = n1 = 1. It turns

out that this choice will make the inductive step more difficult. It is better to choose n1 = 2. (Nor-

mally one would discover that part way through the proof. To simplify things a bit, we’ve “cheated”

by telling you ahead of time.)

To begin with, we need to prove A(2). How can this be done? This is the difficult part. Let’s

postpone it for now and do the inductive step.

We claim that

the sets C1 × · · · × Cn and (C1 × · · · × Cn−1) × Cn have the same number of elements.

Why is this? They just differ by pairs of parentheses: Suppose x1 ∈ C1, x2 ∈ C2, . . . and xn ∈ Cn.

Then

(x1, . . . , xn) ∈ C1 × · · · × Cn

and

((x1, . . . , xn−1), xn) ∈ (C1 × · · · × Cn−1) × Cn

just differ by pairs of parentheses. Thus

|C1 × · · · × Cn| = |(C1 × · · · × Cn−1) × Cn| by the above,

= |C1 × · · · × Cn−1| · |Cn| by A(2),

=
(

|C1| · · · |Cn−1|
)

|Cn| by A(n − 1).

This completes the inductive step. Note that this is different from our previous inductive proofs in

that we used both A(n − 1) and A(2) in the inductive step.

We must still prove A(2). Let C1 = {y1, . . . , yk}, where k = |C1|. Then

C1 × C2 = ({y1} × C2) ∪ · · · ∪ ({yk} × C2).

Since all of the sets in the union are disjoint, the number of elements in the union is the sum of the

number of elements in each of the sets separately. Thus

|C1 × C2| =
∣

∣{y1} × C2

∣

∣ + · · · +
∣

∣{yk} × C2

∣

∣.

You should be able to see that |{yi} × C2| = |C2|. Since the sum has k = |C1| terms, all of which

equal |C2|, we finally have |C1 × C2| = |C1| · |C2|.

365

Our final example requires more than A(2) and A(n − 1) to prove A(n).

Example A.6 Every integer is a product of primes A positive integer n > 1 is called a

prime if its only divisors are 1 and n. The first few primes are 2, 3, 5, 7, 11, 13, 17, 19, 23. We now

prove that every integer n > 1 is a product of primes, where we consider a single prime p to be a

product of one prime, itself. We shall prove A(n):

“Every integer n ≥ 2 is a product of primes.”

We start with n0 = n1 = 2, which is a prime and hence a product of primes. Assume the induc-

tion hypothesis and consider A(n). If n is a prime, then it is a product of primes (itself). Otherwise,

n has a divisor s with 1 < s < n and so n = st where 1 < t < n. By the induction hypotheses A(s)

and A(t), s and t are each a product of primes, hence n = st is a product of primes. This completes

the proof of A(n)

In all except Example A.5, we used algebra or calculus manipulations to arrange A(n) so that

we could apply the inductive hypothesis. In Example A.5, we used a set theoretic argument: We

found that the elements in the set C1 × · · · × Cn could be put into one to one correspondence with

the elements in the set (C1 × · · · ×Cn−1)×Cn. This sort of set-theoretic argument is more common

in combinatorial inductive proofs than it is in noncombinatorial ones.

Exercises

In these exercises, indicate clearly

(i) what n0, n1 and A(n) are,

(ii) what the inductive step is and

(iii) where the inductive hypothesis is used.

A.1. Prove that the sum of the first n odd numbers is n2.

A.2. Prove that
∑n

k=0 k2 = n(n + 1)(2n + 1)/6 for k ≥ 0.

A.3. Conjecture and prove the general formula of which the following are special cases:

1 − 4 + 9 − 16 = −(1 + 2 + 3 + 4)

1 − 4 + 9 − 16 + 25 = 1 + 2 + 3 + 4 + 5.

*A.4. Conjecture and prove the general formula of which the following are special cases:

x

1 + x
+

2x2

1 + x2
=

x

1 − x
−

4x4

1 − x4

x

1 + x
+

2x2

1 + x2
+

4x4

1 + x4
=

x

1 − x
−

8x8

1 − x8
.

A.5. Some calculus texts omit the proof of (xn)′ = nxn−1 or slide over the inductive nature of the proof.

Give a proper inductive proof for n ≥ 1 using x′ = 1 and the formula for the derivative of a prod-
uct.

A.6. Conjecture and prove a formula for
∫ ∞

0
xne−xdx for n ≥ 0. (Your answer should not include inte-

grals.)

366 Appendix A Induction

A.7. What is wrong with the following inductive proof that all people have the same sex? Let A(n) be “In
any group of n people, all people are of the same sex.” This is obviously true for n = 1. For n > 1,
label the people P1, . . . , Pn. By the induction assumption, P1, . . . , Pn−1 are all of the same sex and
P2, . . . , Pn are all of the same sex. Since P2 belongs to both groups, the sex of the two groups is the
same and so we are done.

A.8. We will show by induction that 1 + 2 + · · · + n = (2n + 1)2/8. By the inductive hypothesis,

1 + 2 + · · ·+ (n − 1) = (2n − 1)2/8. Adding n to both sides and using n + (2n − 1)2/8 = (2n + 1)/8,
we obtain the formula. What is wrong with this proof?

A.9. Imagine drawing n distinct straight lines so as to divide the plane into regions in some fashion. Prove
that the regions can be assigned numbers 0 and 1 so that if two regions share a line segment in their
boundaries, then they are numbered differently.

APPENDIX B

Rates of Growth
and

Analysis of Algorithms

Suppose we have an algorithm and someone asks us “How good is it?” To answer that question,

we need to know what they mean. They might mean “Is it correct?” or “Is it understandable?” or

“Is it easy to program?” We won’t deal with any of these.

They also might mean “How fast is it?” or “How much space does it need?” These two

questions can be studied by similar methods, so we’ll just focus on speed. Even now, the ques-

tion is not precise enough. Does the person mean “How fast is it on this particular problem

and this particular machine using this particular code and this particular compiler?” We could

answer this simply by running the program! Unfortunately, that doesn’t tell us what would

happen with other machines or with other problems that the algorithm is designed to han-

dle.

We would like to answer a question such as “How fast is Algorithm 1 for finding a span-

ning tree?” in such a way that we can compare that answer to “How fast is Algorithm 2 for

finding a spanning tree?” and obtain something that is not machine or problem dependent. At

first, this may sound like an impossible goal. To some extent it is; however, quite a bit can be

said.

How do we achieve machine independence? We think in terms of simple machine operations such

as multiplication, fetching from memory and so on. If one algorithm uses fewer of these than an-

other, it should be faster. Those of you familiar with computer instruction timing will object that

different basic machine operations take different amounts of time. That’s true, but the times are

not wildly different. Thus, if one algorithm uses a lot fewer operations than another, it should be

faster. It should be clear from this that we can be a bit sloppy about what we call an operation;

for example, we might call something like x = a + b one operation. On the other hand, we can’t

be so sloppy that we call x = a1 + · · · + an one operation if n is something that can be arbitrarily

large.

Suppose we have an algorithm for a class of problems. If we program the algorithm in some lan-

guage and use some compiler to produce code that we run on some machine, then there is a function

f(n) that measures the average (or worst, if you prefer) running time for the program on problems

367

368 Appendix B Rates of Growth and Analysis of Algorithms

of size n. We want to study how f(n) grows with n, but we want to express our answers in a man-

ner that is independent of the language, compiler, and computer. Mathematicians have introduced

notation that is quite useful for studying rates of growth in this manner. We’ll study the notation

in this appendix.

B.1 The Basic Functions

Example B.1 Let’s look at how long it takes to find the maximum of a list of n integers where

we know nothing about the order they are in or how big the integers are. Let a1, . . . , an be the list

of integers. Here’s our algorithm for finding the maximum.

max = a1

For i = 2, . . . , n

If ai > max, then max = ai.

End for

Return max

Being sloppy, we could say that the entire comparison and replacement in the “If” takes an

operation and so does the stepping of the index i. Since this is done n − 1 times, we get 2n − 2

operations. There are some setup and return operations, say s, giving a total of 2n − 2 + s op-

erations. Since all this is rather sloppy all we can really say is that for large n and actual code

on an actual machine, the procedure will take about Cn “ticks” of the machine’s clock. Since we

can’t determine C by our methods, it will be helpful to have a notation that ignores it. We use

Θ(f(n)) to designate any function that behaves like a constant times f(n) for arbitrarily large n.

Thus we would say that the “If” takes time Θ(n) and the setup and return takes time Θ(1).

Thus the total time is Θ(n) + Θ(1). Since n is much bigger than 1 for large n, the total time is

Θ(n).

We need to define Θ more precisely and list its most important properties. We will also find it

useful to define O , read “big oh.”

Definition B.1 Notation for Θ and O Let f and g be functions from the positive integers

to the real numbers.

• We say that g(n) is O(f(n)) if there exists a positive constant B such that |g(n)| ≤ B|f(n)|
for all sufficiently large n. In this case we say that g grows no faster than f or, equivalently,

that f grows at least as fast as g.

• We say that g(n) is O+(f(n)) if g(n) is O(f(n)) and g(n) ≥ 0 for sufficiently large

n.

• We say that g(n) is Θ(f(n)) if (i) g(n) is O(f(n)) and (ii) f(n) is O(g(n)). In this case we

say that f and g grow at the same rate.

• We say that g(n) is Θ+(f(n)) if g(n) is Θ(f(n)) and g(n) ≥ 0 for sufficiently large

n.

Appendix B 369

Remarks 1. The phrase “S(n) is true for all sufficiently large n” means that there is some integer

N such that S(n) is true whenever n ≥ N .

2. Saying that something is Θ+(f(n)) gives an idea of how big it is for large values of n. Saying that

something is O+(f(n)) gives an idea of an upper bound on how big it is for all large values of n. (We

said “idea of” because we don’t know what the constants are.)

3. The notation O+ and Θ+ is not standard. We have introduced it because it is convenient when

combining functions.

Theorem B.1 Some properties of Θ and O We have

(a) g(n) is Θ(f(n)) if and only if there are positive constants A and B such that

A|f(n)| ≤ |g(n)| ≤ B|f(n)| for all sufficiently large n.

(b) If g(n) is Θ+(f(n)), then g(n) is Θ(f(n)).

If g(n) is O+(f(n)), then g(n) is O(f(n)).

If g(n) is Θ(f(n)), then g(n) is O(f(n)).

(c) f(n) is Θ(f(n)) and f(n) is O(f(n)).

(d) If g(n) is Θ(f(n)) and C and D are nonzero constants, then Cg(n) is Θ(Df(n)).

If g(n) is O(f(n)) and C and D are nonzero constants, then Cg(n) is O(Df(n)).

(e) If g(n) is Θ(f(n)), then f(n) is Θ(g(n)).

(f) If g(n) is Θ(f(n)) and f(n) is Θ(h(n)), then g(n) is Θ(h(n)).

If g(n) is O(f(n)) and f(n) is O(h(n)), then g(n) is O(h(n)).

(g) If g1(n) is Θ(f1(n)) and g2(n) is Θ(f2(n)), then g1(n)g2(n) is Θ(f1(n)f2(n)) and,

if in addition f2 and g2 are never zero, then g1(n)/g2(n) is Θ(f1(n)/f2(n)).

If g1(n) is O(f1(n)) and g2(n) is O(f2(n)), then g1(n)g2(n) is O(f1(n)f2(n)).

(h) If g1(n) is Θ+(f1(n)) and g2(n) is Θ+(f2(n)), then g1(n)+g2(n) is Θ+
(

max
(

|f1(n)|, |f2(n)|
))

.

If g1(n) is O(f1(n)) and g2(n) is O(f2(n)), then g1(n) + g2(n) is O
(

max
(

|f1(n)|, |f2(n)|
))

.

(i) If g(n) is Θ+(f(n)) and h(n) is O+(f(n)), then g(n) + h(n) is Θ+(f(n)).

Note that by Theorem 5.1 (p. 127) and properties (c), (e) and (f) above, the statement “g(n)

is Θ(f(n))” defines an equivalence relation on the set of functions from the positive integers to

the reals. Similarly, “g(n) is Θ+(f(n))” defines an equivalence relation on the set of functions

which are positive for sufficiently large n.

370 Appendix B Rates of Growth and Analysis of Algorithms

Proof: If you completely understand the definitions of O , O+, Θ, and Θ+, many parts of the the-
orem will be obvious to you. None of the parts is difficult to prove and so we leave most of the proofs

as an exercise. To help you out, we’ll do a couple of proofs.

We’ll do (f) for Θ. By (a), there are nonzero constants Ai and Bi such that

A1|f(n)| ≤ |g(n)| ≤ B1|f(n)|

and

A2|h(n)| ≤ |f(n)| ≤ B2|h(n)|

for all sufficiently large n. It follows that

A1A2|h(n)| ≤ A1|f(n)| ≤ |g(n)| ≤ B1|f(n)| ≤ B1B2|h(n)|

for all sufficiently large n. With A = A1A2 and B = B1B2, it follows that g(n) is Θ(h(n)).

We’ll do (h) for Θ+. By (a), there are nonzero constants Ai and Bi such that

A1|f1(n)| ≤ g1(n) ≤ B1|f1(n)| and A2|f2(n)| ≤ g2(n) ≤ B2|f2(n)|

for sufficiently large n. Adding gives

A1|f1(n)| + A2|f2(n)| ≤ g1(n) + g2(n) ≤ B1|f1(n)| + B2|f2(n)| B.1

We now do two things. First, let A = min(A1, A2) and note that

A1|f1(n)| + A2|f2(n)| ≥ A
(

|f1(n)| + |f2(n)|
)

≥ Amax
(

|f1(n)|, |f2(n)|
)

.

Second, let B = 2 max(B1, B2) and note that

B1|f1(n)| + B2|f2(n)| ≤ B
(

|f1(n)| + |f2(n)|
)

2

≤ B 2 max(|f1(n)|, |f2(n)|
)

2
= B max

(

|f1(n)|, |f2(n)|
)

.

Using these two results in (B.1) gives

Amax
(

|f1(n)|, |f2(n)|
)

≤ g1(n) + g2(n) ≤ B max(|f1(n)|, |f2(n)|
)

,

which proves that g1(n) + g2(n) is Θ+ max
(

|f1(n)|, |f2(n)|
)

.

Example B.2 Using the notation To illustrate these ideas, we’ll consider three algorithms for
evaluating a polynomial p(x) of degree n at some point r; i.e., computing p0 + p1r + · · ·+ pnrn. We

are interested in how fast they are when n is large. Here are the procedures. You should convince

yourself that they work.

Poly1(n, p, r)

S = p0

For i = 1, . . . , n S = S + pi∗Pow(r, i).
Return S

End

Pow(r, i)

P = 1

For j = 1, . . . , i P = P ∗ r.
Return P

End

Appendix B 371

Poly2(n, p, r)

S = p0

P = 1

For i = 1, . . . , n

P = P ∗ r

S = S + pi ∗ P

End for

Return S

End

Poly3(n, p, r)

S = pn

/* Here i decreases from n to 1. */

For i = n, . . . , 2, 1 S = S ∗ r + pi−1

Return S

End

Let Tn(Name) be the time required for the procedure Name. Let’s analyze Poly1. The “For”

loop in Pow is executed i times and so takes Ci operations for some constant C > 0. The setup

and return in Pow takes some constant number of operations D > 0. Thus Tn(Pow) = Ci + D

operations. As a result, the ith iteration of the “For” loop in Poly1 takes Ci + E opera-

tions for some constants C and E > D. Adding this over i = 1, 2, . . . , n, we see that the

total time spent in the “For” loop is Θ+(n2) since
∑n

i=1 i = n(n + 1)/2. (You should write

out the details.) Since the rest of Poly1 takes Θ+(1) time, Tn(Poly1) is Θ+(n2) by Theo-

rem B.1(h).

The amount of time spent in the “For” loop of Poly2 is constant and the loop is executed n

times. It follows that Tn(Poly2) is Θ+(n). The same analysis applies to Poly3.

What can we conclude from this about the comparative speed of the algorithms? By Theo-

rem B.1(a), Θ+, there are positive reals A and B so that An2 ≤ Tn(Poly1) and Tn(Poly2) ≤ Bn

for sufficiently large n. Thus Tn(Poly2)/Tn(Poly1) ≤ B/An. As n gets larger, Poly2 looks better

and better compared to Poly1.

Unfortunately, the crudeness of Θ does not allow us to make any distinction between Poly2 and

Poly3. What we can say is that Tn(Poly2) is Θ+(Tn(Poly3)); i.e., Tn(Poly2) and Tn(Poly3) grow

at the same rate. A more refined estimate can be obtained by counting the actual number of oper-

ations involved. You should compare the number of multiplications required and thereby obtain a

more refined estimate.

So far we’ve talked about how long an algorithm takes to run as if this were a simple,

clear concept. In the next example we’ll see that there’s an important point that we’ve ig-

nored.

372 Appendix B Rates of Growth and Analysis of Algorithms

Example B.3 What is average running time? Let’s consider the problem of (a) deciding

whether or not a simple graph1 can be properly colored with four colors and, (b) if a proper color-

ing exists, producing one. (A proper coloring is a function λ: V → C, the set of colors, such that, if

{u, v} is an edge, then λ(u) 6= λ(v).) We may as well assume that V = n and that the colors are c1,

c2, c3 and c4.

Here’s a simple algorithm to determine a λ by using backtracking to go lexicographically through

possible colorings λ(1), λ(2), . . . , λ(n).

1. Initialize: Set v = 1 and λ(1) = c1.

2. Advance in decision tree: If v = n, stop with λ determined; otherwise, set v = v + 1 and

λ(v) = c1.

3. Test: If λ(i) 6= λ(v) for all i < v for which {i, v} ∈ E, go to Step 2.

4. Select next decision: Let j be such that λ(v) = cj . If j < 4, set λ(v) = cj+1 and go to Step

3.

5. Backtrack: If v = 1, stop with coloring impossible; otherwise, set v = v − 1 and go to Step

4.

How fast is this algorithm? Obviously it will depend on the graph. For example, if the sub-

graph induced by the first five vertices is the complete graph K5 (i.e., all of the ten possible

edges are present), then the algorithm stops after trying to color the first five vertices and dis-

covering that there is no proper coloring. If the last five vertices induce K5 and the remain-

ing n − 5 vertices have no edges, then the algorithm makes Θ+(4n) assignments of the form

λ(v) = ck.

It’s reasonable to talk about the average time the algorithm takes if we expect to give it lots

of graphs to look at. Most n vertex graphs will have many sets of five vertices that induce K5. (We

won’t prove this.) Thus, we should expect that the algorithm will stop quickly on most graphs. In

fact, it can be proved that the average number of assignments of the form λ(v) = ck that are made

is Θ+(1). This means that the average running time of the algorithm is bounded for all n, which is

quite good!

Now suppose you give this algorithm to a friend, telling him that on average the run-

ning time is practically independent of the number of vertices. He thanks you profusely for

such a wonderful algorithm and puts it to work coloring randomly generated “planar” graphs.

By the Four Color Theorem, every planar graph can be properly colored with four colors, so

the algorithm must make at least n assignments of the form λ(v) = ck. (Actually it will al-

most surely make many, many more.) Your friend soon comes back to you complaining bit-

terly.

What went wrong? In our previous discussion we were averaging over all simple graphs with

n vertices. Your friend was interested in the average over all simple planar graphs with n vertices.

These averages are very different! There is a moral here:

You must be VERY clear what you are averaging over.

Because situations like this do occur in real life, computer scientists are careful to specify what

kind of running time they are talking about; either the average of the running time over some

reasonable, clearly specified set of problems or the worst (longest) running time over all possibili-

ties.

1 A “simple graph” is a set V , called vertices, and a set E of two element subsets of V , called

edges. One thinks of an edge {u, v} as joining the two vertices u and v.

Appendix B 373

Example B.4 Which algorithm is faster? Suppose we have two algorithms for a problem,

one of which is Θ+(n2) and the other of which is Θ+(n2 ln lnn). Which is better?2 It would

seem that the first algorithm is better since n2 grows slower than n2 ln lnn. That’s true if n

is large enough. How large is large enough? In other words, what is the crossover point, the

time when we should switch from one algorithm to the other in the interests of speed? To de-

cide, we need to know more than just Θ+() because that notation omits constants. Suppose

one algorithm has running time close to 3n2, and the other, close to n2 ln lnn. The second al-

gorithm is better as long as 3 > ln lnn. Exponentiating twice, we get n < ee3

, which is about

5 × 108. This is a large crossover point! On the other hand, suppose the first algorithm’s running

time is close to n2. In that case, the second algorithm is better as long as 1 > ln ln n, that is,

n < ee, which is about 15. A slight change in the constant caused a huge change in the crossover

point!

If slight changes in constants matter this much in locating crossover points, what good is

Θ+() notation? We’ve misled you! The crossover points are not that important. What matters

is how much faster one algorithm is than another. If one algorithm has running time An2 and

the other has running time Bn2 ln lnn, the ratio of their speeds is (B/A) ln lnn. This is fairly

close to B/A for a large range of n because the function ln lnn grows so slowly. In other words,

the running time of the two algorithms differs by nearly a constant factor for practical values of

n.

We’re still faced with a problem when deciding between two algorithms since we don’t know

the constants. Suppose both algorithms are Θ+(n2). Which do we choose? If you want to be cer-

tain you have the faster algorithm, you’ll either have to do some very careful analysis of the code or

run the algorithms and time them. However, there is a rule of thumb that works pretty well: More

complicated data structures lead to larger constants.

Let’s summarize what we’ve learned in the last two paragraphs. Suppose we want to choose

the faster of Algorithm A whose running time is Θ+(a(n)) and Algorithm B whose running time is

Θ+(b(n)).)

• If possible, simplify a(n) and b(n) and ignore all slowly growing functions of n such as ln lnn.

(“What about lnn?” you ask. That’s a borderline situation. It’s usually better to keep it.) This

gives two new functions a∗(n) and b∗(n).

• If a∗(n) = Θ+(b∗(n)), choose the algorithm with the simpler data structures; otherwise, choose

the algorithm with the smaller function.

These rules are far from foolproof, but they provide some guidance.

We now define two more notations that are useful in discussing rate of growth. The notation o

is read “little oh”. There is no standard convention for reading ∼.

Definition B.2 Notation for o and ∼ Let f , g and h be functions from the positive

integers to the real numbers.

• If limn→∞ g(n)/f(n) = 1, we say that g(n) ∼ f(n). In this case, we say that f and g are

asymptotically equal.

• If limn→∞ h(n)/f(n) = 0, we say that hf(n) is o(g(n)). In this case, we say that h grows

slower than f or, equivalently, that f grows faster than h.

2 This situation actually occurs, see the discussion at the end of Example 6.3 (p. 152).

374 Appendix B Rates of Growth and Analysis of Algorithms

Asymptotic equality has many of the properties of equality. The two main exceptions are cancellation

and exponentiation:

• You should verify that n2 + 1 ∼ n2 + n and cancelling the n2 from both sides is bad because

1 ∼ n is false.

• You should verify that exponentiation is bad by showing that en2+1 ∼ en2+n is false. In fact,

you should verify that en2+1 is o(en2+n).

In the following theorem, we see that asymptotic equality defines an equivalence relation (d), al-

lows multiplication and division (c, e), and allows addition of functions with the same sign (f). You

should verify that Theorem B.1 says the same thing for Θ().

Theorem B.2 Some properties of o and ∼ We have

(a) If g(n) is o(f(n)), then g(n) is O(f(n)).

If f(n) ∼ g(n), then f(n) is Θ(g(n)).

(b) f(n) is not o(f(n)).

(c) If g(n) is o(f(n)) and C and D are nonzero constants, then Cg(n) is o(Df(n)).

If g(n) ∼ f(n) and C is a nonzero constant, then Cg(n) ∼ Cf(n).

(d) “g(n) ∼ f(n)” defines and equivalence relation.

(e) If g1(n) is o(f1(n)) and g2(n) is o(f2(n)), then g1(n)g2(n) is o(f1(n)f2(n)).

If g1(n) ∼ f1(n) and g2(n) ∼ f2(n), then g1(n)g2(n) ∼ f1(n)f2(n)

and g1(n)/g2(n) ∼ f1(n)/f2(n).

(f) If g1(n) is o(f1(n)) and g2(n) is o(f2(n)), then g1(n) + g2(n) is o(max(f1(n), f2(n))).

If g1(n) ∼ f1(n) and g2(n) ∼ f2(n) and f1(n) and g1(n) are nonnegative for all sufficiently

large n, then g1(n) + g2(n) ∼ f1(n) + f2(n).

(g) If h(n) is o(f(n)) and g(n) ∼ f(n), then g(n) + h(n) ∼ f(n).

If h(n) is o(f(n)) and g(n) is Θ(f(n)), then g(n) + h(n) is Θ(f(n)).

If h(n) is o(f(n)) and g(n) is O(f(n)), then g(n) + h(n) is O(f(n)).

(h) If g1(n) is o(f1(n)) and g2(n) is O(f2(n)), then g1(n)g2(n) is o(f1(n)f2(n)).

The proof is left as an exercise. We’ll see some applications in the next section.

Exercises

B.1.1. Prove the properties of Θ(), Θ+(), O(), and O+() given in Theorem B.1.

B.1.2. Prove by example that (g) in Theorem B.1 does not hold for Θ.

B.1.3. Prove or disprove the statement:
“g(n) is O(f(n))” defines an equivalence relation for functions from the positive integers to the
nonnegative reals (as did the corresponding statement for Θ).

B.1.4. In each case, prove that f(x) is Θ(g(x)) using the definition of Θ().

(a) f(x) = x3 + 5x2 + 10, g(x) = 20x3.

(b) f(x) = x2 + 5x2 + 10, g(x) = 200x2.

Appendix B 375

B.1.5. In each case, show that the given series has the indicated property.

(a)
∑n

i=1 i2 is Θ(n3).

(b)
∑n

i=1 i3 is Θ(n4).

(c)
∑n

i=1 i1/2 is Θ(n3/2).

B.1.6. Show each of the following

(a)
∑n

i=1 i−1 is Θ(logb(n)) for any base b > 1.

(b) logb(n!) is O(n logb(n)) for any base b > 1

B.1.7. We have three algorithms for solving a problem for graphs. Suppose algorithm A takes n2 millisec-
onds to run on a graph with n vertices, algorithm B takes 100n milliseconds and algorithm C takes

100(2n/10 − 1) milliseconds.

(a) Compute the running times for the three algorithms with n = 5, 10, 30, 100 and 300. Which
algorithm is fastest in each case? slowest?

(b) Which algorithm is fastest for all very large values of n? Which is slowest?

B.1.8. Prove Theorem B.2.

B.1.9. Let p(x) be a polynomial of degree k with positive leading coefficient and suppose that a > 1. Prove
the following.

(a) Θ(p(n)) is Θ(nk).

(b) O(p(n)) is O(nk).

(c) p(n) = o(an). (Also, what does this say about the speed of a polynomial time algorithm versus
one which takes exponential time?)

(d) O(ap(n)) is O(aCnk

) for some C > 0.

(e) Unless p(x) = p1xk + p2 for some p1 and p2, there is no C such that ap(n) is Θ(aCnk

).

B.1.10. Suppose 1 < a < b and f(n) → +∞ as n → ∞. Prove that

af(n) = o(bf(n)) and ag(n) = o(af(n)+g(n)),

for all functions g(n).

B.1.11. Consider the following algorithm for determining if the distinct integers a1, a2, . . . , an are in increas-
ing order.

For i = 2, . . . , n

If ai−1 > ai, return ‘‘out of order.’’

End for

Return ‘‘in order.’’

(a) Discuss worst case running time.

(b) Discuss average running time for all permutations of n.

(c) Discuss average running time for all permutations of 2n such that a1 < a2 < · · · < an.

376 Appendix B Rates of Growth and Analysis of Algorithms

B.2 Doing Arithmetic

If we try to use Theorems B.1 and B.2 in a series of calculations, the lack of arithmetic notation

becomes awkward. You’re already familiar with the usefulness of notation; for example, when one

understands the notation, it is easier to understand and verify the statement

(ax − b)2 = a2x2 − 2abx + b2

than it is to understand and verify the statement

The square of the difference between the product of a and x and b equals the square of a
times the square of x decreased by twice the product of a, b and x and increased by the

square of b.

If we simply interpret “is” in the theorems as an equality, we run into problems. For ex-

ample, we would then say that since n = O(n) and n + 1 = O(n), we would have n =
n + 1. How can we introduce arithmetic notation and avoid such problems? The key is to re-

define Θ, O and o slightly using sets. Let Θ∗, O∗ and o∗ be our old definitions. Our new ones

are:

• Θ(f(n)) = {g(n) | g(n) is Θ∗(f(n))},
• Θ+(f(n)) = {g(n) | g(n) is Θ∗(f(n)) and g(n) is positive for large n},
• O(f(n)) = {g(n) | g(n) is O∗(f(n))},
• O+(f(n)) = {g(n) | g(n) is O∗(f(n)) and g(n) is positive for large n},
• o(f(n)) = {g(n) | g(n) is o∗(f(n))}.

If we replace “is” with “is in”, Theorems B.1 and B.2 are still correct. For example, the last part

Theorem B.1(b) becomes

If g(n) ∈ Θ(f(n)), then g(n) ∈ O(f(n)).

We want to make two other changes:

• Replace functions, numbers, and so on with sets so that we use ⊆ instead of ∈. For example,
instead of 5n ∈ O(n), we say {5n} ⊆ O(n).

• An arithmetic operation between sets is done element by element; for example,

A + B = {a + b | a ∈ A and b ∈ B}.

Let’s rewrite parts of Theorem B.1 using this notation:

(b) If {g(n)} ⊆ Θ+(f(n)), then {g(n)} ⊆ Θ(f(n)).

If {g(n)} ⊆ O+(f(n)), then {g(n)} ⊆ O(f(n)).

If {g(n)} ⊆ Θ(f(n)), then {g(n)} ⊆ O(f(n)).

(f) If {g(n)} ⊆ Θ(f(n)) and {f(n)} ⊆ Θ(h(n)), then {g(n)} ⊆ Θ(h(n)).

If {g(n)} ⊆ O(f(n)) and {f(n)} ⊆ O(h(n)), then {g(n)} ⊆ O(h(n)).

(i) If {g(n)} ⊆ Θ+(f(n)) and {h(n)} ⊆ O+(f(n)), then {g(n) + h(n)} ⊆ Θ+(f(n)).

We leave it to you to translate other parts and to translate Theorem B.2.

In practice, people simplify the notation we’ve introduced by replacing things like {f(n)} with
f(n), which is good since it makes these easier to read. They also replace ⊆ with =, which is dan-

gerous but is, unfortunately, the standard convention. We’ll abide by these conventions, but will

remind you of what we’re doing by footnotes in the text.

Appendix B 377

Example B.5 Using the notation The statement f(n) ∼ g(n) is equivalent to the statement

f(n) = g(n)(1 + o(1)) and also to f(n) = g(n) + o(g(n)). The first is because f(n)/g(n) → 1 if and

only if f(n)/g(n) = 1 + o(1). The second follows from

g(n)(1+o(1)) = g(n)+g(n)o(1) = g(n)+o(g(n)) and g(n)+o(g(n)) = g(n)+g(n)o(1) = g(n)(1+o(1)).

Why do we need the second of these statements?

∗ ∗ ∗ Stop and think about this! ∗ ∗ ∗

Remember that = really means ⊆, so the first statement shows that g(n)(1 + o(1)) ⊆ g(n)+ o(g(n))

and the second shows that g(n) = o(g(n)) ⊆ g(n)(1 + o(1)). Taken together, the two statements

show that the sets g(n)(1 + o(1)) and g(n) + o(g(n)) are equal and so f(n) is in one if and only if

it is in the other.

We can include functions of sets: Suppose S is a subset of the domain of the function F , define

F (S) = {f(s) | s ∈ S}. With this notation,

eo(1) = 1 + o(1) = eo(1) and eO(1) = O+(1);

however, O+(1) 6= eO(1). Why is this?

∗ ∗ ∗ Stop and think about this! ∗ ∗ ∗

We have e−n ∈ O+(1) but, since n 6∈ O(1), e−n 6∈ eO(1)

Everything we’ve done so far is with functions from the positive integers to the reals and

we’ve asked what happens as n → ∞. We can have functions on other sets and ask what hap-

pens when we take a different limit. For example, the definition of a derivative can be written

as
f(x + h) − f(x)

h
∼ f ′(x) as h → 0,

provided f ′(x) 6= 0. Taylor’s theorem with remainder can be written

f(x) =

n
∑

k=0

fk)(0)xk

k!
+ O(xn+1) as x → 0,

provided f (n+1)(x) is well behaved near x = 0. Of course, this is not as good as the form in your

calculus book because it says nothing about how big the error term, O(xn+1) is for a particular

function f(x).

B.3 NP-Complete Problems

Computer scientists talk about “polynomial time algorithms.” What does this mean? Suppose that

the algorithm can handle arbitrarily large problems and that it takes Θ(n) seconds on a problem of

“size” n. Then we call it a linear time algorithm. More generally, if there is a (possibly quite large)

integer k such that the worst case running time on a problem of “size” n is O(nk), then we say the

algorithm is polynomial time.

You may have noticed the quotes around size and wondered why. It is necessary to specify

what we mean by the size of a problem. Size is often interpreted as the number of bits required

to specify the problem in binary form. You may object that this is imprecise since a problem can

378 Appendix B Rates of Growth and Analysis of Algorithms

be specified in many ways. This is true; however, the number of bits in one “reasonable” repre-

sentation doesn’t differ too much from the number of bits in another. We won’t pursue this fur-

ther.

If the worst case time for an algorithm is polynomial, theoretical computer scientists think

of this as a good algorithm. (This is because polynomials grow relatively slowly; for example, ex-

ponential functions grow much faster.) The problem that the algorithm solves is called tractable.

Do there exist intractable problems; i.e., problems for which no polynomial time algorithm can

ever be found? Yes, but we won’t study them here. More interesting is the fact that there are a large

number of practical problems for which

• no polynomial time algorithm is known and

• no one has been able prove that the problems are intractable.

We’ll discuss this a bit. Consider the following problems.

• Coloring Problem: For any c > 2, devise an algorithm whose input can be any simple

graph and whose output answers the question “Can the graph be properly colored in c col-

ors?”

• Traveling Salesman Problem: For any B, devise an algorithm whose input can be any n > 0 and

any edge labeling λ:P2(n) → R for Kn, the complete graph on n vertices. The algorithm must

answer the question “Is there a cycle through all n vertices with cost B or less?” (The cost of a

cycle is the sum of λ(e) over all e in the cycle.)

• Language Recognition Problem: Devise an algorithm whose input is two finite sets S and T and

an integer k. The elements of S and T are finite strings of zeroes and ones. The algorithm must

answer the question “Does there exist a finite automaton with k states that accepts all strings

in S and accepts none of the strings in T ?”

No one knows if these problems are tractable, but it is known that, if one is tractable, then they

all are. There are hundreds more problems that people are interested in which belong to this par-

ticular list in which all or none are tractable. These problems are called NP-complete Many people

regard deciding if the NP-complete problems are tractable to be one of the foremost open problems

in theoretical computer science.

The NP-complete problems have an interesting property which we now discuss. If the algo-

rithm says “yes,” then there must be a specific example that shows why this is so (an assign-

ment of colors, a cycle, an automaton). There is no requirement that the algorithm actually pro-

duce such an example. Suppose we somehow obtain a coloring, a cycle or an automaton which is

claimed to be such an example. Part of the definition of NP-complete requires that we be able

to check the claim in polynomial time. Thus we can check a purported example quickly but, so

far as is known, it may take a long time to determine if such an example exists. In other words,

I can check your guesses quickly but I don’t know how to tell you quickly if any examples ex-

ist.

There are problems like the NP-complete problems where no one knows how to do any check-

ing in polynomial time. For example, modify the traveling salesman problem to ask for the min-

imum cost cycle. No one knows how to verify in polynomial time that a given cycle is actu-

ally the minimum cost cycle. If the modified traveling salesman problem is tractable, so is the

one we presented above: You need only find the minimum cost cycle and compare its cost to

B. Such problems are called NP-hard because they are at least as hard as NP-complete prob-

lems. A problem which is tractable if the NP-complete problems are tractable is called NP-easy.

Appendix B 379

Some problems are both NP-easy and NP-hard but may not be NP-complete. Why is this?

NP-complete problems must ask a “yes/no” type of question and it must be possible to check a

specific example in polynomial time as noted in the previous paragraph.

What can we do if we cannot find a good algorithm for a problem? There are three main types

of partial algorithms:

1. Almost good: It is polynomial time for all but a very small subset of possible problems. (If we

are interested in all graphs, our coloring algorithm in Example B.3 is almost good for any fixed

c.)

2. Almost correct: It is polynomial time but in some rare cases does not find the correct answer.

(If we are interested in all graphs and a fixed c, automatically reporting that a large graph can’t

be colored with c colors is almost correct—but it is rather useless.) In some situations, a fast

almost correct algorithm can be useful.

3. Close: It is a polynomial time algorithm for a minimization problem and comes close to the

true minimum. (There are useful close algorithms for approximating the minimum cycle in the

Traveling Salesman Problem.)

Some of the algorithms make use of random number generators in interesting ways. Unfortunately,

further discussion of these problems is beyond the scope of this text.

Exercises

B.3.1. The chromatic number χ(G) of a graph G is the least number of colors needed to properly color G.
Using the fact that the problem of deciding whether a graph can be properly colored with c colors

is NP-complete, prove the following.

(a) The problem of determining χ(G) is NP-hard.

(b) The problem of determining χ(G) is NP-easy.
Hint. You can color G with c colors if and only if c ≥ χ(G).

B.3.2. The bin packing problem can be described as follows. Given a set S of positive integers and integers
B and K, is there a partition of S into K blocks so that the sum of the integers in each block does
not exceed B? This problem is known to be NP-complete.

(a) Prove that the following modified problem is NP-easy and NP-hard. Given a set S of positive in-
tegers and an integer B, what is the smallest K such that the answer to the bin packing problem
is “yes?”

(b) Call the solution to the modified bin packing problem K(S, B). Prove that

K(S, B) ≥
1

B

∑

s∈S

s.

(c) The “First Fit” algorithm obtains an upper bound on K(S, B). We now describe it. Start
with an infinite sequence of boxes (bins) B1, B2, Each box can hold any number of inte-
gers as long as their sum doesn’t exceed K. Let s1, s2, . . . be some ordering of S. If the si’s
are placed in the Bj ’s, the nonempty boxes form an ordered partition of S and so the num-

ber of them is an upper bound for K(S, B). For i = 1, 2, . . . , |S|, place si in the Bj with
the lowest index such that it will not make the sum of the integers in Bj exceed K. Esti-

mate the running time of the algorithm in terms of |S|, B and the number of bins actually
used.

(d) Call the bound on K obtained by the First Fit algorithm FF (S,B). Prove that FF (S,B) <
2K(S, B) + 1.
Hint. When First Fit is done, which bins can be at most half full?

380 Appendix B Rates of Growth and Analysis of Algorithms

Notes and References

Many texts discuss the notation for rate of growth. A particularly nice introduction is given in

Chapter 9 of Graham, Knuth, and Patashnik [4].

Entire textbooks are devoted primarily to the analysis of algorithms. Examples include the

books by Aho, Hopcroft and Ullman [1], Baase [2], Knuth [6], Manber [7], Papadimitiriou and Stei-
glitz [8], and Wilf [9]. There is an extensive journal literature on NP-completeness. The classic

book by Garey and Johnson [3] discusses many of the examples. Other discussions can be found

in the texts by Papadimitriou and Steiglitz [8] and by Wilf [9] and in the article by Hartma-

nis [5].

1. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, The Design and Analysis of Computer

Algorithms, Addison-Wesley (1974).

2. Sara Baase, Computer Algorithms: Introduction to Design and Analysis, 3rd ed., Addison-Wesley

(1999).

3. Michael R. Garey and David S. Johnson, Computers and Intractability. A Guide to the Theory

of NP-Completeness, W.H. Freeman (1979).

4. Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics, 2nd ed.,

Addison-Wesley, Reading (1994).

5. Juris Hartmanis, Overview of computational complexity theory, Proceedings of Symposia in Ap-
plied Mathematics 38 (1989), 1–17.

6. Donald E. Knuth, The Art of Computer Programming. Vol. 1: Fundamental Algorithms, 3rd ed.;

Vol. 2: Seminumerical Algorithms, 3nd ed.; Vol. 3: Sorting and Searching, 3nd ed.; Addison-

Wesley (1997, 1997, 1998).

7. Udi Manber, Introduction to Algorithms: A Creative Approach, Addison-Wesley (1989).

8. Christos H. Papadimitriou and Kenneth Steiglitz, Combinatorial Optimization: Algorithms and

Complexity, Dover (1998).

9. Herbert S. Wilf, Algorithms and Complexity, Prentice-Hall (1986).

APPENDIX C

Basic Probability

This appendix is a rapid introduction to the concepts from probability theory that are needed in

the text. It is not intended to substitute for a basic course in probability theory, which we strongly

recommend for anyone planning either to apply combinatorics (especially in computer science) or to

delve into combinatorics for its own sake.

C.1 Probability Spaces and Random Variables

For simplicity, we will limit our attention to finite probability spaces and to real-valued random

variables.

Definition C.1 Finite probability space A finite probability space is a finite set S

together with a function Pr : S → R such that

0 ≤ Pr(s) ≤ 1 for all s ∈ S and
∑

s∈S

Pr(s) = 1.

We call the elements of S elementary events and the subsets of S events. For T ⊆ S, we

define

Pr(T) =
∑

t∈T

Pr(t).

Note that Pr(∅) = 0, Pr(S) = 1 and Pr(s) = Pr({s}) for s ∈ S.

If A(s) is a statement that makes sense for s ∈ S, we define Pr(A) = Pr(T), were T is the

set of all t ∈ S for which A(t) is true.

One often has Pr(s) = 1/|S| for all s ∈ S. In this case, Pr(T) = |T |/|S|, the fraction

of elements in S that lie in T . In this case, we call Pr the uniform distribution on S.

381

382 Appendix C Basic Probability

The terminology “event” can sometimes be misleading. For example, if S consists of all 2|A| sub-

sets of |A|, an elementary event is a subset of A. Suppose Pr is the uniform distribution on S. If

T is the event consisting of all subsets of size k, then Pr(T) is the fraction of subsets of size k. We

say that Pr(T) is the probability that a subset of A chosen uniformly at random has size k. “Uni-

formly” is often omitted and we simply say that the probability a randomly chosen subset has size

k is |T |/|S| =
(

|A|
k

)

2−|A|. In statement notation,

Pr(a subset has size k) =

(|A|
k

)

2−|A|.

The notion of the probability of a statement being true is neither more nor less general

than the notion of the probability of a subset of the probability space S. To see this, note

that

• with any statement A we can associate the set A of elements of S for which A is true

while

• with any subset T of S we can associate the statement “t ∈ T .”

Here are some simple, useful properties of Pr. You should be able to supply the proofs by writing

all probabilities as sums of probabilities of elementary events and noticing which elementary events

appear in which sums.

Theorem C.1 Suppose (S, Pr) is a probability space and A, A1, . . . , Ak and B are subsets

of S.

(a) If A ⊆ B, then 0 ≤ Pr(A) ≤ Pr(B) ≤ 1.

(b) Pr(S \ A) + Pr(A) = 1. One also writes S − A, Ac and A′ for S \ A.

(c) Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B).

(d) Pr(A1 ∪ · · · ∪ Ak) ≤ Pr(A1) + · · · + Pr(Ak).

We now define a “random variable.” It is neither a variable nor random, rather, it is a func-

tion:

Definition C.2 Random variable Given a probability space (S, Pr), a random variable

on the space is a function X : S → R.

People often use capital letters near the end of the alphabet to denote random variables. Why the

name “random variable” for a function? The terminology arose historically before probability the-

ory was put on a mathematical foundation. For example, suppose you toss a coin 10 times and let X

be the number of heads. The value of X varies with the results of your tosses and it is random be-

cause your tosses are random. In probability theory terms, if the coin tosses are fair, we can define

a probability space and a random variable as follows.

• S is the set of all 210 possible 10-long head-tail sequences,

• Pr(s) = 1/|S| = 2−10 = 1/1024,

• X(s) equals the number of heads in the 10-long sequence s.

The probability that you get exactly four heads can be written as Pr(X =4), which equals
(

10
4

)

2−10

since there are
(

10
4

)

10-long head-tail sequences that contain exactly four heads.

Appendix C 383

Definition C.3 Independence Let (S, Pr) be a probability space and let X be a set

of random variables on (S, Pr). We say that the random variables in X are mutually

independent if, for every subset {X1, . . . , Xk} of X and all real numbers x1, . . . , xk, we

have

Pr(X1 =x1 and · · · and Xk =xk) = Pr(X1 =x1) · · ·Pr(Xk =xk),

where the probabilities on the right are multiplied. We often abbreviate “mutual independence”

to “independence.”

Intuitively, the concept of independence means that knowing the values of some of the random

variables gives no information about the values of others. For example, consider tossing a fair coin

randomly ten times to produce a 10-long sequence of heads and tails. Define

Xi =

{

1, if toss i is heads,

0, if toss i is tails.
C.1

Then the set {X1, . . . , X10} of random variables are mutually independent.

We now look at “product spaces.” They arise in natural ways and lead naturally to indepen-

dence.

Definition C.4 Product space Let (S1, Pr1), . . . , (Sn, Prn) be probability spaces. The

product space

(S, Pr) = (S1, Pr1) × · · · × (Sn, P rn) C.2

is defined by S = S1 × · · · × Sn, a Cartesian product, and

Pr((a1, . . . , an)) = Pr1(a1) · · ·Prn(an) for all (a1, . . . , an) ∈ S.

We may write Pr(a1, . . . , an) instead of Pr((a1, . . . , an)).

As an example, consider tossing a fair coin randomly ten times. The probability space for

a single toss is the set {H, T }, indicating heads and tails, with the uniform distribution. The

product of ten copies of this space is the probability space for ten random tosses of a fair

coin.

Theorem C.2 Independence in product spaces Suppose a product space (S, Pr) is given

by (C.2). Let I1, . . . , Im be pairwise disjoint subsets of n; that is, Ii ∩ Ij = ∅ whenever i 6= j.

Suppose Xk is a random variable whose value on (a1, . . . , an) depends only on the values of

those ai for which i ∈ Ik. Then X1, . . . , Xm are mutually independent.

We omit the proof.

Continuing with our coin toss example, Let Ii = {i} and define Xi by (C.1). By the theorem,

the Xi are mutually independent.

384 Appendix C Basic Probability

C.2 Expectation and Variance

Definition C.5 Expectation Let (S, Pr) be a probability space The expectation of a

random variable X is

E(X) =
∑

s∈S

X(s) Pr(s).

The expectation is also called the mean.

Let R ⊂ R be the set of values taken on by X . By collecting terms in the sum over S according to

the value of X(s) we can rewrite the definition as

E(X) =
∑

r∈R

r Pr(X =r).

In this form, it should be clear the expected value of a random variable can be thought of as its

average value.

Definition C.6 Variance Let (S, Pr) be a probability space The variance of a random

variable X is

var(X) =
∑

s∈S

(X(s) − E(X))2 Pr(s) =
∑

r∈R

(r − E(X))2 Pr(X =r),

where R ⊂ R is the set of values taken on by X .

The variance of a random variable measures how much it tends to deviate from its expected

value. One might think that
∑

r∈R

|r − E(X)| Pr(X =r)

would be a better measure; however, there are computational and theoretical reasons for preferring

the variance.

We often have a random variable X that takes on only the values 0 and 1. Let p = Pr(X =1).

You should be able to prove that E(X) = p and var(X) = p(1 − p).

The following theorem can be proved be algebraic manipulations of the definitions of mean and

variance. Since this is an appendix, we omit the proof.

Theorem C.3 Properties of Mean and Variance Let X1, . . . , Xk and Y be random

variables on a probability space (S, Pr).

(a) For real numbers a and b, E(aY + b) = aE(Y) + b and var(aY + b) = a2 var(Y).

(b) var(Y) = E
(

(Y − E(Y))2
)

= E(Y 2) −
(

E(Y)
)2

.

(c) E(X1 + · · · + Xk) = E(X1) + · · · + E(Xk).

(d) If the Xi are independent, then var(X1 + · · · + Xk) = var(X1) + · · · + var(Xk).

Chebyshev’s Theorem tells us that it is unlikely that the value of a random variable will be far

from its mean, where the “unit of distance” is the square root of the variance. (The square root of

var(X) is also called the standard deviation of X and is written σX .)

Appendix C 385

Theorem C.4 Chebyshev’s inequality If X is a random variable on a probability space
and t ≥ 1, then

Pr
(

|X − E(X)| > t
√

var(X)
)

<
1

t2
. C.3

For example, if a fair coin is tossed n times and X is the number of heads, then one can show

that

E(X) = n/2 and var(X) = n/4. C.4

Chebyshev’s inequality tells us that X is not likely to be many multiples of
√

n from n/2. Specifically,

it says that

Pr
(

|X − n/2| > (t/2)
√

n
)

<
1

t2
.

Let’s use Theorem C.3 to prove (C.4). Let Yk be a random variable which is 1 if toss k lands
heads and is 0 if it lands tails. By the definition of mean,

E(Yk) = 0 Pr(Yk =0) + 1 Pr(Yk =1) = 0 + 1/2 = 1/2

and, by the Theorem C.3(b) and the observation that Y 2
k = Yk,

var(Yk) = E(Y 2
k) − E(Yk)2 = E(Yk) − E(Yk)2 = 1/2 − (1/2)2 = 1/4.

Notice that X = Y1 + Y2 + · · · + Yn and the Yk are independent since the coin is tossed randomly.

By Theorem C.3(c) and (d), we have (C.4).

APPENDIX D

Partial Fractions

We will discuss those aspects of partial fractions that are most relevant in enumeration. Although

not necessary for our purposes, the theoretical background of the subject consists of two easily dis-

cussed parts, so we include it. The rest of this appendix is devoted to computational aspects of

partial fractions.

Theory

The following result has many applications, one of which is to the theory of partial fractions.

Theorem D.1 Fundamental Theorem of Algebra If p(x) is a polynomial of degree n

whose coefficients are complex numbers, then p(x) can be written as a product of linear factors,

each of which has coefficients which are complex numbers.

We will not prove this.

In calculus classes, one usually uses a corollary of this theorem: If the coefficients of p(x) are

real numbers, then it is possible to factor p(x) into a product of linear and quadratic factors, each

of which has real coefficients. We will not use the corollary because it is usually more useful in

combinatorics to write p(x) as a product of linear factors.

By the Fundamental Theorem of Algebra, every polynomial p(x) can be factored in the

form

p(x) = Cxn(1 − α1x)n1(1 − α2x)n2 · · · (1 − αkx)nk , D.1

where the αi’s are distinct nonzero complex numbers. Although this can always be done, it is, in

general, very difficult to do. In (D.1), the αi’s are the reciprocals of the nonzero roots of p(x) = 0

and ni is the “multiplicity” of the root 1/αi.

Suppose that p(x) = p1(x)p2(x) · · · pk(x) and q(x) are polynomials such that

• the degree of q(x) is less than the degree of p(x);

• none of the pi(x) is a constant;

• no pair pi(x) and pj(x) have a common root.

The Chinese Remainder Theorem for polynomials asserts that there exist unique polynomials

q1(x), . . . , qk(x) (depending on q(x) and the pi(x)) such that

387

388 Appendix D Partial Fractions

• the degree of qi(x) is less than the degree of pi(x) for all i;

• if the coefficients of q(x) and the pi(x) are rational, then so are the coefficients of the

qi(x);

• q(x)

p(x)
=

q1(x)

p1(x)
+

q2(x)

p2(x)
+ · · · + qk(x)

pk(x)
.

This is called a partial fraction expansion of q(x)/p(x). For combinatorial applications, we take the

pi(x)’s to be of the form (1 − αix)ni .

Suppose we have been able to factor p(x) as shown in (D.1). In our applications, we normally
have n = 0, so we will assume this is the case. We can also easily remove the factor of C by dividing
q(x) by C. Let pi(x) = (1− αix)ni . With some work, we can obtain a partial fraction expansion for
q(x)/p(x). Finally, with a bit more work, we can rewrite qi(x)/(1 − αix)ni as

βi,1

1 − αix
+

βi,2

(1 − αix)2
+ · · · + βi,ni

(1 − αix)ni

,

where the βi,j ’s are complex numbers. (We will not prove this.)

Authors of calculus texts prefer a different partial fraction expansion for q(x)/p(x). In the
first place, as we already noted, they avoid complex numbers. This can be done by appropriately
combining factors in (D.1). In the second place, they usually prefer that the highest degree term of
each factor have coefficient 1, unlike combinatorialists who prefer that the constant term be 1.

Computations

The computational aspect of partial fractions has two parts. The first is the factoring of a polynomial
p(x) and the second is obtaining a partial fraction expansion.

In general, factoring is difficult. The polynomials we deal with can be factored by using the
factoring methods of basic algebra, including the formula for the roots of a quadratic equation. The
latter is used as follows:

Ax2 + Bx + C = A(x − r1)(x − r2) where r1, r2 =
−B ±

√
B2 − 4AC

2A
.

We will not review basic algebra methods. There is one unusual aspect to the sort of factoring we
want to do in connection with generating functions. We want to factor p(x) so that it is a product of
a constant and factors of the form 1 − cx. This can be done by factoring the polynomial p(1/y)yn,
where n is the degree of p(x). The examples should make this clearer.

Example D.1 A factorization Factor the polynomial p(x) = 1 − x − 4x3. Following the
suggestion, we look at

r(y) = p(1/y)y3 = y3 − y2 − 4.

Since r(2) = 0, y− 2 must be a factor of r(y). Dividing it out we obtain y2 + y +2. By the quadratic

formula, the zeroes of y2 + y + 2 are (−1 ±
√
−7)/2. Thus

r(y) =
(

y − 2
)(

y − −1 +
√
−7

2

)(

y − −1 −
√
−7

2

)

.

Since p(x) = x3r(1/x), we finally have

p(x) =
(

1 − 2x
)(

1 − −1 +
√
−7

2
x
)(

1 − −1 −
√
−7

2
x
)

.

389

Example D.2 Partial fractions for a general quadratic We want to expand q(x)/p(x) in

partial fractions when p(x) is a quadratic with distinct roots and q(x) is of degree one or less. We

will assume that p(x) has been factored:

p(x) = (1 − ax)(1 − bx).

Since p(x) has distinct roots, a 6= b.

Let us expand 1/p(x). We can write

1

(1 − ax)(1 − bx)
=

u

1 − ax
+

v

1 − bx
, D.2

where u and v are numbers that we must find. (If a and b are real, then u and v will be, too; however,

if a or b is complex, then u and v could also be complex.) There are various ways we could find u

and v. We’ll show you two methods.

The straightforward method is to clear (D.2) of fractions and then equate powers of x. Here’s

what happens: Since

1 = u(1 − bx) + v(1 − ax) = (u + v) − (bu + av)x,

we have

1 = u + v and 0 = −(bu + av).

The solution to these equations is u = a/(a − b) and v = b/(b − a).

Another method for solving (D.2) is to multiply it by 1−ax and then choose x so that 1−ax = 0;

i.e., x = 1/a. After the first step we have

1

1 − bx
= u +

v(1 − ax)

1 − bx
. D.3

When we set 1 − ax = 0, the last term in (D.3) disappears—that’s why we chose that value for x.

Substituting in (D.3), we get

u =
1

1 − b/a
=

a

a − b
.

By the symmetry of (D.2), v is obtained simply by interchanging a and b.

We have shown by two methods that

1

(1 − ax)(1 − bx)
=

a
a−b

1 − ax
+

b
b−a

1 − bx
. D.4

By either of these methods, one can show that

x

(1 − ax)(1 − bx)
=

1
a−b

1 − ax
+

1
b−a

1 − bx
. D.5

We leave this as an exercise. You can save yourself quite a bit of work in partial fraction calculations

if you use (D.4) and (D.5).

390 Appendix D Partial Fractions

Example D.3 A specific quadratic Let’s expand

1 + 3x

(1 + 2x)(1 − 3x)

by partial fractions. Using (D.4) and (D.5) with a = −2 and b = 3, we easily obtain

1 + 3x

(1 + 2x)(1 − 3x)
=

1

(1 + 2x)(1 − 3x)
+

3x

(1 + 2x)(1 − 3x)

=
2/5

1 + 2x
+

3/5

1 − 3x
+

−3/5

1 + 2x
+

3/5

1 − 3x

=
−1/5

1 + 2x
+

6/5

1 − 3x
. D.6

To see how much effort has been saved, you are encouraged to derive this result without using (D.4)
and (D.5).

Example D.4 A factored cubic Let’s expand

1 + 3x

(1 − x)(1 + 2x)(1 − 3x)

by partial fractions. We begin by factoring out 1−x and using (D.6). Next we use some algebra and
then apply (D.4) twice. Here it is.

1 + 3x

(1 − x)(1 + 2x)(1 − 3x)
=

1

1 − x

(−1/5

1 + 2x
+

6/5

1 − 3x

)

=
−1/5

(1 − x)(1 + 2x)
+

6/5

(1 − x)(1 − 3x)

=
(−1/5)(1/3)

1 − x
+

(−1/5)(2/3)

1 + 2x
+

(6/5)(−1/2)

1 − x
+

(6/5)(3/2)

1 − 3x

=
−2/3

1 − x
+

−2/15

1 + 2x
+

9/5

1 − 3x
.

Notice how we were able to deal with the cubic denominator by iterating the method for dealing
with a quadratic denominator. This will work in any situation as long as the denominator has no
repeated factors.

Example D.5 A squared quadratic Let’s expand

1 + 3x

(1 + 2x)2(1 − 3x)2
. D.7

Before tackling this problem, let’s do the simpler case where the numerator is one:

1

(1 + 2x)2(1 − 3x)2
=

(

1

(1 + 2x)(1 − 3x)

)2

. D.8

Using (D.4), this becomes
(

2/5

1 + 2x
+

3/5

1 − 3x

)2

,

which can be expanded to

4/25

(1 + 2x)2
+

9/25

(1 − 3x)2
+

12/25

(1 + 2x)(1 − 3x)
.

The first two terms are already in standard partial fraction form and you should have no trouble
expanding the last.

391

How does this help us with (D.7) since we still have a 3x left in the numerator? We can cheat a
little bit and allow ourselves to write the expansion of (D.7) as simply 1+3x times the expansion of
(D.8). This does not cause any problems in the applications of partial fractions that we are interested
in other than slightly more complicated answers.

Example D.6 Another problem How can we expand 1/(1 − x)2(1 − 2x) by partial fractions?
Do any of our earlier tricks work? Yes, we simply write

1

(1 − x)2(1 − 2x)
=

1

1 − x

(

1

(1 − x)(1 − 2x)

)

and continue as in Example D.4.

As you should have seen by now, a bit of cleverness with partial fractions can save quite a bit
of work. Another trick worth remembering is to use letters in place of complicated numbers. We
conclude with an example which illustrates another trick.

*Example D.7 More tricks Expand

x + 6x2

1 − x − 4x3
D.9

in partial fractions.

We’ll write the denominator as

(1 − 2x)(1 + x + 2x2) = (1 − 2x)(1 − cx)(1 − dx)

where

c =
−1 +

√
−7

2
and d =

−1 −
√
−7

2
,

a factorization found in Example D.1.

There are various ways we can attack this problem. Let’s think about this.

• An obvious approach is to use the method of Example D.4. The 6x2 causes a bit of a problem
in the numerator because the first step in expanding

x + 6x2

1 + x + 2x2

is to divide so that the numerator is left as a lower degree than the denominator. If we take this
approach, we should carry along c and d as much as possible rather than their rather messy
values. Also, since they are zeros of y2+y+2, we have the equations c2 = −c−2 and d2 = −d−2,
which may help simplify some expressions. Also, cd = 2 and c+ d = −1. We leave this approach
for you to carry out.

• We could use the previous idea after first removing the factor of x+ 6x2 and then reintroducing
it at the end. The justification for this is the last paragraph of Example D.5.

• Another approach is to write x + 6x2 = x(1 + 6x). We can obtain partial fractions for
(1 + 6x)/(1 + x + x2) using (D.4) and (D.5). This result can be multiplied by x/(1 − 2x) and
expanded by (D.5).

• A different approach is to remove the 1−2x partial fraction term from (D.9), leaving a quadratic
denominator. The resulting problem can then be done by our trusty formulas (D.4) and (D.5).
Let’s do this. We have

x + 6x2

(1 − 2x)(1 + x + 2x2)
=

u

1 − 2x
+

v

1 − cx
+

w

1 − dx
. D.10

392 Appendix D Partial Fractions

Applying the trick of multiplying by 1 − 2x and setting 1 − 2x = 0, we have

u =
x + 6x2

1 + x + 2x2

∣

∣

∣

∣

x=1/2

= 1.

Subtracting u/(1 − 2x) from both sides of (D.10), we obtain

v

1 − cx
+

w

1 − dx
=

x + 6x2

(1 − 2x)(1 + x + 2x2)
− 1

1 − 2x

=
−1 + 4x2

(1 − 2x)(1 + x + 2x2)

=
−1 − 2x

1 + x + 2x2
.

The last of these can now be expanded by (D.4) and (D.5). The cancellation of a factor of 1−2x
from the numerator and denominator was not luck. It had to happen if our algebra was correct
because we were removing the 1 − 2x partial fraction term.

Since computing partial fractions can involve a lot of algebra, it is useful to have an algebra
package do the computations. If that’s not feasible, it’s a good idea to check your calculations. This
can be done in various ways

• Use a graphing calculator to plot the partial fraction expansion and the original fraction and
see if they agree.

• Reverse the procedure: combine the partial fractions into one fraction and see if the result equals
the original fraction.

• Compute several values to see if the value of the partial fraction expansion agrees with the
value of the original fraction. For p(x)/q(x), it suffices to compute max(deg(q(x)), deg(p(x))+1)
values.

If you wish to practice working problems involving partial fractions, look in the partial fractions
section of any complete calculus text.

