
CHAPTER 4

Sieving Methods

Introduction

A “sieving method” is a technique that allows us to count or list some things indirectly. After a few

words about organization and difficulty, we’ll introduce the two sieving methods discussed in this

chapter.

• The sections of this chapter are independent of each other. Thus, if your instructor assigns

only the material on the Principle of Inclusion and Exclusion, you need not read the sections

on structures with symmetries. You may also read the material on counting structures with

symmetries without reading the material on listing them.

• The material in this chapter is more difficult than the first three chapters in this part. Since the

material here is not needed until Part IV, it may be postponed.

Structures Lacking Things

In Section 4.1 we look at the problem of counting structures that lack certain things; e.g., lists with

no repeated elements or permutations with no fixed points. Sometimes, as in the case of lists with

no repeated elements, it is easy to count the structures directly. That situation is not of interest

here. Instead, we’ll examine what happens when it’s fairly easy to count structures which have

some of the properties but hard to count those which have none of the properties. For example,

consider permutations of n and a set {F1, . . . , Fn} of n properties where Fi is the property that the

permutation fixes i; that is, maps i to i. Suppose our problem is to count permutations with none of

the properties; that is, permutations with no fixed points. This is hard. However, it is fairly easy to

count permutations whose fixed points include some specified set S; that is, permutations that have

at least some the properties {Fi | i ∈ S}. These counts can be used to indirectly solve the original

problem by using the “Principle of Inclusion and Exclusion.”

The Principle of Inclusion and Exclusion can be extended in various ways. We briefly indicate

some of these at the end of Section 4.1.
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94 Chapter 4 Sieving Methods

Structures with Symmetries

At the end of Example 1.12 (p. 13), we asked how many ways we could form a six long circular
sequence using ones and twos and found that we could not solve it. In this section we’ll develop the
necessary tools.

The circular sequence problem is difficult because “symmetries induce equivalences.” What does
this mean? The sequence 121212 looks the same if it is circularly shifted two positions. This is a
symmetry of the sequence. Several sequences correspond to the same circular sequence of ones and
twos. We say these lists are “equivalent.” Thus, as we saw in Example 1.12, the three sequences
112112, 121121 and 211211 are equivalent. We can find a sequence equivalent to a given one by
reading the given sequence “circularly:” Start reading at any point. At the end of the sequence jump
to the start and continue until you return to where you began reading.

To list the circular sequences, we need a list C of sequences such that every sequence is equivalent
to exactly one sequence in C. Thus, exactly one of the sequences 112112, 121121 and 211211 would
appear in C. Counting the circular sequences means finding |C|. We’ll discuss listing first and then
counting.

We have already dealt with one important case of symmetries, namely, when our structures are
lists and we are allowed to permute the items in the list in any fashion whatsoever. In other words,
two lists are the same if they can be made identical by permuting the elements in one of them. In
fact, this case is so important that it has a name: multisets. (Remember that a multiset is simply a
list where order is irrelevant.) If the elements of the multiset can be ordered, then we can take our
representatives C to be a collection of nondecreasing functions. This was discussed in Section 2.3.

In Section 4.2 we’ll look at the problem of listing structures when symmetries are present. This
is much like the nonmathematical notion of a sieve: all that comes through the sieve are “canonical”
representations of the structures. Decision trees play an important role.

In Section 4.3 we’ll look at the problem of counting, rather than listing, these structures. “Burn-
side’s Lemma” provides us with an indirect method for doing this.

4.1 The Principle of Inclusion and Exclusion

Imagine that a professor on the first day of class wants to obtain information on the course back-
ground of the students. He wants to know what number of students have had Math 21, what number
have had Comp Sci 13 and various combinations such as “Comp Sci 13 but not Math 21.” For some
reason, to calculate these numbers the professor asks just the following three questions.

“How many of you have had Math 21?”

“How many of you have had Comp Sci 13?”

“How many of you have had Comp Sci 13 and Math 21?”

Suppose the number of students is 15, 12 and 8, respectively.

Can the professor now determine answers to all other possible questions concerning having taken
or not taken these courses? Let’s look at a couple of possibilities.

How many have had Comp Sci 13 but not Math 21? Of the 12 students who have had the first
course, 8 have had the second and so 12 − 8 = 4 of them have not had the second.

How many students have had neither course? That will depend on the total number of students
in the class. Suppose there are 30 students in the class. We might think that 30 − 15 − 12 = 3 of
them have had neither course. This is not correct because the students who had both courses were
subtracted off twice. To get the answer, we must add them back in once. The result is that there
are 3 + 8 = 11 students who have had neither course.
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We can rephrase the previous discussion in terms of sets. Let S be the set of students in the
class, S1 the subset who have had Math 21 and S2 the subset who have had Comp Sci 13. The
information that was obtained by questioning the class can be written as

|S| = 30, |S1| = 15, |S2| = 12 and |S1 ∩ S2| = 8,

where S1 ∩ S2 denotes the intersection of the sets S1 and S2. We saw that the number of students
who had neither course is given by

|S| −
(

|S1| + |S2|
)

+ |S1 ∩ S2|. 4.1

How can this result be extended to more than two classes? The answer is provided by the following
theorem. After stating it, we’ll see how it can be applied before proving it.

Theorem 4.1 Principle of Inclusion and Exclusion Let S1, S2, . . . , Sm be subsets of a
set S. Let N0 = |S| and, for r > 0, let

Nr =
∑

|Si1 ∩ · · · ∩ Sir
|, 4.2

where the sum is over all r-long strictly increasing sequences chosen from m; that is, {i1, . . . , ir}
ranges over all r-subsets of m. The number of elements in S that are not in any of S1, . . . , Sm is

m
∑

i=0

(−1)iNi = N0 − N1 + N2 · · · + (−1)mNm. 4.3

When m = 2, the one long sequences are 1 and 2, giving N1 = |S1|+ |S2|. The only two long sequence
is 1,2 and so N2 = |S1 ∩ S2|. Thus (4.3) reduces to (4.1) in this case.

As we saw in an earlier chapter, strictly increasing sequences are equivalent to subsets. Also,
the order in which we do intersections of sets does not matter. (Just as the order of addition does
not matter and the order of multiplication does not matter.) This explains why we could have said
that the sum defining Nr was over all r-subsets {i1, . . . , ir} of m.

One can rewrite (4.3) in a somewhat different form. To begin with, the Rule of Sum tells us that
|S| equals the number of things not in any of the Si’s plus the number of things that are in at least
one of the Si’s. The latter equals

|S1 ∪ · · · ∪ Sm|.

Using (4.3) and noting that N0 = |S|, we have

N0 = |S1 ∪ · · · ∪ Sm| + N0 − N1 + N2 · · · + (−1)mNm.

Rearranging leads to

Corollary With the same notation as in Theorem 4.1 (p. 95),

|S1 ∪ · · · ∪ Sm| =

m
∑

i=1

(−1)i−1Ni. 4.4

In this form, the Principle of Inclusion and Exclusion can be viewed as an extension of the Rule of
Sum: The Rule of Sum tells us that if T = S1∪· · ·∪Sm and if each structure in T appears in exactly
one of the Si, then

|T | = |S1| + |S2| + . . . + |Sm|.

The left hand side of this equation is the left hand side of (4.4). The right hand side of this equation
is N1, the first term on the right hand side of (4.4). The remaining terms on the right hand side of
(4.4) can be thought of as “corrections” to the Rule of Sum due to the fact that elements of T can
appear in more than one Si.
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Figure 4.1 A Venn diagram for three subsets S1, S2 and S3.

Example 4.1 Venn diagrams When m is quite small in Theorem 4.1, it is possible to draw
a picture, called a Venn diagram that illustrates the theorem. Figure 4.1 shows such a diagram for
m = 3. The interior of the box should be thought of as containing points which are the elements of
S. (These points are not actually shown in the diagram.) Similarly, the interior of the circle labeled
S1 contains the elements of S1 and its exterior contains the points not in S1. Altogether, the three
circles for S1, S2 and S3 divide the box into eight regions which we have numbered 0 through 7.

In the figure, region 7 corresponds to S1 ∩ S2 ∩ S3. Region 0 corresponds to those elements of
S that are not in any Si. Region 3 corresponds to those elements of S that are in S1 and S2 but
not in S3. You should be able to describe all of the other regions in a similar manner. The elements
of S1 are those in the four regions numbered 1, 3, 5 and 7. The elements of S1 ∩ S3 are those in
regions 5 and 7. You should be able to describe all the intersections in the Principle of Inclusion
and Exclusion in this manner. You can then determine how often each region is counted in Nr and
thereby obtain a proof of (4.3) for m = 3. It is possible to generalize this argument to prove (4.3),
but we will give a slightly different proof of (4.3) later.

Example 4.2 Using the theorem Many of Alice’s 16 friends are athletic—they cycle, jog or
swim on a regular basis. In fact we know that 6 of them cycle, 6 of them jog, 6 of them swim, 4 of
them cycle and jog, 2 of them cycle and swim, 3 of them jog and swim and 2 of them engage in all
three activities. How many of Alice’s friends do none of these things on a regular basis?

Let S be the set of all friends, S1 the set that cycle, S2 the set that jog and S3 the set that
swim. We will apply (4.3) with m = 3. The information we were given can be rewritten as follows:

N0 = 16 since |S| = 16

N1 = 18 since |S1| = 6 |S2| = 6 |S3| = 6;

N2 = 9 since |S1 ∩ S2| = 4 |S1 ∩ S3| = 2 |S2 ∩ S3| = 3;

N3 = 2 since |S1 ∩ S2 ∩ S3| = 2.

Thus the answer to our question is that 16 − 18 + 9 − 2 = 5 of her friends neither cycle nor jog nor
swim regularly.

At this point you may well object that this method is worse than useless because there are much
easier ways to get the answer. For example, to find out how many students took neither Math 21
nor Comp Sci 13, it would be easier to simply ask “How many of you have had neither Math 21
nor Comp Sci 13?” This is true. So far we’ve just been getting familiar with what the Principle of
Inclusion and Exclusion means. We now turn to some examples where it is useful.
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Example 4.3 Counting surjections How many surjections are there from n to k?

This problem is closely related to S(n, k), the Stirling numbers of the second kind, which we

studied previously but couldn’t find a formula for. In fact, a surjection f defines a partition of the

domain into k blocks where the ith block is f−1(i). Since the blocks are all distinct and S(n, k) does

not care about the order of the blocks, the number of surjections is k!S(n, k). Our attention will be

devoted to the surjections—we don’t need S(n, k) here—but we pointed out the connection because

it will allow us to get a formula for S(n, k), too.

Let S be the set of all functions from n to k and let Si be the set of those functions that never

take on the value i. In this notation, the set of surjections is the subset of S that does not belong

to any of S1, . . . , Sk because a surjection takes on all values in its range. This suggests that we use

(4.3) with m = k.

We found long ago that |S| = kn. It is equally easy to find |Si1 ∩ · · · ∩ Sir
|: The set whose

cardinality we are taking is just all functions from n to k − {i1, . . . , ir} and so equals (k − r)n. This

tells us that each of the terms in the sum (4.2) defining Nr equals (k − r)n. Consequently, Nr is

(k−r)n times the number of terms. Since there
(

k
r

)

subsets of k of size r, the sum contains
(

k
r

)

terms

and Nr =
(

k
r

)

(k − r)n. It follows from (4.3) that the number of surjections is

k
∑

i=0

(−1)i

(

k

i

)

(k − i)n. 4.5

Combining this with the remarks at the start of this example, we have

S(n, k) =
1

k!

k
∑

i=0

(−1)i

(

k

i

)

(k − i)n =

k
∑

i=0

(−1)i

i!

(k − i)n

(k − i)!
. 4.6

Because of the possibility of considerable cancellation due to alternating signs, numerical evaluation

of this expression for large values of n and k can be awkward.

In learning to apply the Principle of Inclusion and Exclusion, it can be difficult to decide what

the sets S, S1, . . . should be. It is often helpful to think in terms of

• a larger problem S that is easier to solve and

• conditions Ci that all do NOT hold for precisely those structures in S that are solutions of the

original problem.

What’s the connection between all this and the sets in Theorem 4.1? The set Si is the set of structures

in the larger problem S that satisfy Ci. Note that NOT appears in our description because (4.3)

counts those elements of S that are NOT in any of the Si’s.

Let’s look at the previous example in these terms. Our larger problem is the set of all functions

for n to k; that is, S = kn. Since we want those functions that do NOT omit any of the values

1, . . . , k, we take Ci to be the condition that f : n → k omits the value i; that is, i 6∈ Image(f).

Sometimes people talk about properties instead of conditions. In this case, they speak of “having

a property” instead of “satisfying a condition.”
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Example 4.4 Counting solutions to equations How many different solutions are there to

the equation

x1 + x2 + x3 + x4 + x5 = n, 4.7

where the xi’s must be positive integers, none of which exceeds k?

Since it is easier to solve the equations without the constraint that the xi’s not exceed k, we’ll

use Theorem 4.1 as follows:

• Let S be the set of all positive integer solutions (x1, . . . , x5) of the equation.

• Let the ith condition be xi > k for i = 1, 2, 3, 4 and 5. The answer to the original problem is

the number of elements of S (i.e., positive integer solutions) that satisfy none of the conditions.

For this to be useful, we must be able to easily determine, for example, how many solutions to (4.7)

have x1 > k and x3 > k. This is simply the number of solutions to y1 + · · · + y5 = n − 2k because

we can take x1 = y1 + k, x3 = y3 + k and xj = yj for j = 2, 4 and 5.

We are ready to apply (4.3) with m = 5. To begin with, what is |S|? A solution in S can be

obtained by inserting commas and plus signs in the n − 1 spaces between the n ones in (1 1 1 . . . 1)

in such a way that either a plus or a comma, but not both, is inserted in each space and exactly

4 commas are used. Thus |S| =
(

n−1
4

)

. By this and the end of the previous paragraph, it follows that

|Si1 ∩ . . . ∩ Sir
| =

(

n − kr − 1

4

)

, 4.8

where the binomial coefficient is taken to be zero if n − kr − 1 < 4. Since there are
(

5
r

)

choices for

the set {i1, . . . , ir}, the number of solutions to (4.7) is

(

n − 1

4

)

−

(

5

1

)(

n − k − 1

4

)

+

(

5

2

)(

n − 2k − 1

4

)

−

(

5

3

)(

n − 3k − 1

4

)

+

(

5

4

)(

n − 4k − 1

4

)

−

(

5

5

)(

n − 5k − 1

4

)

.

This formula is a bit tricky. If we blindly replace the binomial coefficients using the falling factorial

formula
(

m

4

)

=
m(m − 1)(m − 2)(m − 3)

24
4.9

and use algebra to simplify the result, we will discover that the number of solutions is zero! How

can this be? The definition of binomial coefficient that we used for (4.8) gives
(

m
4

)

= 0 when m < 0,

which does not agree with the falling factorial formula (4.9). Thus (4.9) cannot be used when m < 0.

The problem that we have been considering can be interpreted in other ways:

• How many compositions of n are there that consist of five parts, none of which exceed k?

• How many ways can n unlabeled balls be placed into five labeled boxes so that no box has

more than k balls?

You should easily be able to see that these problems are all equivalent.
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Finally, the proof of Theorem 4.1:

Proof: Suppose that s ∈ S. Let X ⊆ k be such that x ∈ X if and only if s ∈ Sx; that is, X is the
set consisting of the indices of those Si’s that contain s. How much does s contribute to the sum in
(4.3)? For the theorem to be true, it must contribute 1 if X = ∅ and 0 otherwise.

Clearly s contributes 1 to the sum when X = ∅, but what happens when X 6= ∅?

To begin with, what does s contribute to Nr when r > 0? It contributes nothing to some terms
and contributes 1 to those terms in Nr for which s ∈ Si1 ∩ · · · ∩ Sir

. By the definition of X , this
happens if and only if {i1, . . . , ir} ⊆ X Thus s contributes to precisely those terms of Nr that

correspond to subsets of X . Since there are
(

|X|
r

)

such terms, s contributes
(

|X|
r

)

to Nr. This is 0 if

r > |X |. Thus the contribution of s to (4.3) is

1 +

k
∑

r=1

(−1)r

(

|X |

r

)

=

|X|
∑

r=0

(

|X |

r

)

(−1)r.

By the binomial theorem, this sum is (1 − 1)|X| = 0|X|, which is zero when |X | > 0.

A different proof using “characteristic functions” is given in Exercise 4.1.10.

Example 4.5 Derangements Recall that a derangement of n is a permutation f such that
f(x) = x has no solutions; i.e., the permutation has no cycles of length 1. A cycle of length 1 is also
called a “fixed point.” Let Dn be the number of derangements of n. What is the value of Dn?

Let the set S of objects be all permutations of n and, for 1 ≤ i ≤ n, let Si be those permutations
having i as a fixed point. In other words, the larger problem is counting all permutations. If σ is a
permutation, condition Ci states that σ(i) = i.

The set Si1 ∩· · ·∩Sir
consists of those permutations for which the r elements of I = {i1, . . . , ir}

are fixed points. Since such permutations can be thought of as permutations of n − I, there are
(n − r)! of them. Thus Nr =

(

n
r

)

(n − r)! = n!/r!. By (4.3),

Dn = n!
n

∑

i=0

(−1)i

i!
. 4.10

We will use the following theorem from calculus to obtain a simple approximation to Dn.

Theorem 4.2 Alternating series Suppose that |b0| ≥ |b1| ≥ |b2| ≥ . . ., that the values of

bk alternate in sign and that limk→∞ bk = 0. Then
∑∞

k=0 bk converges and
∣

∣

∣

∣

∣

∞
∑

k=0

bk −
n

∑

k=0

bk

∣

∣

∣

∣

∣

≤ |bn+1|.

The terms in (4.10) alternate in sign and decrease in magnitude. Since

∞
∑

k=0

(−1)k

k!
=

1

e
,

it follows that Dn differs from n!/e by at most n!
(n+1)! = 1

n+1 . Hence, for n > 1, Dn is the closest

integer to n!/e.
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Exercises

4.1.1. Let us define a “typical four letter word” to be a string of four letters L1L2L3L4 where L1 and L4

are consonants and at least one of L2 and L3 is a vowel.

(a) For i = 2 and i = 3, let Vi be the set of sequences L1L2L3L4 where L1 and L4 are consonants,
Li is a vowel and the remaining letter is arbitrary. Draw a Venn diagram for the two sets V2

and V3. Indicate what part of the diagram corresponds to typical four letter words and calculate
the number of such words by using the Rule of Product and the Principle of Inclusion and
Exclusion.

(b) For i = 2 and i = 3, let Ci be the set of sequences L1L2L3L4 where L1, Li and L4 are consonants
and the remaining letter is arbitrary. Draw a Venn diagram for the two sets C2 and C3. Indicate
what part of the diagram corresponds to typical four letter words and calculate the number of
such words.

4.1.2. How many ways can n married couples be paired up to form n couples so that each couple consists
of a man and a woman and so that no couple is one of the original married couples?

4.1.3. Charled Dodgson (Lewis Carroll) Speaks of a battle among 100 combatants in which 80 lost an arm,
85 a leg, 70 an eye and 75 an ear. (Yes, it’s gruesome, but that’s the way he stated it.) Some number
p of people lost all four.

(a) It is possible that p could be as large as 70? Why?

*(b) Find a lower bound for p and explain how your lower bound could actually be achieved.
Hint. A key to getting a lower bound is to realize that there are only 100 people.

4.1.4. How many ways can we make an n-card hand that contains at least one card from each each of the
4 suits?
Hint. Let a property of a hand be the absence of a suit.

4.1.5. Let ϕ(N) be the number of integers between 1 and N inclusive that have no factors in common
with N . Thus ϕ(1) = ϕ(2) = 1, ϕ(3) = ϕ(4) = ϕ(6) = 2 and ϕ(5) = 4. ϕ is called the Euler phi

function. Let p1, . . . , pn be the primes that divide N . For example, when N = 300, the list of primes
is 2, 3, 5. Let Sj be the set of x ∈ N such that x is a divisible by pj , or, equivalently, the jth property
is that pj divides the number.

(a) Prove that (4.3) determines ϕ(N).

(b) Prove

|Si1 ∩ · · · ∩ Sir
| =

N

pi1 · · · pir

.

(c) Use this to prove ϕ(N) = N

n
∏

k=1

(

1 −
1

pk

)

.

4.1.6. Call an n × n matrix A of zeroes and ones bad if there is an index k such that ak,i = ai,k = 0 for
1 ≤ i ≤ n. In other words, the row and column passing through (k, k) consist entirely of zeroes. Let
g(n) be the number of n × n matrices of zeroes and ones which are not bad.

(a) For any subset K of n, let z(K) be the number of n×n matrices A of zeroes and ones such that
ai,j = 0 if either i or j or both belong to K. Explain why z(K) depends only on |K| and obtain
a simple formula for z(K). Call it zk where k = |K|.

(b) Express g(n) as a fairly simple sum in terms of zk.

4.1.7. Let C be the multiset {c1, c1, c2, c2, . . . , cm, cm} containing two copies each of m distinct symbols.
How many ways can the elements of S be arranged in an ordered list so that adjacent symbols are
distinct.
Hint. A list in which ci and ci are adjacent can be thought of as a list made from the multiset

C ∪ {c2i } − {ci, ci},

where c2i is a new symbol that stands for cici in the list.
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*4.1.8. This is the same as the previous exercise, except that now each of c1 through cm appears in C three
times instead of twice. The constraint is still the same: Adjacent symbols must be distinct.
Hint. There are now two types of properties, namely cici appearing in the list and cicici appearing

in the list. Call the corresponding sets S2
i and S3

i . In computing Nr you need to consider how many

times you require an S3
i and how many times you require an S2

j as well as S3
j .

4.1.9. Let (S, Pr) be a probability space and let S1, . . . , Sm be subsets of S. Prove that

Pr((S1 ∪ · · · ∪ Sm)c) =

m
∑

i=0

(−1)iNi where Nr =
∑

Pr(Si1 ∩ · · · ∩ Sir
),

the sum ranging over all r-long strictly increasing sequences chosen from m.

4.1.10. The goal of this exercise is to use “characteristic functions” to prove Theorem 4.1 (p. 95). Let
χi : S → {0, 1} be the characteristic function of Si; that is,

χi(s) =
{

1 if s ∈ §i

0 if s /∈ Si.

(a) Explain why the number we want in the theorem is
∑

s∈S

m
∏

i=1

(

1 − χi(s)
)

.

(b) Prove that
m
∏

i=1

(

1 − χi(s)
)

=
∑

I⊆m

(−1)|I|
∏

i∈I

χi(s).

(c) Complete the proof of Theorem 4.1.

4.1.11. We want to count the number of elements in exactly k of the Si. Let Kc be the complement of K
relative to m; that is, Kc = m\K.

(a) Explain why the number we want is

∑

s∈S

∑

K⊆m

|K|=k

(

∏

i∈K

χi(s)

)(

∏

i∈Kc

(

1 − χi(s)
)

)

.

(b) Show that this expression is

∑

s∈S

∑

K⊆m

|K|=k

∑

J⊆Jc

(−1)|J |
∏

i∈J∪K

χi(s).

(c) Show that this equals

∑

s∈S

∑

L⊆m

∑

K⊆L
|K|=k

(−1)|L|−k

(

∏

i∈L

χi(s)

)

=
∑

s∈S

∑

L⊆m

(−1)|L|−k

(

∏

i∈L

χi(s)

)(

|L|

k

)

.

(d) Conclude that the number of elements in S that belong to exactly k of the Si is

m
∑

`=k

(−1)`−k

(

`

k

)

N`.
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*Bonferroni’s Inequalities

We conclude this section by looking briefly at two more advanced topics related to the Principle of

Inclusion and Exclusion: Bonferroni’s Inequalities and partially ordered sets.

Theroem 4.1 can sometimes be a bit of a problem to use even after we’ve formulated our problem

and know exactly what we must count. There are two reasons for this. First, there will be a lot of

addition and subtraction to do if m is large. Second, it may be difficult to actually compute values

of Nr so we may have to be content with estimating them for small values of r and ignoring them

when r is large. Because of these problems, we may prefer to obtain a quick approximation to (4.3).

A method that is frequently useful for doing this is provided by the following theorem.

Theorem 4.3 Bonferroni’s inequalities Let the notation be the same as in Theorem 4.1

(p. 95) and let E be the number of elements of S not in any of the Si. Then

−Nt ≤ E −
t−1
∑

r=0

(−1)rNr ≤ Nt;

i.e., truncating the sum gives an error which is no larger than the first term that was neglected.

Furthermore, the sum is either an overestimate or an underestimate according as t is odd or

even, respectively.

We can’t prove this simply by appealing to Theorem 4.2 (p. 99) because the terms may be increasing

in size. The proof of Bonferroni’s Inequalities is left as an exercise.

Example 4.6 Using the theorem Let r(n, k) be the fraction of those functions in kn which

are surjections. Using Bonferroni’s inequalities and the ideas in Example 4.3 (p. 97), we’ll estimate

r(n, k).

Let’s begin with t = 2 in the theorem. In that case we simply need to divide the i = 0 and i = 1

terms in (4.5) by the total number of functions. Thus

r(n, k) ≥
kn − k(k − 1)n

kn
= 1 − k(1 − 1/k)n.

With k = 10 and n = 40, we see that at least 85.2% of the functions in 1040 are surjections.

If we set t = 3 in Bonferroni’s inequalities, we obtain the upper bound

r(n, k) ≤
kn − k(k − 1)n +

(

k
2

)

(k − 2)n

kn
= 1 − k(1 − 1/k)n +

(

k

2

)

(1 − 2/k)n.

With k = 10 and n = 40, we see that at most 85.8% of the functions in 1040 are surjections.
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*Partially Ordered Sets

There is an important generalization of the Principle of Inclusion and Exclusion (Theorem 4.1 (p. 95))
which we’ll just touch on. It requires some new concepts.

A binary relation ρ on a set S is a subset of S × S. Instead of writing (x, y) ∈ ρ, people write
xρy. For example, if S is a set of integers, then we can let ρ be the set of all x, y ∈ S with x less
than y. Thus, xρy if and only if x is less than y. People usually use the notation < for this binary
relation. As another example, we can let S be the set of all subsets of n and let ⊆ be the binary
relation.

We can describe equivalence relations as binary relations: Let ∼ be an equivalence relation on
S. Those pairs (x, y) for which x ∼ y form a subset of S × S.

We now define another important binary relation.

Definition 4.1 Partially Ordered Set A set P and a binary relation ρ satisfying

(P-1) xρx for all x ∈ P ;

(P-2) if xρy and yρx, then x = y; and

(P-3) if xρy and yρz, then xρz

is called a partially ordered set, also called a poset. The binary relation ρ is called a partial

order.

The real numbers with xρy meaning “x is less than or equal to y” is a poset. The subsets of a set
with xρy meaning x ⊆ y is a poset. Because of these examples, people often use the symbol ≤ or
the symbol ⊆ in place of ρ, even when the partial order does not involve numbers or subsets.

We now return to Theorem 4.1 and begin by rewriting the terms in (4.2) as functions of sets:
f({i1, . . . , ir}) = |Si1 ∩ · · · ∩ Sir

|. How should we define f(∅)? It should be the size of the empty
intersection. In most situations, the best choice for the empty intersection is everything. Thus we
should probably take f(∅) = |S|, the size of the set that contains everything.

Many people find this choice for the empty intersection confusing, so we digress briefly to explain
it. (If it does not confuse you, skip to the next paragraph.) Let’s look at something a bit more
familiar—summations. As you know, the value of

g(A) =
∑

i∈A

h(i) 4.11

is defined to be the sum of f(i) over all i ∈ A. You should easily see that if A and B are disjoint
nonempty sets, then

g(A ∪ B) = g(A) + g(B). 4.12

If we want this to be true for B = ∅, we must have

g(A) + g(∅) = g(A ∪ ∅) = g(A), 4.13

and so g(∅) must equal 0, the identity element for addition. Suppose we replace the sum in (4.11) with
a product. Then (4.12) becomes g(A ∪ B) = g(A)g(B) and the parallel to (4.13) gives g(A)g(∅) =
g(A). Thus g(A) should be 1, the identity for multiplication. Instead of g and h being numerically
valued functions, they could be set valued functions and we could replace the summation in (4.11)
with either a set union or a set intersection. (In terms of the previous notation, we would write
Ai instead of h(i).) Then g(∅) would be taken to be the identity for set union or set intersection
respectively; that is, either g(A) ∪ g(∅) = g(A) or g(A) ∩ g(∅) = g(A). This leads to g(∅) = ∅ and
g(∅) = S, respectively.
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Let’s recap where we were before our digression: We defined

f(A) =

∣

∣

∣

∣

⋃

i∈A

Si

∣

∣

∣

∣

for A 6= ∅ and f(∅) = |S|. Now, Nr is simply the sum of f(R) over all subsets R of m of size r; i.e.,

Nr =
∑

R⊆m

|R|=r

f(R).

We can rewrite (4.3) in the form
∑

R⊆m

(−1)|R|f(R).

In words, we can describe f({i1, . . . , ir}) as the number of things that satisfy conditions i1, . . . , ir and
possibly others. In a similar manner, we could define a function e({i1, . . . , ir}) to the number of things
that satisfy condition i1, . . . , ir and none of the other conditions in the collection 1, . . . , m. In these
terms, (4.3) is a formula for e(∅). Also, by the definitions of e and f , we have f(R) =

∑

Q⊇R e(Q).

We state without proof a generalization of the Principle of Inclusion and Exclusion.

Theorem 4.4 Let P be the partially ordered set of subsets of k. For any two functions e and
f with domain P

f(x) =
∑

y⊇x

e(y) for all x ∈ P 4.14

if and only if

e(x) =
∑

y⊇x

(−1)|y|−|x|f(y) for all x ∈ P . 4.15

This result can be extended to any finite partially partially ordered set P if (−1)|y|−|x| is replaced
by a function µ(x, y), called the Möbius function of the partially ordered set P . We will not explore
this.

Exercises

4.1.12. This exercise extends the Principle of Inclusion and Exclusion (4.3). Let Ek be the number of
elements of S that lie in exactly k of the sets S1, S2, . . . , Sm. Prove that

Ek =

m−k
∑

i=0

(−1)i
(

k + i

i

)

Nk+i. 4.16

4.1.13. The purpose of this exercise is to prove Bonferroni’s inequalities.

(a) Prove the inequalities are equivalent to the statement that sums

ct(X) =

(

|X|

0

)

−

(

|X|

1

)

+

(

|X|

2

)

− · · · ±

(

|X|

t

)

alternate in sign until eventually becoming 0 for t ≥ |X|.

(b) Prove ct(X) = (−1)t
(

|X|−1
t

)

and so complete the proof.

4.1.14. Find a formula that bears the same relation to Bonferroni’s inequalities that (4.4) bears to (4.3); i.e.,
find inequalities for approximations to |S1∪· · ·∪Sm| rather than for approximations to E.
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4.1.15. Consider the following algorithm due to H. Wilf.

Initialize: Let the Ni be defined as in (4.3).
Loop: Execute the following code.

For j = 0, 1, . . . , m − 1

For i = m − 1, m − 2, . . . , j

Ni = Ni − Ni+1

End for

End for

The loop on i means that i starts at m − 1 and decreases to j.

(a) By carrying out the algorithm for m = 2 and m = 3, prove that Ni is replaced by Ei, where Ei

is given by Exercise 4.1.12 for these values of m.

(b) We can rephrase the algorithm in a set theoretic form. Replace Nr by N∗
r , the multiset which

contains each s ∈ S as many times as there are 1 ≤ i1 < i2 < . . . < ir ≤ m such that

s ∈ Si1 ∩ . . . ∩ Sir
. 4.17

By the definition of Nr, it follows immediately that Nr = |N∗
r |. Similarly, replace Ek by E∗

k , the

set of those elements of S that belong to exactly k of the sets S1, . . . , Sm. Replace Ni by N∗
i in

the algorithm and interpret N∗
i −N∗

i+1 to be the multiset that contains s ∈ S as many times as

it appears in N∗
i minus the number of times it appears in N∗

i+1. We claim that the algorithm

now stops with N∗
i replaced by E∗

i . Prove this for m = 2 and m = 3.

*(c) Using induction on t, prove the set theoretic form of the algorithm by proving that after t
iterations of the loop on j; i.e., j = 0, . . . , t − 1 the following is true. If s ∈ S appears in exactly
p of the sets S1, . . . , Sm, then it appears in N∗

r with multiplicity

µ(p, r, t) =







(

p−t
r−t

)

, if t ≤ p;

1, if t > p and r = p;

0, if t > p and r 6= p.

4.18

Also prove that no s ∈ S ever appears more times in an N∗
r+1 than it does in an N∗

r when we

are calculating N∗
r − N∗

r+1.

(d) Prove that the validity of the set theoretic form of the algorithm implies the validity of the
numerical form of the algorithm.
Hint. Use the last sentence in (c).

4.1.16. Let Dn(k) be the number of permutations of n that have exactly k fixed points. Thus Dn(0) = Dn,
the number of derangements of n.

(a) Use Exercise 4.1.12 to obtain a formula for Dn(k).

(b) Give a simple, direct combinatorial proof that Dn(k) =
(

n
k

)

Dn−k.

(c) Using algebra and (4.10), prove the answers in (a) and (b) are equal.

4.1.17. Let A = {a1, . . . , am} be a set of m integers, all greater than 1. Let d(n, k, A) be the number of
integers in n that are divisible by exactly k of the integers in A.

(a) Assuming that the elements of A are distinct primes all dividing n, obtain a formula for d(n, k, A)
by using Exercise 4.1.12. Specialize this formula to obtain a formula for the Euler phi function
ϕ(n) discussed in Exercise 4.1.5.

(b) Relax the constraints in (a) by replacing the assumption that the elements in A are primes by
the assumption that no two elements in A have a common factor.

(c) Relax the constraints in (a) further by not requiring that the elements of A divide n.

(d) Can you relax the constraints in (a) still further by making no assumptions about A and n
except that A consists of m integers greater than 1?

4.1.18. Explain why the real numbers with xρy meaning “x is less than y” is not a poset.
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4.1.19. Prove that the following are posets.

(a) The real numbers with xρy meaning “x is less than or equal to y.”

(b) The real numbers with xρy meaning “x is greater than or equal to y.”

(c) The subsets of a set with xρy meaning x ⊆ y.

(d) The positive integers with xρy meaning y/x is an integer.

4.1.20. Prove that if (S, ρ) is a poset then so is (S, τ ) where xτy if and only if yρx.

4.1.21. Let S be the set of all partitions of n. If x, y ∈ S, write xρy if and only if every block of y is a
union of one or more blocks of x. For example, {1, 2}, {3}, {4}}ρ{{1, 2, 4}, {3}}. Prove that this is a
poset.

4.1.22. Suppose that (R,ρ) and (T, τ ) are posets. Prove that (R×T, π) is a poset if (r, s)π(r′, s′) means that

both rρr′ and tτ t′ are true.

4.1.23. We will deduce the result in Exercise 4.1.12 as a consequence of the partially ordered set extension
of the Principle of Inclusion and Exclusion.

(a) We look at subsets y of {1, 2, . . . , m}. Let e(y) be the number of elements in S that belong to
every Si for which i ∈ y and to none of the Sj for which j /∈ y. Prove that Ek is the sum of e(y)
over all y of size k.

(b) Prove that if f(x) is defined by (4.14), then

f(x) =

∣

∣

∣

∣

⋂

i∈x

Si

∣

∣

∣

∣

.

(c) Conclude that (4.15) implies (4.16).

4.2 Listing Structures with Symmetries

By using decision trees, introduced in Chapter 3, we can produce our list C of canonical represen-
tatives. There are many ways to go about it. We’ll illustrate this by some examples. Many of the
examples are based on the Ferris wheel problem of Example 1.12 (p. 13): How many distinct six long
circular sequences of ones and twos are there?

Example 4.7 A straightforward method One approach to the Ferris wheel problem is to
simply generate all sequences and reject those that are equivalent to an earlier one in the lex order.
For example, we would reject both 121121 and 211211 because they are equivalent to 112112, which
occurs earlier in lex order.

We can reduce the size of the decision tree by being careful; e.g., the sequence that starts 1211 . . .
can never be lexically least because we could shift it two positions to get 11 . . .12.

Even with these ideas, the decision tree is rather large. Hence, we’ll shorten the problem we’ve
been considering to sequences of length 4. The decision tree is shown in Figure 4.2. It is simply the
tree for generating all functions from 4 to 2 with those functions which have a (lexically) smaller
circular shift removed. How did we do the removal? When we decided to begin with 2, there was no
possibility of ever choosing a 1—a circular shift would begin with 1 and so be smaller. Also, if any
2’s are present, we can never end with a 1 because a circular shift that moved it to the front would
produce a smaller sequence. This rule was applied to determine the possible decisions at 112, 121
and 122. This explains everything that’s missing from the full tree for 24.

This approach can get rather unwieldy when doing larger problems by hand. Try using it for
the six long Ferris wheel.
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•
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222

2222

11 12
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1212
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1222
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1111 1112

112

1122

Figure 4.2 A Ferris wheel decision tree.

Example 4.8 Another problem Four identical spheres are glued together so that three of them
lie at the vertices of an equilateral triangle and the fourth lies at the center. That is, the centers of
the spheres lie in a plane and three of the centers are at the corners of an equilateral triangle while
the fourth is in the center. Thus, the sphere arrangement remains unchanged in appearance if it is
flipped over about any of three axes or if it is rotated 120 degrees about an axis that passes through
the center of the center sphere and is perpendicular to the plane of the centers. Draw yourself a
picture to illustrate this—it is very useful to get into the habit of drawing pictures to help visualize
problems like this.

We have four tiny identical red balls and four tiny identical green balls. The balls are to be
placed in the spheres so that each sphere contains exactly two balls. How many arrangements are
possible?

The calculation can be done with the help of a decision tree. The first decision could be the
number of red balls to be placed in the center sphere. If no red balls are placed in the center sphere,
then two green balls must be placed there and two in the outer spheres. Those two in the outer
spheres can either be placed in the same sphere or in different spheres. Proceeding in this sort
of way, we can construct a decision tree. You should do this, verifying that exactly six distinct
arrangements are possible.

Example 4.9 A subtler method Another approach to the Ferris wheel problem is to take into
account some of the effects of the symmetry when designing the decision tree. Let’s look at our
six long Ferris wheel.

The basic idea is to look at properties that depend only on the circular sequence rather than
on how we have chosen to write it as a list. Unlike the simpler approach of listing things in lex
order, there are a variety of choices for constructing the decision tree. As a result, different people
may construct different decision trees. Constructing a good tree may take a fair bit of thought. Is it
worth the effort? Yes, because a good decision tree may be considerably smaller than one obtained
by a more simplistic approach.

Before reading further in this example, construct a simple lex order decision tree like the
one in Figure 4.2, but for the six long Ferris wheel.

Since the number of ones in a sequence remains the same, we can partition the problem according
to the number of ones that appear in the 6 long sequence. Thus our list of possible first decisions
could be

more 1’s than 2’s, three of each, more 2’s than 1’s.

We can save ourselves some work right away by noting that all the sequences that arise from the
third choice can be obtained from those of the first choice by replacing 1’s with 2’s and 2’s with 1’s.

What should our next decisions be? We’ll do something different. Define a function s on sequences
with s(x) equal to the minimal amount the sequence x must be circularly shifted to obtain x again.
(This is called the “period” of the circular sequence.) Thus s(111111) = 1, s(121121) = 3 and
s(122221) = 6. Note that if x and y are equivalent, then s(x) = s(y). You should convince yourself
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1’s vs. 2’s

•
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not
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Figure 4.3 Another Ferris wheel decision tree.

that x consists of 6/s(x) copies of the first s(x) elements of x. As a result, the only possible values
of s are 1, 2, 3 and 6, and the ratio of 1’s to 2’s in x is the same as in the first s(x) entries.

In this paragraph, we consider the case in which the number of 1’s and 2’s in x are equal. By
the above, s(x) must be even. If s(x) = 2, we need three repeats of a two long pattern that contains
a 1 and a 2. We can take x to be either 121212 or 212121. We’ll adopt our usual convention of
using the lexically least equivalent sequence for the canonical sequence, so x = 121212. If s(x) = 6,
the situation is more complex and so another decision will be used to break this case down further.
Again, many choices are possible. We’ll use m(x), the length of the longest string of consecutive
ones in the sequence x. Remember to read the list circularly, so m(121211) = 3. Put this sequence at
the start of the list. A little thought should convince you that m(x) = 1 implies x = 121212, which
does not have s(x) = 6. Since there are three 1’s and three 2’s, m(x) must be 2 or 3. If m(x) = 3,
we have x = 111222. If m(x) = 2, we have x = 112??2. The questionable entries must be a one and
a two. Either order works giving us the two sequences 112122 and 112212.

A similar analysis to that in the previous paragraph can be used for the case in which there are
more 1’s than 2’s. We leave it to you to carry out the analysis for this case.

The decision tree we have developed is shown in Figure 4.3. Compare its size with that of the
simple lex order tree you were asked to construct. Construct another decision tree using a different
sequence of decisions than we did in this example. Your goal should be to come up with something
different from Figure 4.3 that is about the same size as it is.

It is helpful to understand better the difference between the two methods we’ve used for the
Ferris wheel problem. Our first method is a straightforward pruning of the decision tree for listing all
functions in lex order. When several functions correspond to the same structure, we retain only the
lexicographically least one of them. The simplicity of the method makes it fairly easy to program.
Unfortunately it can lead to a rather large tree, often containing many decisions that lead to no
canonical solutions. Thus, although it is straightforward, using it for hand calculation may lead to
errors because of the amount of work involved.

Our second method requires some ingenuity. The basic idea is to select some feature of the
problem that lets us break it into smaller problems of the same basic type but with additional
conditions. Let’s look at what we did. First we divided the problem into three parts depending on
the number of ones versus the number of twos. Each part was a problem of the same type; e.g., how
many different arrangements are there where each arrangement has more ones than twos. Isn’t this
what we did in the first method when we made a decision like “the first element of the sequence is
1?” No! This is not a problem of the same type because the condition is not invariant under rotation
of the sequence. On the other hand, the condition that there be more ones than twos is invariant
under rotation.

In our second method, we next chose another property that is invariant under rotation of the
sequence: how much we had to rotate the sequence before it looked the same. Next we looked at the
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longest consecutive string of ones, with the sequence read circularly so that the first entry follows

the last. Again, this is invariant under rotation. Sometimes we did not need to go that far because
it was easy to see the solutions; e.g., after s(x) = 1, it was clear that 111111 was the only solution.

On the other hand, after the decision sequence =, 6, 2 in Figure 4.3, it was still not obvious what

the answer was. At this time we decided it was easier to shift back to our first method rather than
find another property that was invariant under rotation. We did this on scratch paper and simply

wrote the result as two solutions in the figure.

We might call the second method the symmetry invariant method. Why is symmetry invariance
better than the first method? When done cleverly, it leads to smaller decision trees and hence less

chance for computational errors. On the other hand, you may make mistakes because it is less

mechanical or you may make poor selections for the decision criteria. If you are applying symmetry
invariance, how do you decide what properties to select as decision criteria? Also, how do you decide

when to switch back to the first method? There are no rules for this. Experience is the best guide.

Example 4.10 Listing necklaces We’ll work another example using symmetry invariance. How

many ways can the corners of a regular hexagon be labeled using the labels B, R and W, standing for
the colors blue, red and white? Note that an unlabeled hexagon can be rotated 60◦ and/or flipped

over and still look the same. You could imagine this as a hexagon made from wire with a round

bead to be placed at each corner. We impose a condition on the finished hexagon of beads:

Adjacent beads must be different colors.

Our first decision will be the number of colors that actually appear. If only two are used, there are

only three solutions: BRBRBR, BWBWBW and RWRWRW since adjacent colors must be different.
(We’ve used the same sort of notation we used for the Ferris wheel.) If three colors are used, we

decide how many of each actually appear. The possibilities are 2,2,2 and all six permutations of

1,2,3. To do the latter, we need only consider the case of 1 blue, 2 red and 3 white and then permute
the colors in our solutions in all six possible ways. (To count, we simply multiply this case by 6.)

Let’s do the 1 blue, 2 red and 3 white case by the first method. A canonical sequence must

start with B and be followed somehow by 2 R’s and 3 W’s so that adjacent letters are different.

Call the sequence associated with the hexagon Bx2x3x4x5x6. There are no solutions with x2 = R or
with x6 = R because we are not allowed to have two W’s adjacent. Thus x2 = x6 = W. We easily

obtain the single solution BWRWRW. Remember that this gives six solutions through permutation

of colors.

The case in which each color is used twice remains to be done. We make a decision based on

whether the two B’s are opposite each other or not on the hexagon. We use the first method now.

The case of opposite B’s leads to the sequence Bx2x3Bx5x6 and the other case leads to By2By4y5y6.
In the first case, x2 and x3 are different. This leads to two lexically least sequences: BRWBRW and

BRWBWR. (The sequence BWRBWR is just BRWBRW flipped over.) In the second case, choosing

y2 determines the remaining y’s. The two results are BRBWRW and BWBRWR.

Adding up our results, there are 3 + 6 × 1 + (2 + 2) = 13 solutions.

Exercises

4.2.1. Redo Example 4.10 using only the first (mechanical) method.

4.2.2. How many ways can the eight corners of a regular octagon be labeled using the labels B and W.
Note that an unlabeled octagon can be rotated 45◦ and/or flipped over and still look the same.
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4.2.3. Let F (r) the number of ways to place beads at the vertices of a square when we are given r different
types of round beads. Let f(r) be the same number except that at least one bead of each of the
r types must be used. Rotations and reflections of the square are allowed as with the hexagon in
Example 4.10.

(a) Prove that F (r) =
(

r
1

)

f(1) +
(

r
2

)

f(2) +
(

r
3

)

f(3) +
(

r
4

)

f(4)

(b) By evaluating f(r) for r ≤ 4, obtain an explicit formula for F (r).

4.2.4. State and prove a generalization of the formula in the previous exercise that expresses F (r) in
terms of the function f . Possible generalizations are to the hexagon and the n-gon. Can you find a
generalization that has little or no connection with symmetries?

4.2.5. We want to list the coverings of a 4 × 4 board by 8 dominoes, where solutions that differ only by
a rotation and/or reflection of the board are considered to be the same. For example, Figure 3.15
shows 11 ways to cover a 3 × 4 board. With rotation and/or reflection, only 5 are distinct. The lex
order minimal descriptions of the distinct ones are hhhhhh, hhhvvh, hhvhvh, hhvvv and hvvvvh.
List the lexically least coverings of the 4 × 4 board; i.e., our standard choices for canonical represen-
tatives.

4.2.6. Draw a decision tree for covering the 4 × 4 board using one each of the shapes shown below. Two
boards are equivalent if one can be transformed to the other by rotations and/or reflections.
Hint. First place the “T” shaped piece.

4.2.7. This problem is concerned with listing colorings of the faces of a cube. Unless you are very good at
visualizing in three dimensions, we recommend that you have a cube available to manipulate. (Even
a sugar cube could be used.) Also, when listing solutions, you may find it convenient to represent
the cube in the plane by “unfolding” it as shown and writing the colors in the squares. The line of
four faces can be thought of as the four sides and the other two faces can be thought as the top and
bottom.

(a) List and count the ways to color the faces using at most the 2 colors black and white.

(b) List and count the ways to color the faces using at most the two colors black and white, with the
added condition that we do not distinguish between a cube and its color negative (interchanging
black and white).

(c) List and count the ways to color the faces using at most the two colors black and white, with
the added condition we cannot distinguish between a cube and its mirror image.

(d) List and count the ways to color the faces using all of the colors black, red and white; i.e., every
color must appear on each cube.

(e) Count the ways to color the faces using the colors black, red and white. On any given cube, all
colors need not appear.

(f) Find a formula F (r) for the number of ways to color the faces of a cube using r colors so that
whenever two faces are opposite one another they are colored differently.
Hint. See Exercise 4.2.4.



4.3 Counting Structures with Symmetries 111

4.2.8. We say that f is a “Boolean” function if f : {0, 1}n → {0, 1}.

(a) Prove that a Boolean function with n = 2 can be thought of as placing zeroes and ones at the
corners of a 1 × 1 square with lower left corner at the origin. Give a similar interpretation for
n = 3 using a cube.

(b) We want to count the number of “different” Boolean functions with n = 2 and n = 3. Two
functions will be considered equivalent if one can be obtained from the other by permuting the
arguments and/or complementation. We can describe this precisely in an algebraic fashion by
saying that f, g: {0, 1}n → {0, 1} are equivalent if and only if there is a permutation σ of n and
c, d1, . . . , dn ∈ {0, 1} such that

f(x1, . . . , xn) = c ⊕ g(xσ(1) ⊕ d1, . . . xσ(n) ⊕ dn),

where u⊕ v is u+ v unless u = v = 1 in which case u⊕ v = 0. (“Exclusive or” and “mod 2 sum”
are other names for u ⊕ v.) For n = 2, there are four different Boolean functions:

(

f(0, 0), f(0, 1), f(1, 0), f(1, 1)
)

=

{

(0, 0, 1, 1), (0, 1, 0, 1),

(0, 1, 1, 1), (1, 1, 1, , 1).

Interpret the equivalence of Boolean functions in terms of symmetries involving the square and
cube when n = 2, 3.

(c) List the different Boolean functions when n = 3.

4.3 Counting Structures with Symmetries

We’ve been using “equivalent” rather loosely without saying what it means. Since ambiguous terms
provide an easy way to make errors, we should define it.

Definition 4.2 Equivalence An equivalence relation on a set S is a partition of S. We
say that s, t ∈ S are equivalent if and only if they belong to the same block of the partition. If
the symbol ∼ denotes the equivalence relation, then we write s ∼ t to indicate that s and t are
equivalent. An equivalence class is a subset of S consisting of all objects in the set that are
equivalent to some object; i.e., an equivalence class is a block of the partition.

Returning to our circular sequence problem, what do the equivalence classes look like? First,
111111 is in a class by itself because all rotations give us the same sequence again. Likewise, 222222
is in a class by itself. The sequences {121212, 212121} is a third equivalence class. The sequences
112112 and 122122 are in different equivalence classes, each of which contains 3 sequences. So far, we
have 5 equivalence classes containing a total of 10 sequences. What about the remaining 26−10 = 54
sequences? It turns out that they fall into 9 equivalence classes of 6 sequences each. Thus there are
5 + 9 = 14 equivalence classes; that is, the answer to our circular sequence problem is 14.

This method is awkward for larger problems. You might try to do 12 long circular sequences of
ones, twos and threes, where the answer is 44,368. Burnside’s Lemma allows us to do such problems
more easily. In order to state and prove it we need some observations about the symmetries.

In our problem the symmetries are rotations of the Ferris wheel through 0◦, 60◦, 120◦, 180◦,
240◦ and 300◦. These correspond to reading a sequence circularly starting with the first, second,
. . . and sixth positions, respectively. Let S be the set of all six long sequences of zeroes and ones.
The six symmetries correspond to six permutations of S by means of the circular reading. For
example, if gi is the permutation that starts reading in position i + 1, then g1(111122) = 111221
and g3(111122) = 122111. Note that g0(x) = x for all x. Alternatively, we can think of gi as shifting
the sequence “circularly” to the left by i positions. The set G = {g0, . . . , g5} has some important
properties, namely
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(G-1) There is an e ∈ G such that e(x) = x for all x ∈ S.

(G-2) If f ∈ G, then the inverse of f exists and f−1 ∈ G.

(G-3) If f, g ∈ G, then the composition fg is in G.

The function e is called the “identity” and e is reserved for its name. You should be able to verify
that g−1

i = g5−i and gigj = gk, where k = i+ j if this is less than 6 and k = i+ j− 6 otherwise. Any
set of permutations with properties (G-1), (G-2) and (G-3) is called a permutation group. Group
theory is an important subject that is part of the branch of mathematics called algebra. We barely
touch on it here.

Symmetries always lead to permutation groups. Why? First, recall that a symmetry of some
thing is a rearrangement that leaves the thing looking the same (in our case, the thing is the empty
Ferris wheel). Taking the inverse corresponds to reversing the motion of the symmetry, so it again
leaves the thing looking the same. Taking a product corresponds to one symmetry followed by
another and so leaves the thing looking the same.

What is the connection between the equivalence classes and the permutation group for the
sequences? It is simple: Two sequences x, y ∈ S are equivalent if and only if y = g(x) for some
g ∈ G. In general, a group G of permutations on a set S defines an equivalence relation in this way.
That requires a bit of proof, which we give at the end of the section. We can now state Burnside’s
Lemma, but we defer its proof until the end of the section. In this theorem the expression

∑

g∈G N(g)

appears. For those unfamiliar with such notation, it means that we must add up the values of N(g)
for all g ∈ G. The order in which we add them does not matter since order is irrelevant in addition.

Theorem 4.5 Burnside’s Lemma Let S be a set with a permutation group G. The
number of equivalence classes that G defines on S is

1

|G|

∑

g∈G

N(g),

where N(g) is the number of x ∈ S such that g(x) = x.

Example 4.11 The Ferris wheel generalized We’ll redo the Ferris wheel problem and gen-
eralize it.

Burnside’s Lemma tells us that the answer to the Ferris wheel problem is

1
6

(

N(g0) + N(g1) + N(g2) + N(g3) + N(g4) + N(g5)
)

.

Let’s compute the terms in the sum. N(g0) = 26 since g0 = e, the identity, and there are two
choices for each of the six positions in the sequence. What is N(g1)? If x = x1x2x3x4x5x6, then
g1(x) = x2x3x4x5x6x1. Since we want g1(x) = x, we need x1 = x2, x2 = x3, . . . and x6 = x1.
In other words, all the xi’s are equal. Thus N(g1) = 2. Since g2(x) = x3x4x5x6x1x2, we find that
x1 = x3 = x5 and x2 = x4 = x6. Thus N(g2) = 22 = 4. You should be able to prove that N(g3) = 8,

N(g4) = 4 and N(g5) = 2. Thus the number of equivalence classes is 1
6 (64 + 2 + 4 + 8 + 4 + 2) = 14.

Now suppose that instead of placing just ones and twos in circular sequences, we have k symbols
to choose from. Our work in the previous paragraph makes it easy for us to write down a formula.
Note that for g2(x) = x we found that x1 = x3 = x5 and x2 = x4 = x6. Thus we can choose one
symbol as the value for x1 = x3 = x5 and another (possibly the same) symbol as the value for
x2 = x4 = x6. Thus N(g2) = k2. The other N(gi) values can be determined in a similar manner
giving us

1
6 (k6 + k + k2 + k3 + k2 + k) =

k(k5 + k2 + 2k + 2)

6

different arrangements. When k = 2, we obtain the result from the previous paragraph.
Now let’s modify what we just did by adding the requirement that adjacent symbols must be

different. In this case, N(g1) = 0 because g1(x) = x requires that x1 = x2, which is forbidden. For
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g3(x) = x, we have x1 = x4, x2 = x5 and x3 = x6. Since the symbols assigned to x1 = x4, x2 and x3

must all be different, N(g3) = k(k − 1)(k − 2). With a bit more work, we find that there are

1
6

(

N(g0) + 0 + k(k − 1) + k(k − 1)(k − 2) + k(k − 1) + 0
)

equivalence classes. The determination of N(g0) is a bit more difficult. We’ll discuss this type of
problem in Section 6.2. The answer is N(g0) = (k − 1)6 + k − 1. Thus the number of equivalence
classes is

1
6 (k − 1)

(

(k − 1)5 + k2 + 1
)

.

We can check these calculations a bit by noting that when k = 1 there should be no solutions and
when k = 2 there should be 1. Substitution into our formula does indeed give 0 and 1.

We can shorten some of the work in the previous example by thinking of permutations a bit
differently. Instead of looking at permutations of 6 long sequences, we can look at the way the per-
mutation rearranges the positions of the sequence. For example, g2(x1x2x3x4x5x6) = x3x4x5x6x1x2

can be interpreted as saying position 1 is replaced by position 3, position 2 is replaced by posi-
tion 4, and so forth. This is a new permutation: Instead of permuting the set of 6 long sequences
it permutes the set 6. To emphasize both the difference and the relationship, we use γ, the Greek
letter corresponding to g. In cycle form, γ2 = (1, 3, 5)(2, 4, 6). Thinking of a sequence as a function
f : 6 → k, the function will be counted by N(γ2) = N(g2) if and only if it is constant on the cycles
of γ2. This is a general result:

Principle In the set of allowed functions, N(γ) counts precisely those allowed functions which
are constant on the cycles of γ; i.e., those functions f such that f(x) = f(y) whenever x and y
are in the same cycle of γ.

For example, if all functions f : A → B are allowed, N(γ) is simply |B|c where c is the number of
cycles of γ. In the concluding problem of the last example, not all functions were allowed because
the adjacency constraint requires that f(i) 6= f(i + 1) for all i. In that case, computing N(γ) is a
bit harder, but the principle can still be used.

Example 4.12 Counting necklaces How many ways can 4 identical round green beads and
4 identical round red beads be arranged to form a necklace of 8 beads? Due to the nature of the
beads, two necklaces will be the same if one can be obtained from the other by rotation or flipping
over. The symmetries are like those in Example 4.10 (p. 109) except that we now have 8 positions
instead of 6.

We can imagine a necklace as an 8 long sequence and use the idea we just discussed to describe
the permutations. Obviously all that matters for counting purposes is the size of the cycles—not
what they contain. Altogether there are 16 permutations of 8, which are shown here in 5 classes,
where Pk is the set of permutations having k cycles. We’ve omitted commas separating entries in
the cycles. We leave it to you to check that the list is correct and complete.

P8 (1)(2)(3)(4)(5)(6)(7)(8)

P5 (1)(2,8)(3,7)(4,6)(5) (1,3)(2)(4,8)(5,7)(6) (1,5)(2,4)(3)(6,8)(7)

(1,7)(2,6)(3,5)(4)(8)

P4 (1,5)(2,6)(3,7)(4,8) (1,2)(3,8)(4,7)(5,6) (1,4)(2,3)(5,8)(6,7)

(1,6)(2,5)(3,4)(7,8) (1,8)(2,7)(3,6)(4,5)

P2 (1,3,5,7)(2,4,6,8) (1,7,5,3)(2,8,6,4)

P1 (1,2,3,4,5,6,7,8) (1,4,7,2,5,8,3,6) (1,8,7,6,5,4,3,2)

(1,6,3,8,5,2,7,4)
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Suppose that γ ∈ P8; i.e., γ = (1) · · · (8). Since each cycle has length 1, we can simply choose

4 cycles to be the green beads. This can be done in
(

8
4

)

= 70 ways. Thus N(γ) = 70. Suppose γ ∈ P5.

We can either choose 2 of the 2 cycles to be green beads OR choose both 1 cycles and one of the

2 cycles. Thus N(γ) =
(

3
2

)

+
(

3
1

)

= 6. Similarly, for P4, P2 and P1 we have the values
(

4
2

)

= 6, 2

and 0, respectively, for N(γ). Thus the number of necklaces is

1
16 (70 + 6 × 4 + 6 × 5 + 2 × 2) = 8.

Since there were only a few solutions, it probably would have been easier to count them by first

listing them. Do it. Unfortunately, it is usually not easy to tell in advance that there will be so few

solutions that listing them is easier than using Burnside’s Lemma. One approach is to start listing

them. If there seem to be too many, your time will probably not have been wasted because you will

have gotten a better feel for the problem.

*Proofs

We’ll conclude this section with the two proofs that we put off:

1. A permutation group G on a set S gives an equivalence relation on S.

2. Burnside’s Lemma is true.

Our proofs will be fairly heavy in notation and manipulation. If this causes difficulties for you, it

may help if you consider what is happening in a simple case. For example, you might look the

permutations associated with the Ferris wheel problem. You may also need to reread the proofs.

Proof: (Permutation groups give equivalence relations.) To prove this, we must prove that defin-

ing x, y ∈ S to be equivalent if and only if y = g(x) for some g ∈ G does indeed give an equivalence

relation. In other words, we must prove that there is a partition of S such that x and y are in the

same block of S if and only if y = g(x) for some g ∈ G.

Let

Bx = {y ∈ S|y=g(x) for some g ∈ G}. 4.19

We need to know that the set of Bx’s form a partition of S.

(a) We have x ∈ Bx because x = e(x). Thus every x in S is in at least one block.

(b) We must prove that the blocks are disjoint; that is, if Bx ∩By 6= ∅, then Bx = By. Suppose that

z ∈ Bx ∩By and w ∈ Bx, then, by (4.19), there are permutations f , g and h such that z = f(x),

z = g(y) and w = h(x). Thus

w = h(x) = h(f−1(z)) = h(f−1(g(y))) = (hf−1g)(y).

By (G-2) and (G-3), hf−1g ∈ G. Thus w ∈ By. We proved that Bx ⊆ By. Similarly, By ⊆ Bx

and so Bx = By.
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Proof: (Burnside’s Lemma) Before proving Burnside’s Lemma, we’ll prove something that will
be needed later in the proof. Let x be some element of S and let Ix be the set of all g ∈ G such that
g(x) = x. We will prove that

|Ix| · |Bx| = |G|, 4.20 where Bx is defined by (4.19).

To illustrate this, consider our Ferris wheel problem with x = 121212, we have Bx = {121212, 212121}
and Ix = {g0, g2, g4} and |G| = 6. You should look at some other examples to convince yourself that
(4.20) is true in general.

How can we prove (4.20)? We use a trick. Let F : G → S be defined by F (g) = g(x). Be
careful: x is fixed and g is the variable. Note that Image(F ) = Bx and F−1(x) = Ix. We claim that
|F−1(y)| = |F−1(x)| for all y ∈ Bx. The validity of this claim is enough to prove (4.20) because
the claim proves that the coimage of F , which is a partition of G, consists of |Bx| blocks each of
size |F−1(x)|.

We now prove the claim. Now both x and y are fixed. Since y ∈ Bx, there is some h ∈ G such
that y = h(x). Then

F−1(y) = {g ∈ G | g(x) = y} by the definition of F−1;

= {g ∈ G | g(x) = h(x)} since y = h(x);

= {g ∈ G | (h−1g)(x) = x} by (G-2);

= {hk | k ∈ G and k(x) = x} by setting k = h−1g;

= {hk | k ∈ F−1(x)} by the definition of F ;

= hF−1(x).

This gives us a bijection between F−1(y) and F−1(x). Thus |F−1(y)| = |F−1(x)|.

We now prove Burnside’s Lemma. The number of equivalence classes is simply the number of
distinct Bx’s. Unfortunately we can’t easily get our hands on an entire equivalence class or a canonical
representative. The following observation will let us look at all the elements in each equivalence class;
i.e., all the elements in S.

For any set T , 1 =
∑

t∈T

1

|T |
.

You should be able to prove this easily.
Let E be the set of equivalence classes of S. Then

|E| =
∑

B∈E

1 =
∑

B∈E

∑

y∈B

1

|B|
=

∑

B∈E

∑

y∈B

1

|By|
,

since By = B. The last double sum is just
∑

y∈S 1/|By| because each y ∈ S belongs to exactly

one equivalence class. Let χ(P ) be 1 if the statement P is true and 0 if it is false. This is called a
characteristic function. Using the above and (4.20),

|E| =
∑

y∈S

1

|By|
=

∑

y∈S

|Iy |

|G|
=

1

|G|

∑

y∈S

|Iy |

=
1

|G|

∑

y∈S

(

∑

g∈G

χ(g(y) = y)
)

by the definition of Iy;

=
1

|G|

∑

g∈G

(

∑

y∈S

χ(g(y) = y)
)

by interchanging summation;

=
1

|G|

∑

g∈G

N(g) by the definition of N(g).

This completes the proof of Burnside’s Lemma.
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Exercises

4.3.1. Suppose that you can count only ordered lists and you would like a formula for C(n, k), the number
of k element subsets of n. Let A be the set of all k-lists without repeated elements that can be formed
from n. Let B be all subsets of n. We define F : A → B as follows. For a ∈ A, let F (a) be the set whose

elements are the items in the list a. By studying the image of F and |F−1(x)| for x ∈ Image(F ),
obtain a formula for C(n, k).

4.3.2. How many 8-long circular sequences can be made using the ten digits 0, 1, 2, . . . , 9 if no digit can
appear more than once? Can you generalize your answer to n-long circular sequences when k things
are available instead of just ten?

4.3.3. Redo Example 4.12 with the numbers of beads changed from 4 and 4 to 3 and 5. Use Burnside’s
Lemma.

4.3.4. Redo Example 4.12 where there are k colors of beads and there are no constraints on how often a
color may be used.

4.3.5. Label the vertices of a regular n-gon clockwise using the numbers 1 to n in order. We can describe
a symmetry of the n-gon by a permutation of n. The set of n symmetries of the n-gon that involve
just rotating it in the plane about its center is called the cyclic group on n. The set that also allows
flipping the n-gon over is called the dihedral group on n. It contains 2n symmetries, including the
original n from the cyclic group.

(a) Describe the elements of the cyclic group as permutations in two line form. (There is a very
simple description of the second line. You should be able to find it by drawing a picture and
rotating it.)

(b) Describe the elements of the dihedral group as permutations in two line form. (There is a simple
description of the second line of the additional permutations not in the cyclic group.)

(c) Describe the cycles of the elements of the dihedral group that are not in the cyclic group.

4.3.6. How many ways can 8 squares be colored green on a 4 × 4 board of 16 squares?

(a) Assume that the only symmetries that are allowed are rotations of the board.

(b) Assume that the board can be rotated and flipped over.

4.3.7. Starting with the observation

∑

y∈S

(

∑

g∈G

χ(g(y) = y)
)

=
∑

g∈G

(

∑

y∈S

χ(g(y) = y)
)

,

use (4.20) to prove Burnside’s Lemma. (This is just a rearrangement of the proof in the text.)

4.3.8. Let D(n) be the number of ways to arrange n dominoes to cover a 2 × n board with no symmetries
allowed. Let d(n) be the number of ways to arrange them when rotations and reflections are allowed.

(a) List the coverings that give D(5) = 8 and D(6) = 13. Describe the coverings in general.

(b) Prove that D(n) is the number of compositions of n where the only allowed parts are 1 and 2.

(c) Prove that d(n) is the number of equivalence classes of compositions of n into ones and twos,
where two compositions are equivalent if they are the same or if reading one from left to right
is the same as the other read from right to left.

(d) Prove that

d(n) =







1
2

(

D(n) + D(k)
)

if n = 2k + 1;

1
2

(

D(n) + D(k) + D(k − 1)
)

if n = 2k.
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Notes and References

Alternative discussions of the Principle of Inclusion and Exclusion can be found in the texts by
Bogart [3; Ch.3], Stanley [6; Ch.2] and Tucker [7; Ch.8]. Stanley [6; Sec.2.6] uses the “Involution
Principle” to give a “bijective” proof of the Principle of Inclusion and Exclusion. A bijective proof
of a formula first interprets both sides of a formula as counting something in a simple manner (in
particular, no minus signs are normally present). The proof consists of a bijection between the two
sets of objects being counted. The Involution Principle is a fairly new technique for proving bijections
that was introduced by Garsia and Milne [4]. Exercise 4.1.15 was adapted from [8].

Gian-Carlo Rota [5] introduced Möbius inversion to combinatorialists. A less advanced discus-
sion of Möbius inversion and its applications has been given by Bender and Goldman [1]. Möbius
inversion is only one of the many aspects of partially ordered sets which have become important in
combinatorial theory. See Stanley [6; Ch.3] for an introduction. In turn, partially ordered sets are
only one of the tools of modern algebraic mathematics that are important in combinatorics. This
explosive growth of algebraic methods in combinatorics began in the late 1960’s.

We’ll return to the study of objects with symmetries in Section 11.3, where we connect a special
case of Burnside’s Lemma with generating functions. Among the texts that discuss enumeration
with symmetries are those by Biggs [2; Chs.13,14] and Tucker [7; Ch.9]. Williamson [9; Ch.4] goes
deeper into some aspects related to computer applications. The study of objects with symmetries
is inevitably tied to the theory of permutation groups, which we have attempted to minimize. See
Biggs [2] for more background on group theory.
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Zeitschrift für Wahrscheinlichkeitstheorie 2 (1964), 340–368.

6. Richard P. Stanley, Enumerative Combinatorics, vols. 1 and 2, Cambridge Univ. Press (1999,
2001).

7. Alan C. Tucker, Applied Combinatorics, 4th ed., John Wiley (2001).

8. Herbert S. Wilf, Two algorithms for the sieve method, J. of Algorithms 12 (1991), 179–182.

9. S. Gill Williamson, Combinatorics for Computer Science, Dover (2002).


