CHAPTER 5

Basic Concepts
in

Graph Theory

Introduction

The concepts in this chapter are essential for understanding later discussions involving graphs, so be
sure that you understand them. It is not necessary to memorize all the concepts since you can refer
back to them if necessary; however, make sure that you understand them when you study them now
so that referring back to them will simply be a memory refresher, not a new learning experience.

Since the basic concepts in Section 2.1 (p.41) are used in this chapter, you may wish to review
them before continuing.

5.1 What is a Graph?

There are various types of graphs, each with its own definition. Unfortunately, some people apply
the term “graph” rather loosely, so you can’t be sure what type of graph they’re talking about unless
you ask them. After you have finished this chapter, we expect you to use the terminology carefully,
not loosely. To motivate the various definitions, we’ll begin with some examples.

Example 5.1 A computer network Computers are often linked with one another so that they
can interchange information. Given a collection of computers, we would like to describe this linkage
in fairly clean terms so that we can answer questions such as “How can we send a message from
computer A to computer B using the fewest possible intermediate computers?”

We could do this by making a list that consists of pairs of computers that are connected. Note
that these pairs are unordered since, if computer C can communicate with computer D, then the
reverse is also true. (There are sometimes exceptions to this, but they are rare and we will assume
that our collection of computers does not have such an exception.) Also, note that we have implicitly
assumed that the computers are distinguished from each other: It is insufficient to say that “A PC is
connected to a Mac.” We must specify which PC and which Mac. Thus, each computer has a unique
identifying label of some sort.

For people who like pictures rather than lists, we can put dots on a piece of paper, one for each
computer. We label each dot with a computer’s identifying label and draw a curve connecting two
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Figure 5.1 Computers connected by networks. Computers (vertices) are indicated by dots (e) with labels.
The connections (edges) are indicated by lines. When lines cross, they should be thought of as cables that
lie on top of each other—not as cables that are joined.

dots if and only if the corresponding computers are connected. Note that the shape of the curve
does not matter (it could be a straight line or something more complicated) because we are only
interested in whether two computers are connected or not. Figure 5.1 shows such a picture. Each
computer has been labeled by the initials of its owner.

Recall that P2(V) stands for the set of all two element subsets of the set V. Based on our
computer example we have

Definition 5.1 Simple graph A simple graph G is a set V, called the vertices of G, and
a subset E of P2(V) (i.e., a set E of 2 element subsets of V'), called the edges of G. We can
represent this by writing G = (V, E).

In our case, the vertices are the computers and a pair of computers is in E if and only if they are
connected. [

Example 5.2 Routes between cities Imagine four cities named, with characteristic mathe-
matical charm, A, B,C and D. Between these cities there are various routes of travel, denoted by
a,b,c,d,e, f and g. A picture of this situation is shown in Figure 5.2. Looking at it, we see that
there are three routes between cities B and C. These routes are named d, e and f. Figure 5.2 is in-
tended to give us a picture of only the interconnections between cities. It leaves out many aspects of
the situation that might be of interest to a traveler. For example, the nature of these routes (rough
road, freeway, rail, etc.) is not portrayed. Furthermore, unlike a typical map, no claim is made that
the picture represents in any way the distances between the cities or their geographical placement
relative to each other. The object shown in Figure 5.2 is called a graph. Edges a and b are called
parallel, as are edges d, e and f.

Following our previous example, one is tempted to list the pairs of cities that are connected; in
other words, to extract a simple graph from the information. Unfortunately, this does not describe
the problem adequately because there can be more than one route connecting a pair of cities; e.g.,
d, e and f connecting cities B and C in the figure. How can we deal with this? Definition 5.2 is a
precise definition of a graph of the type required to handle this type of problem.
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Figure 5.2 Capital letters indicate cities and lower case indicate routes.

Definition 5.2 Graph A graph is a triple G = (V, E, ) where V and E are finite sets
and ¢ is a function with range Po(V) and with domain E. We call E the set of edges of the
graph G. The set V is called the set of vertices of G.

In Figure 5.2, G = (V, E, ¢) where
V = {A,B,C,D}, E = {a‘7bacad767fag}
and
_ a b c d e f g
v = ({A,B} {A,B} {A,C} {B,C} {B,C} {B,C} {B,D}) :

Definition 5.2. tells us that to specify a graph G it is necessary to specify the sets V and E and the
function . We have just specified V' and ¢ in set theoretic terms. Figure 5.2 specifies the same V/
and ¢ in pictorial terms. The set V is represented clearly in Figure 5.2 by dots (e), each of which
has a city name adajcent to it. Similarly, the set F is also represented clearly. The function ¢ is
determined from Figure 5.2 by comparing the name attached to a route with the two cities connected
by that route. Thus, the route name d is attached to the route with endpoints B and C. This means
that ¢(d) = {B,C}.

Note that, since part of the definition of a function includes its range and domain, ¢ determines
P2(V) and E. Also, V can be determined from P2(V). Consequently, we could have said that a
graph is a function ¢ whose domain is a finite set and whose range is P2(V') for some finite set V.
Instead, we choose to specify V' and E explicitly because the vertices and edges play a fundamental
role in thinking about a graph G. O

The function ¢ is sometimes called the incidence function of the graph. The two elements of
o(x) = {u, v}, for any x € E, are called the vertices of the edge z, and we say u and v are joined by
x. We also say that v and v are adjacent vertices and that u is adjacent to v or , equivalently, v is
adjacent to u. For any v € V, if v is a vertex of an edge x then we say x is incident on v. Likewise,
we say v is a member of , v is on x, or v is in . Of course, v is a member of x actually means v is
a member of p(x).

Figure 5.3 shows two other pictorial ways of specifying the same graph as in Figure 5.2. The
drawings look very different but exactly the same set V' and function ¢ are specified in each case.
It is very important that you understand exactly what information is needed to completely specify
the graph. When thinking in terms of cities and routes between them, you naturally want the
pictorial representation of the cities to represent their geographical positioning also. If the pictorial
representation does this, that’s fine, but it is not a part of the information required to define a graph.
Geographical location is extra information. The geometrical positioning of the vertices A, B, C' and
D is very different in Figures 5.2 and 5.3(a). However, in each of these cases, the vertices on a given
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Figure 5.3 Two alternate pictorial specifications of Figure 5.2.

edge are the same and hence the graphs specified are the same. In Figure 5.3(b) a different method
of specifying the graph is given. There, ¢!, the inverse of ¢, is given. For example, ¢ ~({C, B}) is
shown to be {d, e, f}. Knowing ¢! determines ¢ and hence determines G since the vertices A, B, C
and D are also specified in Figure 5.3(b).

Warning Some people call our “simple graph” a “graph” and some people call our “graph” a
“multigraph.” Still other people mean something somewhat different by the term multigraph!

Example 5.3 Simple graphs are graphs We can easily reconcile our two definitions by real-
izing that a simple graph is a special case of a graph. Let G = (V, E) be a simple graph. Define
¢: E — E to be the identity map; i.e., p(e) = e for all e € E. The graph G’ = (V, E, ¢) is essentially
the same as G. There is one subtle difference in the pictures: The edges of GG are unlabeled but each
edge of G’ is labeled by a set consisting of the two vertices at its ends. [

There are still more concepts that can be called graphs. People may not be interested in which
road is which in Figure 5.2, so the labels on the edges are not needed. On the other hand, some
people might need more information, such as how long it takes to travel on each of the routes in
Figure 5.2. There may be other situations, too; for example, some of the routes may be one way. We
will meet some of these concepts later.

Exercises

5.1.1. Let (V, E, @) be a graph and v € V a vertex. Define the degree of v, d(v) to be the number of ¢ € E

such that v € p(e); i.e., e is incident on v. Prove that » d(v) = 2|E|, an even number. Conclude

veV
that the number of vertices v for which d(v) is odd is even.

5.1.2. We are interested in the number of simple graphs with V = n.

(a) Prove that there are 2(3) such simple graphs. (That’s 2 to the power (g), not 2(’21))

(b) How many of them have exactly ¢ edges?

(¢) If we choose a simple n-vertex graph uniformly at random, what is the probability that it has
exactly ¢ edges?
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5.1.3. Sometimes it is useful to allow an edge to have both its ends on the same vertex. Let Q = (V, E, ¢)
be a graph where

V = {A,B,C,D,E,F,G,C,H}, E

a
s0—<A
B

In this representation of ¢, the first row specifies the edges and the the two vertices below each edge
specify the vertices incident on that edge. Here is a pictorial representation P(Q) of this graph.

{a7b7c7d7e7f7g7h7i7j7d}

and

O

c d e f g h 1+ j k
D E A E B F G C A).
E B B G F G C C A

Note that (k) = {A, A} = {A}. Such an edge is called a loop. Adding a loop to a vertex increases
its degree by two. The vertex H, which does not belong to ¢(x) for any edge x (i.e., has no edge
incident upon it), is called an isolated vertex. The degree of an isolated vertex is zero. Edges, such
as a and e of @, with the property that p(a) = ¢(e) are called parallel edges. If all edge and vertex

labels are removed from P(Q) then we get the following picture P'(Q):
P(Q): .

The picture P’(Q) represents the “form” of the graph just described and is sometimes referred to
as a pictorial representation of the “unlabeled” graph associated with Q. For each of the following
graphs R, where R = (V,E, ),V = {A,B,C,D,E,F,G,C,H}, draw a pictorial representation of
R by starting with P’(Q) removing and/or adding as few edges as possible and then labeling the
resulting picture with the edges and vertices of R. A graph R which require no additions or removals
of edges is said to be “of the same form as” or “isomorphic to” the graph Q.

(a) Let E = {a,b,c,d,e, f,g,h,i,7,k} be the set of edges of R and

-

(b) Let E = {1,2,3,4,5,6,7,8,9,10,11} be the set of edges of R and
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51.4. Let @ = (V,E,¢) be a graph with |V| = n. Let di,ds,...,dn, where di < do < --- < dn be
the sequence of degrees of the vertices of @, sorted by size. We refer to this sequence as the degree
sequence of the graph Q. For example, if Q = (V, E, ¢) is the graph where

= {A7 B7 C7 D7 E7 F7 G7 H}7 E = {a7 b7 C7 d7 67 f7 g7 h7 i?j? k7 l}
and
a b ¢ d e f g h i j k 1
¢_<AADEAEBFGCAE>.
B D FE B B G F G C C A @G

then (0,2,2,3,4,4,4,5) is the degree sequence of Q. Consider the the following unlabeled pictorial
representation of Q)

P'(Q): .

(a) Create a pictorial representation of Q by labeling P’'(Q) with the edges and vertices of Q.

(b) A necessary condition that a pictorial representation of a graph R can be created by labeling
P’(Q) with the vertices and edges of R is that the degree sequence of R be (0,2,2,3,4,4,4,5).
True of false? Explain.

(¢) A sufficient condition that a pictorial representation of a graph R can be created by labeling
P’(Q) with the vertices and edges of R is that the degree sequence of R be (0,2,2,3,4,4,4,5).
True or false? Explain.

5.1.5. In each of the following problems information about the degree sequence of a graph is given. In each
case, decide if a graph, without loops, satisfying the specified conditions exists or not. Give reasons
in each case.

(a) A graph @ with degree sequence (1,1,2,3,3,5)7

(b) A graph @ with degree sequence (1,2,2,3,3,5), multiple (i.e. parallel) edges allowed?
(¢) A simple graph @ with degree sequence (1,2,2,3,3,5)7

(d) A simple graph @ with degree sequence (3, 3,3,3)7

(e) A graph @ with degree sequence (3,3, 3, 3), no loops or parallel edges allowed?

(f) A graph @ with degree sequence (3,3, 3,5), no loops or parallel edges allowed?

(g

(
A graph @ with degree sequence (4,4, 4,4,4), no loops or parallel edges allowed?
(h (

)
)

A graph @ with degree sequence (4,4, 4,4,6), no loops or parallel edges allowed?

5.2 Equivalence Relations and Unlabeled Graphs

Sometimes we are interested only in the “structure” of a graph and not in the names (labels) of the
vertices and edges. In this case we are interested in what is called an unlabeled graph. A picture of
an unlabeled graph can be obtained from a picture of a graph by erasing all of the names on the
vertices and edges. This concept is simple enough, but is difficult to use mathematically because the
idea of a picture is not very precise.

The concept of an equivalence relation on a set is an important concept in mathematics and
computer science. We used the idea in Section 4.3, but did not discuss it much there. We’ll explore
it more fully here and will use it to rigorously define unlabeled graphs. Later we will use it to define
connected components and biconnected components. We recall the definition given in Section 4.3:
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Definition 5.3 Equivalence relation An equivalence relation on a set S is a partition
of S. We say that s,t € S are equivalent if and only if they belong to the same block. If the
symbol ~ denotes the equivalence relation, then we write s ~ t to indicate that s and t are
equivalent.

Example 5.4 To refresh your memory, we’ll look at some simple equivalence relations.

Let S be any set and let all the blocks of the partition have one element. Two elements of S
are equivalent if and only if they are the same. This rather trivial equivalence relation is, of course,
denoted by “=".

Now let the set be the integers Z. Let’s try to define an equivalence relation by saying that n
and k are equivalent if and only if they differ by a multiple of 24. Is this an equivalence relation?
If it is we should be able to find the blocks of the partition. There are 24 of them, which we could
number 0,...,23. Block j consists of all integers which equal j plus a multiple of 24; that is, they
have a remainder of j when divided by 24. Since two numbers belong to the same block if and
only if they both have the same remainder when divided by 24, it follows that they belong to the
same block if and only if their difference gives a remainder of 0 when divided by 24, which is the
same as saying their difference is a multiple of 24. Thus this partition does indeed give the desired
equivalence relation.

Now let the set be Z x Z*, where Z* is the set of all integers except 0. Write (a,b) ~ (¢, d) if
and only if ad = bc. With a moment’s reflection, you should see that this is a way to check if the
two fractions a/b and c¢/d are equal. We can label each equivalence class with the fraction a/b that
it represents. In an axiomatic development of the rationals from the integers, one defines a rational
number to be just such an equivalence class and proves that it is possible to add, subtract, multiply
and divide equivalence classes. We won’t pursue this. [

In the next theorem we provide necessary and sufficient conditions for an equivalence relation.
Verifying the conditions is a useful way to prove that some particular situation is an equivalence
relation. Recall that a binary relation on a set S is a subset R of S x S. Given a binary relation
R, we will write s ~ ¢ if and only if (s,t) € R. Thus “~” is another way to represent the binary
relation.

Theorem 5.1 Equivalence relations Let S be a set and suppose that we have a binary
relation ~ on S. This is an equivalence relation if and only if the following three conditions hold.

(i) (Reflexive) For all s € S we have s ~ s.
(ii) (Symmetric) For all s,t € S such that s ~t we have t ~ s.

(iii) (Transitive) For all v, s,t € S such that r ~ s and s ~ t we have r ~ t.
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Proof: We first prove that an equivalence relation satisfies (i)-(iii). Suppose that ~ is an equiv-
alence relation. Since s belongs to whatever block it is in, we have s ~ s. Since s ~ ¢t means that
s and t belong to the same block, we have s ~ ¢ if and only if we have ¢ ~ s. Now suppose that
r ~ s~ t. Then r and s are in the same block and s and ¢ are in the same block. Thus r and ¢ are
in the same block and so r ~ t.

We now suppose that (i)—(iii) hold and prove that we have an equivalence relation. What would
the blocks of the partition be? Everything equivalent to a given element should be in the same block.
Thus, for each s € S let B(s) be the set of all £ € S such that s ~ t. We must show that the set of
these sets form a partition of S.

In order to have a partition of S, we must have

(a) every t € S is in some B(s) and

(b) for every p,q € S, B(p) and B(q) are either equal or disjoint.

Since ~ is reflexive, s € B(s), proving (a). Suppose z € B(p) N B(q) and y € B(p). We have, p ~ x,
g~xand p~y. Thusq ~xz ~p~ yandsoy € B(q), proving that B(p) C B(g). Similarly
B(q) € B(p) and so B(p) = B(q). This proves (b). O

Suppose we have a picture of a graph G = (V, E, ), with the elements of V' and E written
next to the appropriate vertices and edges in the picture. Suppose that we have another graph
G = (V' E',¢"). We may be able to erase the elements of V and E and replace them with elements
of V' and E’, respectively, so that we obtain a picture of the graph G’. If this is possible, we will
say that G and G’ are isomorphic graphs. One can show that this relation (G is isomorphic to
G') satisfies the conditions of Theorem 5.1 and so is an equivalence relation. All graphs which are
isomorphic to a given graph correspond to the same unlabeled graph. The following definition and
example formulate these ideas more precisely.

Definition 5.4 Graph isomorphism  Let G = (V,E,¢) and G' = (V', E', ') be graphs.
We say G and G’ are isomorphic, written G ~ G’ if there are bijections

v:V—-V' and e E— F

such that ¢'(e(e)) = v(p(e)) for all e € E, where v({z,y}) is defined to be {v(z),v(y)}.
Let G = (V,E) and G’ = (V' E’) be simple graphs. They are isomorphic if there is a bijection
v:V — V' such that

{u,v} € E ifand only if {v(u),v(v)} € E'.

Let’s see what our definition means intuitively. Suppose we have a picture of a graph G =
(V, E, ), with the elements of V' and E written next to the appropriate vertices and edges in the
picture. We can replace the vertex set by a new set V', writing the elements of V'’ where the elements
of V were. The same thing can be done with the edges and a new set E’. This defines two functions
v:V — V' and e: E — E’. The condition ¢'(¢(e)) = v(p(e)) says that we get ¢’ by simply looking
at the picture to see what the ends of an edge are.
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El&lEQ B =% By, 2 Es
o1 1 P2 1 P2 lw:s
P2(Vi) < Pa2(12) Pa(Vi) =5 P2(Va) =2 Pa(Vs)
61

Figure 5.4 Functions involved in proving the equivalence of graphs. The left diagram is used for the
reflexive law. The right diagram is used for the transitive law.

Example 5.5 Unlabeled graphs Let S be the set of all graphs and let G = (V, E,¢) and
G' = (V',E',¢') be in S. We will prove that graph isomorphism is an equivalence relation on S.

Before we give our proof, let’s look at how an equivalence class can be interpreted. Draw a picture
of G and then erase the names of the vertices and edges. We could call what is left the “structure” of
G or, as is more commonly done, an unlabeled graph. The use of an equivalence relation to define an
unlabeled graph may seem a bit round-about: Why not just be satisfied with the picture? Thinking
about the picture is fine for thinking about unlabeled graphs and for the proofs we’ll write; however,
there are reasons for presenting this definition:

e If we wanted to use the picture approach in a more formal way, we’d have to say precisely what
a picture of a graph was and when two pictures represented the same graph. We faced this
problem a bit in the previous section.

e Equivalence relations arise from isomorphisms in many areas of mathematics and there is often
no picture that one can use to describe the equivalence relation. Thus, seeing the formalism for
graphs is good preparation for seeing it in other courses.

e If we wanted a theorem-proving computer program to work with unlabeled graphs, we’'d need
to give it a formal definition. (It would be much simpler to work with labeled graphs.) This is
an example of how an intuitively simple concept—unlabeled graphs in this case—can be very
difficult to express in terms that computer software can deal with.

We now give a formal proof that we have an equivalence relation.
First: G ~ G because we can take v and € to be the identity functions; i.e., v(z) =z for allz € V.

Second: Given that G; ~ G2, we must prove G ~ G1, the reflexive law. Let v; and g7 be
the bijections guaranteed by the definition of G ~ G3. Then v LV, — V4 and afleQ — Fy
are bijections. Let ey € Ey and e; = e '(e2). Then, by ¢a(ei(e1)) = vi(pi(er)), we have
p1(er) = v1 (p2(e1(e1))) and so

p1(e1(e2)) = @iler) = vi'(pa(er(er))) = vi'(pale2)).

Thus GQ ~ Gl.

Figure 5.4 may help you follow what we’ve just done: The definition of G; ~ G4 says that
starting at e € En, going to Es via €1 and then to P2(V3) via 2 ends up at the same pair of vertices
as going from e to P2(V1) and then to P2(V2) via 1 and vy, respectively. In other words, the two
routes from FE; to P2(V2) end up in the same place. We proved that the two routes from FEs to
P2(V1) must then also end up in the same place.

Third: We must prove the transitive law. Suppose that G; ~ G2 ~ G3. We then have the bijections
v;: Vi — Vigr and ;: E; — E;q for i = 1,2, Furthermore, p;11(ei(e:)) = vi(pi(e;)) for all e; € E;.
Let v(v1) = va(v1(v1)) and e(er) = ea(e1(er)). It is easily verified that v and e are bijections since
v; and €; are. Finally, since ¢1(e1) € Eo,

ps(eer)) = gslez(er(er))) = ralwz(ei(er))) = ra(vi(piler))) = vipi(er)).
Thus G; ~ Gs. O
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Exercises

5.2.1. Suppose that G = (V, E, ) and G' = (V' E’,¢’) are equivalent; i.c., give the same unlabeled graph.
Prove the following.

(a) [VI=|V'| and |B| = |E'|.
(b) d(k,G) = d(k,G") for all k, where d(k, H) is the number of vertices of degree k in H.

5.2.2. From our discussion, it may seem to be an easy matter to decide if two graphs represent the same
unlabeled graph. This is not true even for relatively small graphs. Divide the following graphs into
equivalence classes and justify your answer; i.e., explain why you have the classes that you do. In all
cases V = 4.

a b c
(a) ¢ {1,2} {1,2} {2,3} {3 4} {1, 4} {2 4}
b A B C
) = (2 (1) (L) (12} 129} 5.0
u v w
() ¢ ({2 3) (13} (3.4 (14} {12) (1 2})
Doe( P @ R s T U
@ e=ay 24y (13 ) 12) 12)

5.2.3. Let M(n,R) be the n X n matrices over the real numbers.

(a) For two matrices A,B € M(n,R), write A ~ B if and only if there is some nonsingular
P € M(n,R) such that B = PAP™L. Prove that this is an equivalence relation.

(b) For two matrices A,B € M(n,R), write A ~ B if and only if there is some nonsingular
P € M(n,R) such that B = PAP!, where P! is the transpose of P. Prove that this is an
equivalence relation.

5.2.4. Which of the following define equivalence relations? If an equivalence relation is not defined, why
not?

(a) For all s and t, s ~ t.

(b) Among the students at a university who have selected precisely one major, two are equivalent if
and only if they have the same major.

(¢) Among the students at a university, two students are equivalent if they have a class in com-
mon.

(d) For the real numbers, two numbers are equivalent if they differ by less that 0.001.

(e) For the real numbers, two numbers are equivalent if they agree in their decimal expansions
through the third digit after the decimal place.

*5.2.5. Define the concept of a equivalence relation for simple graphs so that you can introduce the notion

of an unlabeled simple graph. Prove that you have, indeed, defined an equivalence relation.
Hint. You need only introduce v, not €.
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*5.2.6. We say that an ordinary function f € B# has its domain A and its range B labeled. For convenience,we
let A={1,...,a} and B={1,...,b}.

(a) Suppose that f,g € B4 Write f ~ g if there is a permutation 7 on A such that f(x) = g(7(x))
for all x € A. Prove that this is an equivalence relation. We call the equivalence class a function
with unlabeled domain. Prove that the set of nondecreasing functions from A to B is a system of
representatives for these equivalence classes; that is, this set contains exactly one function from
each equivalence class.

(b) Using the idea in (a), define the notion of a function with unlabeled range and prove that you
have an equivalence relation. Call a function f: A — B a “restricted growth function” if f(1) =1
and, for a > 7 > 1, f(j + 1) is at most one larger than the maximum of f(1), f(2), ..., f(4).
Prove that the restricted growth functions form a system of representatives for the equivalence
classes you have defined.

(c) Using the previous ideas, define the notion of a function with unlabeled domain and range and
prove that you have an equivalence relation. Call a function f: A — B a “partition function”
if f(i) < f(i+1) for a>i>1and [fCV ()] > [fV (G +1)] for b > j > 1. Prove that the
partition functions give one representative from each equivalence class

*5.2.7. This problem uses the ideas and notation from the previous problem. Construct a table with four
rows marked with the four possibilities “A (un)labeled and B (un)labeled” and with the columns
marked with “all,” “injections” and “surjections.” Each of the twelve positions is to be interpreted
as the number of (equivalence classes of) functions in B satisfying the conditions. We use |A| = a
and |B| = b and use U and L to indicate labeled and unlabeled. The start of a table is shown below.
Verify these entries and complete the table. How can the number of (equivalence classes of) bijections
be found from the table?

B all injections surjections
L L ? bb—1)---(b—a+1) ?
L U Zk<b S(a, k) ? ?
a—1
U ? ?
U U ? 1 ?

5.3 Paths and Subgraphs

An important concept for describing the structure of a graph is the concept of a path.

Definition 5.5 Path, trail, walk and vertex sequence Let G = (V,E, ) be a graph.
Let ey, eq,...,e,—1 be a sequence of elements of E (edges of G) for which there is a sequence
ai,as,...,a, of distinct elements of V' (vertices of G) such that p(e;) = {a;,ait1} for i =
1,2,...,n — 1. The sequence of edges e, es,...,e,—1 is called a path in G. The sequence of
vertices a1, as, ..., a, is called the vertex sequence of the path. (Note that since the vertices
are distinct, so are the edges.) If we require that e, ..., e,_1 be distinct, but not that a1, ..., a,
be distinct, the sequence of edges is called a trail. If we do not even require that the edges be
distinct, it is called a walk.
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Note that the definition of a path requires that it not intersect itself (i.e., have repeated vertices),
while a trail may intersect itself. Although a trail may intersect itself, it may not have repeated edges,
but a walk may. If P = (e1,...,e,—1) is a path in G = (V, E, ) with vertex sequence ay,...,a,
then we say that P is a path from aj to a,. Similarly for a trail or a walk.

In the graph of Figure 5.2 (p. 123), the sequence ¢, d, g is a path with vertex sequence A, C, B, D.
If the graph is of the form G = (V, E) with E C P3(V), then the vertex sequence alone specifies the
sequence of edges and hence the path. Thus, in Figure 5.1 (p.122), the vertex sequence MN, SM,
SE, TM specifies the path {MN, SM}, {SM, SE}, {SE, TM}.

Note that every path is a trail and every trail is a walk, but not conversely. However, we can
show that, if there is a walk between two vertices, then there is a path. This rather obvious result
can be useful in proving theorems, so we state it as a theorem.

Theorem 5.2  Suppose u # v are vertices in G = (V, E, ). The following are equivalent:

(a) There is a walk from u to v.
(b) There is a trail from u to v.

(c) There is a path from u to v.

Furthermore, given a walk from u to v, there is a path from u to v all of whose edges are in the
walk.

Proof: Since every path is a trail, (c) implies (b). Since every trail is a walk, (b) implies (a). Thus
it suffices to prove that (a) implies (c¢). Let e1, e, ..., ex be a walk from u to v. We use induction on
n, the number of repeated vertices in a walk. If the walk has no repeated vertices, it is a path. This
starts the induction at n = 0. Suppose n > 0. If w and or v is repeated, take the part of the walk
that starts at the last occurrence of u and ends at the first occurrence of v, since this walk has less
than n repeated vertices, there is a path. Let r be a repeated vertex different from « and v. Suppose
it first appears in edge e; and last appears in edge e;. Then e1,...,e;¢ej,..., ¢ is a walk from u
to v in which r is not a repeated vertex. Hence there are less than n repeated vertices in this walk
from u to v and so there is a path by induction. Since we constructed the path by removing edges
from the walk, the last statement in the theorem follows. [

Another basic notion is that of a subgraph of G = (V, E, ), which we will soon define. First we
need some terminology about functions. By a restriction ¢’ of ¢ to E' C E, we mean the function
¢ with domain £ and satisfying ¢'(z) = ¢(x) for all € E'.

Definition 5.6 Subgraph Let G = (V,E,¢) be a graph. A graph G' = (V',E',¢') is a
subgraph of G if V! CV, p(e’) € Po(V') for all ¢ € E’, and ¢’ is the restriction of ¢ to E’
having range P2(V’).

The fact that G’ is itself a graph means that ¢(x) € Po(V’) for each x € E'.

Example 5.6 For the graph G = (V, E, ¢) of Figure 5.2 (p. 123), Let G’ = (V' E’, /) be defined
by V' ={A,B,C}, E' = {a,b,c, f}, and by ¢’ being the restriction of ¢ to E’ with range Py(V").
Notice that ¢’ is determined completely from knowing V’/, E’ and . Thus, to specify a subgraph
G’, the key information is V/ and E’.

As another example from Figure 5.2, we let V! =V and E’ = {a,b, ¢, f}. In this case, the vertex
D is not a member of any edge of the subgraph. Such a vertex is called an isolated vertez of G'. O
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One way of specifying a subgraph is to give a set of edges E’ C E and take V' to be the set of
all vertices on some edge of E’. In other words , V' is the union of the sets ¢(x) over all z € E'.
Such a subgraph is called the subgraph induced by E’. The first of Examples 5.6 is the subgraph
induced by E' = {a,b, ¢, f}. Likewise, given a set V' C V', we can take E’ to be the set of all edges
x € E such that p(z) C V’. The resulting subgraph is called the subgraph induced by V'. Referring
to Figure 5.2 (p. 123), the edges of the subgraph induced by V' = {C, B}, are E’ = {d, e, f}.

Look again at Figure 5.2. In particular, consider the path c¢,a with vertex sequence C, A, B.
Notice that the edge d has ¢(d) = {C, B}. The subgraph G’ = (V', E’,¢’), where V' = {C, A, B}

and E' = {c,a,d} is called a cycle of G. In general, whenever there is a path in G, say e1,...,ep_1
with vertex sequence aq,...,a,, and an edge = with f(z) = {a1, a,}, then the subgraph induced by
the edges eq,...,en_1,x is called a cycle of G. The formal definition is:

Definition 5.7 Cycle Let G = (V,E, ) be a graph and let ey,...,e,_1 be a path with
vertex sequence ai,...,an. If  is an edge of G such that ¢(x) = {a1,a,}, then the subgraph
G’ of G induced by the set of edges {e1,...,en_1,2} is called a cycle of G. The length of the
cycle is n.

In our definitions, a path is a sequence of edges but a cycle is a subgraph of G. In actual practice,
we will not need to make such fine distinctions, so we may think of a cycle as a path, except that
it starts and ends at the same vertex. Cycles are closely related to the existence of unique paths
between vertices:

Theorem 5.3 Two vertices u # v are on a cycle of G if and only if there are two paths from
u to v that have no vertices in common except the endpoints u and v.

Proof: Suppose u and v are on a cycle. Follow the cycle in some direction from u to v to obtain
one path. Then follow the cycle in the opposite direction from u to v to obtain another. Since a cycle
has no repeated vertices, the only vertices that lie in both paths are u and v. On the other hand, a
path from u to v followed by a path from v to u is a cycle if the paths have no vertices in common
other than u and v. [

Definition 5.8 Connected graph Let G = (V, E, ) be a graph. If for any two distinct
elements u and v of V there is a path P from u to v then G is a connected graph. If |V| =1,
then G is connected.

We make two observations about the definition.
e Because of Theorem 5.2, we can replace “path” in the definition by “walk” or “trail” if we wish.

e The last sentence in the definition is not really needed. To see this, suppose |V| = 1. Now G is
connected if, for any two distinct elements v and v of V, there is a path from w to v. This is
trivially satisfied since we cannot find two distinct elements in the one element set V.

The graph of Figure 5.1 (p.122) is not connected. (There is no path from EN to TM, for
example.) The subgraph of this graph induced by the edges {{SH, EN}, {EN, RL}, {EN, CS}} is a
connected graph with no cycles. Notice in Figure 5.1, that the relation defined on pairs of vertices u, v
by “there exists a path from u to v” partitions the vertices into two subsets: V; = {EN, SH, RL, CS}
and V5 = {MN, SM, SE, TM}. Any two vertices in V] can be joined by a path and the same is true
for any two vertices in V5. There is no path connecting a vertex in V; to a vertex in V5.

This is the case in general for a graph G = (V, E, ¢): The vertex set is partitioned into subsets
Vi,Va, ...,V such that if v and v are in the same subset then there is a path from u to v and
if they are in different subsets there is no such path. The subgraphs G1 = (V1, E1,¢1),...,Gm =
(Vin, B, om) induced by the sets Vi,...,V,, are called the connected components of G. Every edge
of G appears in one of the connected components. To see this, suppose that {u,v} is an edge and
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note that the edge is a path from u to v and so v and v are in the same induced subgraph, G;. By
the definition of induced subgraph, {u,v} is in G;.

*Example 5.7 Connected components as an equivalence relation If you’ve read Section 2,
you may have realized that the definition of connected components is a bit sloppy: We need to know
that the partitioning into such subsets can actually occur. To see that this is not trivially obvious,
define two integers to be “connected” if they have a common factor. Thus 2 and 6 are connected and
3 and 6 are connected, but 2 and 3 are not connected and so we cannot partition the set V' = {2, 3,6}
into “connected components”. We must use some property of the definition of graphs and paths to
show that the partitioning of vertices is possible. One way to do this is to construct an equivalence
relation.

For u,v € V, write u ~ v if and only if either v = v or there is a walk from u to v. We will use
Theorem 5.1 (p. 127) to prove that this is an equivalence relation. It is clear that ~ is reflexive and
symmetric. We now prove that it is transitive. Let u ~ v ~ w. The walk from v to v followed by
the walk from v to w is a walk from u to w. This completes the proof that u ~ v is an equivalence
relation. The relation partitions V into subsets V1,...,V,,. O

Exercises

5.3.1. Let C be the set of courses at the university and S the set of students. Let V = C U S and let
{s,c} € E if and only if student s is enrolled in course c.
(a) Prove that G = (V, E) is a simple graph.

(b) Prove that every cycle of G has an even number of edges.

5.3.2. A graph G = (V, E) is called bipartite if V can be partitioned into two sets A and B such that each
edge has one vertex in A and one vertex in B. (A partition means that AUB =V and AN B =0.)
(a) Prove that the example in Exercise 5.3.1 is a bipartite graph.
(b) Prove that every cycle in a bipartite graph has even length.

(c) Suppose that G is a connected bipartite graph. Develop an algorithm to partition the vertices
of G into sets A and B such that each edge has one vertex in A and one vertex in B. Prove that
your algorithm is correct.

(d) Extend your algorithm to all bipartite graphs.

(e) Prove that the number of ways to choose A and B in a bipartite graph with k& connected
components is 2k,

*(f) Prove that a graph is bipartite if and only if every cycle in the graph has even length.

*5.3.3. A cut edge or isthmus of a connected graph G = (V, E, ) is an edge e such that the removal of e
from G leaves a graph which is not connected. A cut vertex or articulation point of G is a vertex v
such that the subgraph induced by V' — {v} is not connected. For example, in Figure 5.2, edge ¢ is
an isthmus and vertex B is a cut vertex. For this problem, assume that G is simple.

(a) If e is a cut edge of G and v € p(e) is also on another edge f # e, prove that v is a cut vertex
of G.

(b) Give an example of a connected graph that has a cut vertex but does not have an isthmus.

(c) Prove that an edge e of G is a cut edge if and only if it does not lie on a cycle.
Hint. Look for a path that does not contain e but connects the two vertices in ¢(e).

(d) (Challenge) Formulate and prove a result similar to the previous one for cut vertices.



5.3 Paths and Subgraphs 135

5.3.4. A circuit (or “closed trail”) in a graph G = (V, E, ¢) is defined exactly as is a cycle in Definition 5.7

5.3.5.

except that the “path with vertex sequence aq,...,an” is replaced by a “trail with vertex sequence
ai,...,an.” In the next section, we’ll define a tree as a connected graph without cycles. Suppose
that in this definition and in Definition 5.8 “path”is replaced by “trail” and “cycle” is replaced by
“circuit.” Would the new definitions of tree and connected graph describe the same structures as the
old definition? Explain.

We are going to describe a process for constructing a graph G = (V, E, ¢) (with loops allowed). Start
with V' = {v1} consisting of a single vertex and with £ = (). Add an edge e, with ¢(e1) = {v1,v2},
to E. If v1 = v2, we have a graph with one vertex and one edge, else we have a graph with two
vertices and one edge. Keep track of the vertices and edges in the order added. Here (v1,v2) is the
sequence of vertices in the order added and the (e1) is the sequence of edges in order added. Suppose
we continue this process to construct a sequence of vertices (not necessarily distinct) added and
sequence of distinct edges added. At the point where k distinct edges have been added, if v is the last
vertex added, then we add a new edge ey 1, different from all previous edges, with p(eg1) = {v,v}
where either v’ is a vertex already added or a new vertex. Here is a picture of this process carried
out with the edges numbered in the order added, where the vertex sequence is

(A7A7B7E7D7A7B7F7G7E7C7C7G)

Such a graph is called Fulerian or a “graph with an Eulerian trail.” By construction, if G is a graph
with an Eulerian trail, then there is a trail in G that includes every edge in G. If there is a circuit in
G that includes every edge of G then G is called an Eulerian circuit graph or graph with an Eulerian
circuit. Thinking about the above example, if a graph has an Eulerian trail but no Eulerian circuit,
then all vertices of the graph have even degree except the start vertex and end vertex of the Eulerian
trail (they have odd degree). If a graph has an Eulerian circuit then all vertices have even degree.
The converses in each case are also true (but take a little work to show). In each of the following
graphs, find the longest trail (most edges) and longest circuit. If the graph has an Eulerian circuit or
trail, say so.

()A B

a

© C d f
D C
A a C g F
b

()e c d |fi J k
B b D h E

b D h
m
n
(@ @ : &
¢l ¢ d i j |k
B b D h E
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5.3.6. Suppose we start with a graph G’ = (V, E’, ¢’) that is a cycle and then add additional edges, without

adding any new vertices, to obtain a graph G = (V, E, ¢). As an example, consider

sy

where the first graph G’ = (V, E’, ) is the cycle induced by the edges {a,b,c,d,e, f}. A graph that
can be constructed from such a two-step process is called a Hamiltonian graph. The cycle G’ is
called a Hamiltonian cycle. Alternatively, a cycle in a graph G = (V, E, ¢) is a Hamiltonian cycle
for G if every element of V is a vertex of the cycle. A graph G = (V, E, ¢) is Hamiltonian if it has
a subgraph that is a Hamiltonian cycle for G. For each of the following graphs G = (V, E, ¢), find a
cycle in G of maximum length. State whether or not the graph is Hamiltonian.

A B C
(b) .
D E F
A I
© A3 P J Q R S
G C o) K
F D N L 0
- N T U %
d A I
@ g A3 P J Q R S
G C o) K
F D N L U
B N T U %

5.4 Trees

Trees play an important role in a variety of algorithms. We have already met decision trees in
Chapter 3. In this section, we define trees precisely and look at some of their properties. We study
trees further in Section 6.1 and Chapter 9.

Definition 5.9 (Free) Tree IfG is a connected graph without any cycles then G is called
a tree. (If |V| =1, then G is connected and hence is a tree.) A tree is also called a free tree.
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The graph of Figure 5.2 (p. 123) is connected but is not a tree. The subgraph of this graph induced
by the edges {a, e, g} is a tree. If G is a tree, then ¢ is an injection since if e; # ez and p(e1) = p(e2),
then {e1, es} induces a cycle. Because of this, we can think of a tree as a simple graph when we are
not interested in names of the edges.

It’s natural to ask how many trees can be formed using an n-set V' for the vertices. In Exam-
ple 5.10 (p. 143), we’ll prove that the answer is n"~2. Another proof is given in Exercise 5.4.12.

Since the notion of a tree is so important, it will be useful to have some equivalent definitions
of a tree. We state them as a theorem

Theorem 5.4 Definitions of tree IfG is a connected graph, the following are equivalent.

a) G is a tree.

(
(b
(
(

)
) G has no cycles.
¢) For every pair of vertices u # v in G, there is exactly one path from u to v.
)
)

d) Removing any edge from G gives a graph which is not connected.

(e) The number of vertices of G is one more than the number of edges of G.

Proof: By the definition of a tree, (a) and (b) are equivalent.

Theorem 5.3 can be used to prove that (b) and (c) are equivalent. We leave that as an exercise.

If {u,v} is an edge, it follows from (c) that the edge is the only path from u to v and so
removing it disconnects the graph. Hence (¢) implies (d). We leave it as an exercise to prove that
(d) implies (b). This shows that (a), (b), (c¢), and (d) are all equivalent.

All that remains is (e).

We first show that (b) implies (e). We will use induction on the number of vertices of G. If G
has one vertex, it has no edges and so we are done. Otherwise, we claim that G has a vertex u of
degree 1; that is, it lies on only one edge {u,w}. We prove this claim shortly. Remove v and {u, v}
to obtain a graph H with one less edge and one less vertex. Since G is connected and has no cycles,
the same is true of H. Since H has fewer vertices than G, the induction hypothesis tells us that (e)
is true for H: there is one more vertex than edge in H. Since H was obtained from G by removing
one edge and one vertex, (e) is true for G. It remains to prove the existence of u. Suppose no such
u exists; that is, suppose that each vertex lies on at least two edges. We will derive a contradiction.
Start at any vertex v; of G leave v; by some edge e; to reach another vertex vy. Leave vg by some
edge eq different from the edge used to reach ve. Continue with this process. Since each vertex lies
on at least two edges, the process never stops. Hence we eventually repeat a vertex, say

V1,€1,02,...,Vk, €Ly ..., Un,Cn, Unt1 = Uk

The edges ey, ..., e, form a cycle, which is a contradiction.

Now suppose G is a connected graph which is not a tree. It suffices to prove that G has at least
as many edges as it has vertices. Why? If we do so, we will have shown

((a) is false) implies ((e) is false)

and hence the contrapositive ((e) is true) implies ((a) is true). On with the proof! By (d) we can
remove an edge from G to get a new graph which is still connected. If this is not a tree, repeat the
process and keep doing so until we reach a tree. Since (a) implies (b) and (b) implies (e), the number
of vertices is now one more than the number of edges. Since we removed edges from G but did not
remove vertices, G must have at least as many edges as vertices. [
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Example 5.8 Symmetry in graphs and trees Let G = (V,E) be a simple graph. Suppose
v:V — V is a isomorphism of G to G. Graph isomorphism is defined in Definition 5.4 (p.128). We
call an isomorphism from something to itself an “endomorphism” or a “symmetry.” How much can
a symmetry move the vertices of a graph?

It turns out that most graphs have only the trivial endomorphism v(v) = v for all v € V|, so
the vertices can’t move at all. On the other hand, if the graph has no edges (E = ) or all possible
edges (E = P2(V)), then every permutation of the vertices in V is a symmetry since the condition
{u,v} € E if and only if {v(u),v(v)} € E in Definition 5.4 is easily seen to hold. What about graphs
that are encountered in practice?

The most common graphs in computer science are trees. Most trees have symmetries. For ex-
ample, suppose {u,v}, {u,w} € F and v and w are leaves in a tree T = (V, E). (Note that V may
have many more vertices besides u, v and w.) We leave it for you to verify that

w, ifx=w,

v(z) = {v, if v = w,

x, otherwise,

is an isomorphism of 7. Only the vertices v and w moved. While all vertices might move in an
isomorphism of a tree, there are always some that either don’t move or don’t move “far.” We’ll
prove

Theorem 5.5  Ifv is an isomorphism of the tree T = (V, E) then either

(a) there is a vertex v with v(v) = v or
(b) there is an edge {u,v} with v(u) = v and v(v) = u.

In other words, either a vertex or an edge does not move.

Suppose (a) is not true. We'll define a map f : V — E and use the Pigeonhole Principle,
Theorem 2.5 (p. 55).

If z € V, v(x) # z. Since T is a tree, there is a unique path from z to v(z). Let f(z) be the
first edge on the path. Since |E| = |V| — 1, the Pigeonhole Principle tells us that there must be two
vertices v; and vy with f(v1) = f(v2). Thus v; and vy are the ends of an edge e = {v1,v2}. Since v
is an isomorphism, v(e) = {v(v1),v(v2)} is also an edge.

We claim v(e) = e. Draw a picture and try to understand why this is so. (Remember that paths
between tree vertices are unique.)

* * * Stop and think about this! * * *

If v(e) # e, here is a way to get from vy to ve without using e. There is a path P; from v; to v(v;)
that starts with the edge e. Start at v; and follow the part of P, after e to v(v1). Traverse the edge
v(e) = {v(v1),v(v2)} from v(vy) to v(vg). Since e = {v1,v2} is the first edge on P, you can follow
P, backwards until you reach v2. You have just walked from v; to v without using e. Thus there is
a path from v; to ve that does not use e. Since there can be only one path from v; to v9, namely e,
our assumption that v(e) # e must be wrong. Defining v = v; and v = vy completes the proof. []

The decision trees in Chapter 3 have some special properties. First, they have a starting point.
Second, the edges (decisions) out of each vertex are ordered. We now formalize these concepts.

Definition 5.10 Rooted graph A pair (G, v), consisting of a graph G and a specified vertex
v, is called a rooted graph with root v.

A rooted tree is sometimes simply referred to as a tree, but we will never do so.
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Figure 5.5 A rooted plane tree with root a at the top, as usual. Linear ordering of siblings is left to right.

Definition 5.11 Parent, child, sibling and leaf Let (T,r) be a rooted tree. If w is any
vertex other than r, let r = vg, vy, ..., Vg, Vg+1 = w, be the unique path from r to w. We call vy,
the parent of w and call w a child of vi. Vertices with the same parent are siblings. A vertex
with no children is a leaf.

Definition 5.12 Rooted plane tree Let (T,r) be a rooted tree. For each vertex, order the
children of the vertex. The result is a rooted plane tree, which we abbreviate to RP-tree.
An RP-tree is also called a tree. Parents and children are also called fathers and sons.

Figure 5.5 shows an RP-tree. The sons of b are e and f, the parent of g is d, vertex k has no children,
and the siblings of h are g and i. The decision trees of Chapter 3 are RP-trees. When we draw a
tree as in Figure 5.5, the root is normally the topmost vertex and all edges are directed downward.
In addition, siblings are drawn from left to right following their ordering. For example, the ordering
of the siblings {j,1, k} is j, then k and then [.

It’s clear where “rooted” comes from in RP-tree, but where does “plane” come from? When
such a tree is drawn on a piece of paper (a plane), we can start with the root, list its children below
it in order, and so on—just like the picture of a decision tree. On the other hand, any rooted tree
drawn in the plane has a natural ordering for the children of a vertex v provided v is not the root:
Starting at the edge from the parent of v, walk counterclockwise around v, listing the children of v
in the order in which their edges are met.

We now have two different concepts that are referred to as trees: free trees (Defi-
nition 5.9) and RP-trees. How will we keep them straight? When we believe there
18 mo chance of confusion, we may call them trees; otherwise will we call them free
trees and RP-trees. Sometimes the distinction is not needed. For example, by Theo-
rem 5.4 the statement that a tree has no cycles applies equally well to RP-trees and
free trees since every RP-tree is simply a free tree with a root and orderings.

In Chapter 9 we’ll discuss some recursive aspects of RP-trees including tree traversal and gram-
mars.

Exercises

5.4.1. Complete the proof of Theorem 5.4.

54.2. Let G = (V,E,p) be a connected graph. Using Theorem 5.4 and its proof, do the following.

(a) Prove that G has a cycle if and only if there is some edge e such that the subgraph of G with
vertices V' and edges E — {e} is connected.

(b) Prove that there is a subgraph of G which is a tree and has vertex set V. Such a tree is called a
spanning tree.

(c) Prove that |V| < |E|+ 1 with equality if and only if G is a tree.
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5.4.3.

5.4.4.

5.4.5.

5.4.6.

5.4.7.

5.4.8.

5.4.9.

5.4.10.
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Let T = (V, E) be a tree and let d(v) be the degree of a vertex as defined in Exercise 5.1.1.
(a) Prove that > /(2 —d(v)) = 2.
Hint. See Exercise 5.1.1.

(b) Prove that, if T has a vertex of degree m > 2, then it has at least m vertices of degree 1. Vertices
of degree 1 are called leaves or terminal vertices.

(c) Give an example for all m > 2 of a tree with a vertex of degree m and only m leaves.

(d) Suppose that T has at most one vertex of degree 2. Prove that over half the vertices of T are
leaves.

(e) Give an example for all m > 0 of a tree with m leaves, m — 1 other vertices and at most one
vertex of degree 2.

In this exercise, we study how counting edges and vertices in a graph can establish that cycles exist.

(a) Using induction on n, prove:
If n > 0, a connected graph with v vertices and v + n edges has at least n + 1 cycles.

(b) Prove that a graph with v vertices, e edges and ¢ components has at least ¢ + e — v cycles.
Hint. Use (a) for each component.

(c) Show that (a) is best possible, even for simple graphs. In other words, for each n construct a
simple graph that has n more edges than vertices but has only n + 1 cycles.

Prove that every tree with at least 3 vertices has a cut vertex and a cut edge. (The terms cut edge
and cut vertex are defined in Exercise 5.3.3.)

Give an example of a graph that satisfies the specified condition or show that no such graph exists.
(a) A tree with six vertices and six edges

(b) A tree with three or more vertices, two vertices of degree one and all the other vertices with
degree three or more.

(¢) A disconnected simple graph with 10 vertices, 8 edges and a cycle.

(d) A disconnected simple graph with 12 vertices, 11 edges and no cycles.

(e) A tree with 6 vertices and the sum of the degrees of all vertices 12.

(f) A connected simple graph with 6 edges, 4 vertices, and exactly 2 cycles.

(g) A simple graph with 6 vertices, 6 edges and no cycles.

The height of a rooted tree is the the length of the longest path from a leaf of the tree to the root

of the tree. A rooted tree in which each non-leaf vertex has at most two children is called a binary

tree. 1If each non-leaf vertex has exactly two children, the tree is called a full binary tree.
(a) Show that if a binary tree has [ leaves and height h then [ < 2" or, equivalently, logy (1) < h.
(b) Given that a binary tree has [ leaves, what can you say about the maximum value of h?

(c) Given a full binary tree with [ leaves, what is the maximum height h?
(d)

d

(e) Given a binary tree of I leaves, what is the minimal height h?

Given a full binary tree with [ leaves, what is the minimum height A?

Prove that a full binary tree with n leaves has a total of 2n — 1 vertices. (The concept of a full binary
tree was defined in Exercise 5.4.7.)

Challenge. How many different proofs can you find?

In each of the following cases, state whether or not such a tree is possible.

(a) A binary tree with 35 leaves and height 100.

(b) A full binary tree with 21 leaves and height 21.

(¢) A binary tree with 33 leaves and height 5.

(d) A full binary tree with 65 leaves and height 6.

What is the maximal number of vertices in a rooted tree of height h if every vertex has at most k

children. What is the maximal number of leaves in a rooted tree of height h if every vertex has at
most k children?
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We are going to define certain important lists of vertices associated with the rooted plane tree,
Figure 5.5. These lists can, in a similar fashion, be associated with any rooted plane tree. The first
list is abedefghijkl. This list, called the breadth-first vertex list, is obtained by starting at the root
and reading the vertices of the tree, left to right, as one would read a book. For this definition to
work on any tree, you must imagine the tree drawn with the root at the top and all vertices distance
one from the root drawn at the next level down, all of distance two at the next level, etc. The
second important list is called the depth-first verter list. The depth-first vertex list for Figure 5.5
is abebfjfkflfbacadgdhdida. Note that each vertex appears in the depth-first vertex list a number
of times equal to one plus the number of children of that vertex. If one extracts the sublist of first
occurrences of each vertex in the depth first list, one gets the list abe fjklcdghi. This list is called the
pre-order vertex list. If one extracts the sublist of last occurrences of each vertex in the depth first
list, one gets the list ejklfbcghida This list is called the post-order vertex list.

(a) For the following rooted plane tree, list the breadth-first, depth-first, pre-order, and post-order
vertex lists.

(b) Given that the following is the depth-first vertex list of a rooted plane tree, reconstruct the tree:
MKBKLKMIHDHGHFHIEICIM.

(c) Is it possible to reconstruct a rooted plane tree given just its pre-order vertex list?

(d) Is it possible to reconstruct a rooted plane tree given its pre-order vertex list and its post-order
vertex list?

Construct a bijection between functions from n — 2 to n and trees with V' = n as follows. Repeatedly
remove the leaf with the largest label from the tree until only a two vertex tree remains. When a leaf
is removed, list the vertex that it was attached to. This is called the Priifer sequence for the tree. To
establish the bijection, you must prove that any list of length n — 2 chosen from n with repetition
allowed corresponds is the Priifer sequence of a tree.

Hint. Show that the largest number not in the Priifer sequence is the vertex that was first removed.

Directed Graphs (Digraphs)

In the next two sections, we take a look at two important modifications of the concept of a graph.

Look again at Figure 5.2 (p.123). Imagine now that the symbols a, b, ¢, d, e, f and g, instead
of standing for route names, stand for commodities (applesauce, bread, computers, etc.) that are
produced in one town and shipped to another town. In order to get a picture of the flow of com-
modities, we need to know the directions in which they are shipped. This information is provided
by Figure 5.6.

In set theoretic terms, the information needed to construct Figure 5.6 can be specified by giving
a pair D = (V,p) where ¢ is a function with domain F = {a,b,¢,d,e, f,g} and range V x V.
Specifically,

- a b c d e f g
v = ((B,A) (A,B) (C,A) (C,B) (B,C) (C,B) (D,B)) :

The structure given in Figure 5.6 is an example of a directed graph:



142 Chapter 5 Basic Concepts in Graph Theory

C D

Figure 5.6 Cities with flow of commodities shown.

Definition 5.13 Directed graph A directed graph (or digraph) is a triple D = (V, E, )
where V' and E are finite sets and ¢ is a function with domain E and range V x V. We call E
the set of edges of the digraph D and call V the set of vertices of D.

Note that it is possible that f(z) = (v,v) for v € V. Such an edge z is called a loop. A simple
digraph, like a simple graph, is a pair (V, E) where E C V x V. Subgraphs, paths, walks, trails and
cycles in directed graphs are analogous to the corresponding structures in a graph. A directed graph
D' = (V',FE,¢) is a directed subgraph of D = (V,E,p) if V' CV, E' C E and ¢’ is the restriction
of ¢ to E' with range V' x V'. A directed path in the digraph D = (V, E, ) is a sequence of edges
€1,...,en—1 for which there is a sequence of distinct vertices aq, ..., a, such that ¢(e;) = (a;, a;i+1)
for + = 1,2,...,n — 1. The subdigraph induced by a set of edges E/ C E or the set of vertices
V! C V is defined in a way analogous to the corresponding concept for graphs. Let D = (V, E, )
be a directed graph and let eq,...,e,_1 with vertex sequence a1, ...,a, be a directed path. If = is
an edge of D such that ¢(z) = (an,a1), then the subgraph induced by the edges {e1,...,e,_1,2} is
called a directed cycle in D. For example, the subgraph induced by the edges {c,b,e} is a directed
cycle in the digraph of Figure 5.6. The notions of edge labeling and vertex labeling extend directly to
digraphs. The ideas of connected components and trees are more complicated in digraphs.

Example 5.9 Digraphs and binary relations Simple digraphs appear in mathematics under
another important guise: binary relations. A binary relation on a set V' is simply a subset of V x V.
Often the name of the relation and the subset are the same. Thus we speak of the binary relation
E CV x V. If you have absorbed all the terminology, you should be able to see immediately that
(V,E) is a simple digraph and that any simple digraph (V’, E’) corresponds to a binary relation
E'CV' xV'.

What about simple graphs? We can identify {u,v} € Po(V) with (u,v) € V x V and with
(v,u) € V x V. A binary relation R is called “symmetric” if (u,v) € R implies (v,u) € R. Thus
it seems that simple graphs correspond to symmetric binary relations. This is not quite true since
(u,u) would correspond to a loop. We must either allow loops or only look at symmetric binary
relations that do not contain (u,u).

An equivalence relation on a set S is also a binary relation R C S x S: We have (z,y) € R if and
only if z and y are equivalent. Note that this is a symmetric relationship. Which simple graphs (with
loops allowed) correspond to equivalence relations? There is a simple description of them. We'll let
you look for it.

Functions from a set to itself are another special case of binary relations. Figure 5.7 shows a
function and its associated digraph, called a functional digraph. Notice that some of the vertices
form cycles and the remaining vertices form trees that are attached to the cycles, each tree being
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Figure 5.7 The functional digraph associated with the function ¢ = (é 2 g é g 2 g Z g)
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Figure 5.8 The doubly marked digraph built from the functional digraph of Figure 5.7. Removing the
arrows gives a doubly marked tree.

attached by one of the vertices on a cycle. For example, the vertices 1, 2, 6, and 9 form a tree that
is attached to a cycle by the vertex 6.

One can easily read powers (using composition, not multiplication) of a function from the func-
tional digraph: The function itself comes from directed paths of length 1 and ¢* comes from directed
paths of length k.

Permutations are a special case of functions. You should be able to see that, in this case, the
functional digraph consists of cycles with no trees attached. O

Example 5.10 The number of labeled trees Let ¢, be the number of trees with vertex set
n. It’s not hard to draw the possible trees for small values of n. If you do this, you should discover
that t; =1, ¢t =1, t3 = 3 and t4, = 16. What is the pattern?

It turns out that ¢, = n”~2. You might try to check this for 5 = 125. How can we prove this
formula?

When we know the answer to a problem, we can often use some backwards reasoning or “answer
analysis” to figure out how we might solve the problem. Since n"~2 is the number of functions
from n — 2 to n, we might try to find a bijection between such functions and trees. (This is done in
Exercise 5.4.12.) Unfortunately, it is not at all clear how to proceed with this idea.

It would be much nicer if we looked at functions from n to n because these lead to functional
digraphs: with the function f € n, we associate the functional digraph (V, F) where V = n and
E = {(z, f(z)) |z € n}. Let’s pursue this and see if we can generate some ideas.

Look at the functional digraph in Figure 5.7. If we could somehow get rid of the cycles, we would
have trees!

Some inspiration is needed. Here it is. The vertices on the cycles are a permutation drawn in
cyclic form. For example, in Figure 5.7, the permutation is (3)(4,7,6). Maybe we can draw the
permutation in some other fashion. We can also write permutations in two line or one line form:

(5796) 3746

We could simply take the one line form and construct a directed graph from it:

44— T7T<4—4=4—0(

We could also drag along the other vertices that form trees attached to these cyclic vertices. This is
shown in Figure 5.8, where you should ignore the circles around the vertices for the time being. We
have constructed a tree!

This has one problem, we can no longer tell which vertices were on the cycles. The circles in
Figure 5.8 take care of this, the double circle indicating the start of one line form and the single
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circle indicating the end. The unique path from the end to the start gives the one line notation,
written in reverse. (The directed path is unique because we have constructed a tree.)

Actually our picture has more information than we need: The direction of the edges is determined
by the fact that they are all directed toward the root, which is 3 in our example. Thus we can erase
the arrowheads on the edges with no loss of information.

This entire process is reversible—Given any tree on n in which one vertex is marked with a
double circle and one with a single circle, we can recover a unique function which gives this marked
tree. Note that the same vertex may have the double circle and the single circle. This happens when
there is only one point of the functional digraph on cycles. How many such doubly marked trees are
there? By the bijection, there are n™. Since we form a tree AND mark a vertex with a double circle
AND mark a vertex with a single circle, the number is also ¢, x n x n. This completes the proof. [

Exercises

5.5.1.

5.5.2.

5.5.3.

5.5.4.

5.5.5.

5.5.6.

If D = (V,y) is a loopless directed graph, the associated graph G(D) is obtained by removing the
directions of the edges. Instead of this rough geometric description, give a definition in terms of sets
and functions.

Hint. Define a function with domain {(z,y) | z,y € V and z # y}.

We are interested in the number of simple digraphs with V' = n.

(a) Find the number of them.

(b) Find the number of them with no loops.

(¢) In both cases, find the number of them with exactly ¢ edges.

An oriented simple graph is a simple graph which has been converted to a digraph by assigning an
orientation to each edge. The orientation of {u,v} can be thought of as a mapping of it to either
(u,v) or (v,u). Give an example of a simple digraph that has no loops but is not an oriented simple
graph

We are interested in the oriented simple graphs with V' = n. (They are defined in Exercise 5.5.3.)
(a) Find the number of them.

(b) Find the number of them with exactly g edges.

Define an equivalence relation on digraphs that allows you to introduce the notion of unlabeled
digraphs. Prove that you have, in fact, defined an equivalence relation.

A digraph is strongly connected if, for every two vertices v and w there is a directed path from v
to w. From any digraph D, we can construct a simple graph S(D) on the same set of vertices by
letting {v, w} be an edge of S(D) if and only if at least one of (u,v) and (v,u) is an edge of D. You
should find the first three parts of this exercise easy, if you understand the meaning of the various
concepts—strongly connected, path, S(D), etc.

(a) Prove that, if D is strongly connected, then S(D) is connected.

(b) Construct an example of a digraph D such that D is not strongly connected but S(D) is con-
nected.

(c) Suppose that Vi, V3 is a partition of the vertices V' of a strongly connected digraph D; that is,
Vi#D, Vo#£0, V1 UVe =V, and V4 N Ve = 0. Prove that in D there is an edge from V; to V5
and an edge from V5 to V;. (This means that for some v, w; € V1 and ve, we € Vo, both (v1,v2)
and (wg,w;) are edges of D.) We will call such a partition of V' “2-way joined.”

(d) Suppose that every partition V1, V5 of the vertices of D is 2-way joined. Prove that D is strongly
connected.
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5.5.14.
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Suppose that we are given a set of statements, for example (a) through (e) in Theorem 5.4, and that
we have proved that some statements imply others. Construct a directed graph D as follows. The
statements are the vertices V' of D. For statements v and w, (v,w) is an edge of D if and only if we
have a proof that statement v implies statement w. Prove the claim: “If D is strongly connected, we
have proved enough to show that the statements in V are all equivalent.” (See Exercise 5.5.6 for a
definition of strongly connected.)

For any subset U of the vertices V of a directed graph D, define d;j,, (U) to be the number of edges
of e of D with ¢(e) of the form (w,u) where u € U and w & U. Define dout(U) similarly.

(a) For v a single vertex, what is dijn ({v}) in terms of the picture of D?

(b) Prove that Y din({v}) = > dout({v}), where the sums both range over all v € V.

c) Prove that din({u}) equals dj, (U) plus the number of non-loop edges of D that have both
uclU
of their endpoints in U.

(d) Suppose that din({v}) = dout({v}) for all v € V. Prove that di,(U) = dout(U) for all
UcCvVv.

Use the notation of Exercise 5.5.8. Suppose di, ({v}) = dout({v}) for all v € V. Prove that for every
edge e of D there is a directed cycle in D that contains e.

Suppose that S(D) is connected, where S(D) is obtained from D by removing the directions of the
edges. Use the notation of Exercise 5.5.8. Suppose din({v}) = dout({v}) for all v € V. Prove that
there is a directed trail that contains every edge of D. Such a trail is called an Fulerian trail.

Let G be a connected simple graph.

(a) Suppose that the edges of G can be directed so that the resulting digraph is strongly connected.
Prove that G has no isthmuses.

*(b) Suppose that G has no isthmuses. Prove that the edges of G can be directed so that the resulting

graph is strongly connected. (This seems to be quite difficult given the material you have had
so far. We will return to it later.)

Let R C S x S be a binary relation on S. Suppose that |S| = n.

(a) How many reflexive binary relations R are there on S?7

(b) How many reflexive and symmetric relations R are there on S?

(¢) The relation S is unreflexive if for all z € S, (z,z) ¢ R. How many unreflexive, symmetric binary
relations R are there on S?

(d) How many symmetric relations R on S are not reflexive?

A binary relation R on S is an order relation if it is reflexive, antisymmetric, and transitive. R is
antisymmetric if for all (z,y) € R with © # y, (y,z) ¢ R. Given an order relation R, the covering
relation H of R consists of all (z,2) € R such that there is no y, + < y < z, where (z,y) € R. A
pictorial representation of the covering relation as a directed graph is called a “Hasse diagram” of H.

(a) Show that the divides relation on S = {2,3,4,5,6,7,8,9,10,11,12,13,14, 15,16} is an order
relation. By definition, (z,y) is in the divides relation on S is x is a factor of y. Thus, (4,12) is
in the divides relation. z|y is the usual notation for z is a factor of y.

(b) Draw the directed graph of the covering relation of R.

Let R be a binary relation on S. Let T be the smallest transitive relation, R C Tx. By “smallest”
we mean that if R C N C T then N is not transitive. In other words, there is no proper subset of
TR that contains R and is transitive. Note that if R is already transitive then T = R. TR is called
the transitive closure of R. Let S = {2,3,4,5,6,7,8,9,10,11,12,13,14,15,16} and let

H ={(2,4),(2,6),(2,10), (2,14), (3,6),(3,9), (3,15), (4,8), (4, 12), (5, 10), (5, 15), (6, 12), (7, 14)}.

Find the transitive closure of H.
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5.5.15. A graph is selected uniformly at random from all g-edge simple graphs with vertex set n.
(a) What is the probability that the graph we have chosen is a tree? (Your answer will depend
on q.)
(b) Show that this probability is bigger than (2/e)"~!/n when ¢ =n — 1.
Hint. You may use the fact that, by Stirling’s formula, (n — 1)! > ("T_l)nil. Also note that

(];7) < N1/ql.

*5.6 Computer Representations of Graphs

What is the best way to represent a graph in a computer? That question is based on the mistaken
assumption that there is one best way. In fact, there are a variety of ways to represent a graph.
We’ll briefly discuss two common ones: adjacency lists and matrices. For simplicity, we will limit our
attention to simple graphs and digraphs.

Let G = (V, E) be a graph. For each v € V, keep a list of those € V such that {v,z} € E.
This is a relatively compact method for storing the structure of G. The actual implementation may
be with an array or with a linked list. If D = (V| E) is a simple digraph, then we keep two lists for
each v € V; one of those © € V such that (z,v) € E and one of those y € V such that (v,y) € E.

The method of linked lists is usually used with RP-trees. If the number of possible sons a vertex
can have is not limited, a variation of this method is frequently used. Here’s one such variation. Each
vertex v has a list of four vertices. If a vertex needed in the list does not exist, that fact is recorded
in the list (e.g., by using zero). The four vertices are:

e the parent f of the vertex v;
e the first child of v in the ordering of the children of v;
e the sibling of v that immediately precedes it in the ordering of the siblings of v;

e the sibling of v that immediately follows it in the ordering of the siblings of v.

Matrices are simply doubly indexed arrays. In the most common representation of a simple
graph G = (n, F), the matrix A(G) is n x n and
W {1 if {i,j} € E;
I 0 otherwise.
For a simple digraph D = (n, F), we make a minor adjustment to define A(D):
o {1 if (i,j) € E;
5 = .
0 otherwise.

This representation can waste a considerable amount of space if the graph has relatively few edges. In
any event, only about half of A(G) is needed since a; ; = a; ;. The matrix representation is useful for
some calculations of numbers related to the structure of the graph. See, for example, Exercise 5.6.3.

Exercises

5.6.1. Suppose that G is a bipartite simple graph. (See Exercise 5.3.2 for a definition.) Prove that the
vertices can be numbered 1 through n = |V| such that for some k the matrix A(G) has a k x k block
of zeroes in its upper left corner and an (n—k) X (n—k) block of zeroes in its lower right corner.

5.6.2. Suppose that G is a simple graph with connected components G1, ..., Gm. Number the vertices of G
by first numbering those in GG1, then those in G5 and so on. Suppose that G; has n; vertices. Provide
a description of A(G) like that in Exercise 5.6.1.
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5.6.3. This exercise requires familiarity with matrix multiplication. Let G = (n, E') be a simple graph. Let

ag;) be the (i,4) element of the matrix (A(G))¥. Define a walk from i to j like a path, but allow
repetitions; i.e., a walk is a sequence eq,ea,...,en_1 and a sequence of vq,...,vy of vertices such
that v1 = 4, vp, = j and @(e;) = {v;,vi+1}. The length of the walk is n — 1, the number of edges it
contains, with repetitions counted.

(a) Prove that there is a walk of length k from 4 to j in G if and only if al(.’kj) # 0.

(b) Suppose that i # j. If al(.kj) # 0 for some k > 0, let m be the smallest such k. Prove that there is
a path of length m between i and j.

(¢) Can you find an analog of the previous result for cycles? Be careful!

(d) Prove that G is connected if and only if (A(G) + I)¥ contains no zeroes for all sufficiently large
k. Prove that all £ > n — 1 are sufficiently large.

Hint. With B = A(G) + I and A(G)® = I, prove that bg’kj) = Zf:o (];) aEtJ)
5.6.4. State and prove results like those in the previous exercise for directed simple graphs.

5.6.5. A matrix is called nilpotent if all sufficiently high powers of it consist entirely of zeroes. Find necessary
and sufficient conditions on a simple digraph D for A(D) to be nilpotent.

Notes and References

Because of the relatively modest mathematical prerequisites and the range of applications of graph
theory, introductory texts range from high school level to graduate school level and from very applied
to very theoretical. Even within one of these compartments, the breadth of graph theory results in
a diversity of viewpoints. This is illustrated by the variety in the references.

The book by Ore and Wilson [10] is a delightful elementary introduction. The books by Berge [1],
Bondy and Murty [3], Chartrand and Lesniak [4] and Tutte [12] are more advanced than our text.
The remaining books are at a level similar to our text, although they often contain some more
advanced topics. If you are particularly interested in applications, see the book by Roberts [11]. If
your are interested in algorithms, see the book by McHugh [8].

Other applications of the Pigeonhole Principle to prove properties of trees can be found in [7].
Other proofs of the formula ¢,, = n"~2 for trees can be found in Moon’s article [9].
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