
CHAPTER 6

A Sampler
of

Graph Topics

Introduction

A tree is a very important type of graph. For this reason, we’ve devoted quite a bit of space to
them in this text. In Chapter 3, we used decision trees to study the listing, ranking and unranking
of functions and to briefly study backtracking. In the next section, we’ll focus on “spanning trees.”
Various types of spanning trees play important roles in many algorithms; however, we will barely
touch these applications.

“Graph coloring” problems have been studied by mathematicians for some time and there are a
variety of interesting results, some of which we’ll discuss. The subject originated from the problem
of coloring the countries on a map so that no adjacent countries have the same color. The subject
of map colorings is discussed in the Section 6.3, where we consider planar graphs.

If you attempt to draw a graph on a piece of paper, you will often find that you can’t do it
unless you allow some edges to cross. There are some graphs which can be drawn in the plane without
any edges crossing; e.g., all trees. These are called planar graphs. Drawing a graph without edges
crossing is called embedding the graph. K5, the five vertex complete graph (all edges present) cannot
be embedded in the plane. Try it. Can you prove that it can’t be embedded? It’s not clear how to
go about proving that you haven’t somehow missed a clever way to embed it. The impossiblity of
embedding K5 is one of the things that we will prove in Section 6.2.

Aspects of planar graphs of interest to us are coloring, testing for planarity and circuit design.
Our discussion of coloring planar maps relies slightly on Section 6.2 and our discussion of a planarity
algorithm relies on Section 6.1.

The edges of a graph can be thought of as pipes that hold a fluid. This leads to the idea of network

flows. We can also interpret the edges as roads, telephone lines, etc. The central practical problem is
to maximize, in some sense, the flow through a network. This has important applications in industry.
In Section 6.4, we will discuss the underlying concepts and develop, with some gaps, an algorithm
for maximizing flow. The theory of flows in networks has close ties with “linear programming” and
“matching theory.” We will explore the latter briefly.

We can ask what “typical” large graphs are like. For example,

• How many leaves does a typical tree have?

• How many “triangles”—three vertices all joined by edges—does a typical graph have?

149

150 Chapter 6 A Sampler of Graph Topics

• How small can we make the function q(n) and still have most n-vertex, q-edge simple graphs
connected?

Questions like these are discussed in Section 6.5.
Finally, we introduce the subject of “finite state machines” in Section 6.6. They provide a

theoretical basis for studying questions related to the computability and complexity of functions
and algorithms. Various classes of finite state machines are closely associated with various classes
of grammars, an association we’ll explore briefly in Section 9.2. In Example 11.2 (p. 310), we’ll see
how some machines provide a method for solving certain types of enumeration problems.

The sections in this chapter are largely independent of each other. Other parts of the book do
not require the material in this chapter. If you are not familiar with Θ() and O() notation, you
will need to read Appendix B for some of the examples in this chapter.

6.1 Spanning Trees

Here’s the definition of what we’ll be studying in this section.

Definition 6.1 Spanning tree A spanning tree of a (simple) graph G = (V, E) is a
subgraph T = (V, E′) which is a tree and has the same set of vertices as G.

Example 6.1 Since a tree is connected, a graph with a spanning tree must be connected. On
the other hand, you were asked to prove in Exercise 5.4.2 (p. 139) that every connected graph has a
spanning tree. Thus we have: A graph is connected if and only if it has a spanning tree. It follows
that, if we had an algorithm that was guaranteed to find a spanning tree whenever such a tree exists,
then this algorithm could be used to decide if a graph is connected.

In this section, we study minimum weight spanning trees and lineal spanning trees.

Minimum Weight Spanning Trees

Suppose we wish to install “lines” to link various sites together. A site may be a computer installation,
a town or a spy. A line may be a digital communication channel, a rail line or a contact arrangement.
We’ll assume that

• a line operates in both directions;

• it must be possible to get from any site to any other site using lines;

• each possible line has a cost (rental rate, construction costs or likelihood of detection) indepen-
dent of each other line’s cost;

• we want to choose lines to minimize the total cost.

We can think of the sites as vertices V in a graph, the lines as edges E and the costs as a function
λ from the edges to the real numbers. Let T = (V, E′) be a subgraph of G = (V, E). Define λ(T),
the weight of T , to be the sum of λ(e) over all e ∈ E′. Minimizing total cost means choosing T so
that λ(T) is a minimum. Getting from one site to another means choosing T so that it is connected.
It follows that we should choose T to be a spanning tree—if T had more edges than in a spanning
tree, we could delete some; if T had less, it would not be connected. (See Exercise 5.4.2 (p. 139).)
We call such a T a minimum weight spanning tree of (G, λ), or simply of G, with λ understood from
context.

6.1 Spanning Trees 151

How can we find a minimum weight spanning tree T ? One approach is to construct T by adding
an edge at a time in a greedy way. Since we want to minimize the weight, “greedy” means keeping
the weight of each edge we add as low as possible. Here’s such an algorithm.

Theorem 6.1 Prim’s Algorithm (Minimum Weight Spanning Tree) Let G = (V, E)
be a simple graph with edge weights given by λ. If the following algorithm stops with V ′ 6= V ,
G has no spanning tree; otherwise, (V, E′) is a minimum weight spanning tree for G.

1. Start: Let E′ = ∅ and let V ′ = {v0} where v0 is any vertex in V .

2. Possible Edges: Let F ⊆ E be those edges {x, y} with x ∈ V ′ and y 6∈ V ′. If F = ∅, stop.

3. Choose Edge Greedily: Let f = {x, y} be such that λ(f) is a minimum over all f ∈ F .
Replace V ′ with V ′ ∪ {y} and E′ with E′ ∪ {f}. Go to Step 2.

Proof: We begin with the first part; i.e, if the algorithm stops with V ′ 6= V , then G has no spanning
tree. Suppose that V ′ 6= V and that there is a spanning tree. We will prove that the algorithm does
not stop at V ′. Choose u ∈ V − V ′ and v ∈ V ′. Since G is connected, there must be a path from u
to v. Each vertex on the path is either in V ′ or not. Since u 6∈ V ′ and v ∈ V ′, there must be an edge
f on the path with one end in V ′ and one end not in V ′. But then f ∈ F and so the algorithm does
not stop at V ′.

We now prove that, if G has a spanning tree, then (V, E′) is a minimum weight spanning tree.
One way to do this is by induction: We will prove that at each step there is a minimum weight
spanning tree of G that contains E′.

The starting case for the induction is the first step in the algorithm; i.e., E′ = ∅. Since G has
a spanning tree, it must have a minimum weight spanning tree. The edges of this tree obviously
contain the empty set, which is what E′ equals at the start.

We now carry out the inductive step of the proof. Let V ′ and E′ be the values going into Step
3 and let f = {x, y} be the edge chosen there. By the induction hypothesis, there is a minimum
weight spanning tree T of G that contains the edges E′. If it also contains the edge f , we are done.
Suppose it does not contain f . We will prove that we can replace an edge in the minimum weight
tree with f and still achieve minimum weight.

Since T contains all the vertices of G, it contains x and y and, also, some path P from x to y.
Since x ∈ V ′ and y 6∈ V ′, this path must contain an edge e = {u, v} with u ∈ V ′ and v 6∈ V ′. We
now prove that removing e from T and then adding f to T will still give a minimum spanning tree.

By the definition of F in Step 2, e ∈ F and so, by the definition of f , λ(e) ≥ λ(f). Thus the
weight of the tree does not increase. If we show that the result is still a tree, this will complete the
proof.

The path P together with the edge f forms a cycle in G. Removing e from P and adding f still
allows us to reach every vertex in P and so the altered tree is still connected. It is also still a tree
because it contains no cycles—adding f created only one cycle and removing e destroyed it. This
completes the proof that the algorithm is correct.

This proof illustrates an important technique for proving that algorithms are correct:

Make an assertion about the algorithm and then prove it inductively.

In this case the assertion was the existence of a minimum weight spanning tree having certain edges.
Induction on the number of those edges started easily and the inductive step was not too difficult.

We could construct an even greedier algorithm: At each time add the lowest weight edge that
does not create a cycle. The intermediate graphs (V ′, E′) that are built in this way may not be
connected; however, if (V, E) was connected, the end result will be a minimum weight spanning tree.
We leave it to you to formulate the algorithm carefully and prove that it works in Exercise 6.1.5. This
algorithm, with some tricky, efficient handling of the data structures is called Kruskal’s Algorithm.

152 Chapter 6 A Sampler of Graph Topics

Example 6.2 A more general spanning tree algorithm The discussion so far has centered
around choosing edges that will be in our minimum weight spanning tree. We could also choose
edges that will not be in our minimum weight spanning tree. This can be done by selecting a cycle
of edges, none of which have been rejected, and then rejecting an edge for which λ is largest among
the edges in the cycle. When no more cycles remain, the remaining edges form a minimum weight
spanning tree. We leave it to you to prove this. (Exercise 6.1.1)

These ideas can be combined: We have two sets A and R of edges that begin by both being
empty. At each step, we somehow add an edge to either A or R and claim that there exists a
minimum weight spanning tree that contains all of the edges in A and none of the edges in R. Of
course, this will be true at the start. The proof that it is true in general will use induction and will
depend on the specific algorithm used for adding edges to A and R.

What sort of algorithms can be built using this idea? We could of course simply use the greedy
algorithm for adding edges to A all the time, or we could use the greedier algorithm for adding edges
to A all the time, or we could use the cycle approach mentioned at the start of this example to add
edges to R. Something new: we could sometimes add edges to A and sometimes to R, whichever is
more convenient. This can be useful if we are finding the tree by hand.

Example 6.3 How fast is the algorithm? We’ll analyze the minimum weight (or cost) span-
ning tree algorithm. Here’s a brief description of it. We let G = (V, E) be the given simple graph.

1. Initialize: Select a vertex v ∈ V and let the tree T consist of v.

2. Select an edge: If there are no edges between VT (the vertices of T) and V −VT , stop; otherwise,
add the one of minimum cost to T and go to Step 2.

Of course, when we add an edge to T , we also add the vertex on it that was not already in T . When
the algorithm stops, VT is the vertex set of the component of G containing v. If G is connected, T
is a minimum cost spanning tree.

Suppose that T currently has k vertices. How much work is required to add the next edge to T
in the worst case? If the answer is tk, then the worst case running time is O(t1 + · · · + t|V |−1). We
can’t determine tk since we didn’t specify enough details in Step 2. We’ll fill them in now. For each
vertex u in T , we look at all edges containing it. If {u, x} is such an edge, we check to see if x ∈ VT

and, if not, we check to see if {u, x} is the least cost edge found so far in the execution of Step 2.
Both these checks can be performed in constant time; i.e, the time does not depend on |VT | or the
size of G. Since we examine at most |E| edges, tk = O(|E|). Since k ranges from 1 to |V | − 1 for a
connected graph G, the worst case running time is O(|V | |E|).

We cannot say that the worst case running time is Θ(|V | |E|) because we’ve said “at most” in
our argument.

Are there faster algorithms than this? Assuming no one has organized our data according to
edge costs, we must certainly look at each edge cost at least once, so any algorithm must have best
case running time at least Θ(|E|). Algorithms with worst case running times Θ(|E| ln ln |V |) and
Θ(|V |2) are known. If G has a lot of edges, we could have |E| = Θ(|V |2) and so Θ(|V |2) is Θ(|E|).

Does this mean that the Θ(|V |2) algorithm is best for a graph with about |V |2/4 edges, the
typical number in a “random” graph? Not necessarily. To illustrate why not, suppose that the
running time of the first algorithm is close to 4|E| ln ln |V | and that of the second is close to 3|V |2.
The first algorithm will be better as long as

3|V |2 > 4|E| ln ln |V | = |V |2 ln ln |V |.
Solving for |V |, we obtain |V | > exp(e3) = 5 × 108. This means that the Θ(|V |2 ln ln |V |) algo-
rithm, which is slower when |V | is very large, would actually be faster for all practical values of
|V |. (Remember, this is hypothetical because we assumed the values of the constants in the Θ(· · ·)
expressions.) See Example B.4 (p. 373) for further discussion.

6.1 Spanning Trees 153

A

•

••
•

s

r

f

there is a path to

r containing f
=⇒

B

⇐=
every path to

r misses f

•

Figure 6.1 An example of the division of vertices for the lineal spanning tree induction. The subgraphs
A and B are shaded.

Lineal Spanning Trees

If we simply want to find any spanning tree of G, we can choose any values for the function λ, and
use the minimal weight spanning tree algorithm of Theorem 6.1. Put another way, in Step 3 we may
choose any edge f ∈ F . Sometimes it is important to restrict the choice of f in some way so that
the spanning tree will have some special property other than being minimal.

An important example of such a special property concerns certain rooted spanning trees. To
define the trees we are interested in, we borrow some terminology from genealogy.

Definition 6.2 Lineal spanning tree Let x and y be two vertices in a rooted tree with
root r. If x is on the path connecting r to y, we say that y is a descendant of x. (In particular,
all vertices are descendants of r.) If one of u and v is a descendant of the other, we say that
{u, v} is a lineal pair. A lineal spanning tree or depth first spanning tree of a connected
graph G = (V, E) is a rooted spanning tree of G such that each edge {u, v} of G is a lineal pair.

To see some examples of a lineal spanning tree, look back at Figure 5.5 (p. 139). It is the lineal
spanning tree of a graph, namely itself. We can add some edges to this graph, for example {a, f}
and {b, j} and still have Figure 5.5 as a lineal spanning tree. On the other hand, if we added the
edge {e, j}, the graph would not have Figure 5.5 as a lineal spanning tree.

How can we find a lineal spanning tree of a graph? That question may be a bit premature—we
don’t even know when such a tree exists. We’ll prove

Theorem 6.2 Lineal spanning tree existence Every connected graph G has a lineal
spanning tree. In fact, given any vertex r of G, there is a lineal spanning tree of G with root r.

Proof: Our proof will be by induction on the number of vertices in G. The theorem is trivially
true for a graph with one vertex. Suppose we know that the claim is true for graphs with less than
n vertices. Let G = (V, E) have n vertices and let f = {r, s} ∈ E. We will prove that G has a lineal
spanning tree with root r.

Let S ⊆ V be those vertices of G that can be reached by a path starting at r and containing
the edge f . Note that r 6∈ S because a path cannot contain repeated vertices; however, s ∈ S. Let
R = V − S. If x ∈ R, every path from r to x misses s, for if not we could simply go from r to s on
f and then follow the path to x.

Let A be the subgraph of G induced by S and let B be the subgraph of G induced by R. (Recall
that the subgraph induced by S is the set of all edges in G whose end points both lie in S.) We now
prove:

Each edge of G that does not contain r lies in either A or B. 6.1

Suppose we had an edge {u, v} with u in A and v 6= r in B. There is a path from r to u using f . By
adding v to the path, we conclude that v ∈ S, a contradiction.

154 Chapter 6 A Sampler of Graph Topics

We claim that A is connected and B is connected. Suppose x and y are vertices that are both in
A or both in B. Since G is connected, there is a path joining them in G. If an edge of G does not lie
in A or in B, then, by (6.1), r is one of its vertices. A path starting in A or B, leaving it and then
returning would therefore contain r twice, contradicting the definition of a path. Thus the path lies
entirely in A or entirely in B.

Since neither R nor S is empty, each of A and B have less vertices than G. Thus, since A and
B are connected, we may apply the induction hypothesis to A and to B. Let T (A) be the lineal
spanning tree of A rooted at s and let T (B) be the lineal spanning tree of B rooted at r.

Join T (A) to T (B) by f to produce a connected subgraph T of G with vertex set V and root r.
Since T (A) and T (B) have no cycles, it follows that T is a spanning tree of G.

To complete the proof, we must show that T is lineal. Let e = {u, v} ∈ E. If one of u and v is r,
then e is a lineal pair of T . Suppose that r 6∈ e = {u, v}. By (6.1), e lies in A or B. Since T (A) and
T (B) are lineal spanning trees, e is a lineal pair of either T (A) or T (B) and hence of T .

Example 6.4 Bicomponents of graphs Let G = (V, E) be a simple graph For e, f ∈ E write
e ∼ f if either e = f or there is a cycle of G that contains both e and f . We claim that this is an
equivalence relation. To see what we’re talking about, let’s look at an example.

•

•

•

•

•

• • •

•
A A

A

A

A A

B T X

X X 6.2

The edges fall into four equivalence classes, which we’ve arbitrarily called A, B, T and X. Each edge
has the letter of its equivalence class next to it. Notice that the vertices do not fall into equivalence
classes because some of them would have to belong to more than one equivalence class.

Now we’ll prove that we have an equivalence relation by using Theorem 5.1 (p. 127). The reflexive
and symmetric parts are easy. Suppose that e ∼ f ∼ g. If e = g, then e ∼ g, so suppose that e 6= g.
Let e = {v1, v2}. Let C(e, f) be the cycle containing e and f and C(f, g) the cycle containing f
and g. In C(e, f) there is a path P1 from v1 to v2 that does not contain e. Let x and y 6= x be the
first and last vertices on P1 that lie on the cycle containing f and g. We know that there must be
such points because the edge f is on P1. Let P2 be the path in C(e, f) from y to x containing e. In
C(f, g) there is a path P3 from x to y containing g. We have shown that P2 followed by P3 defines
a cycle containing e and g. Hence e ∼ g.

Since ∼ is an equivalence relation on the edges of G, it partitions them. If the partition has
only one block, then we say that G is a biconnected graph. If E′ is a block in the partition, the
subgraph of G induced by E′ is called a bicomponent of G. Note that the bicomponents of G are
not necessarily disjoint: Bicomponents may have vertices in common (but never edges). The picture
(6.2) has four bicomponents.

Finding the bicomponents of a graph is important when we wish to decide if the graph can be
drawn in the plane so that no edges cross. We discuss this briefly at the end of Section 6.3.

Biconnectivity is closely related to lineal spanning trees. Suppose T is a lineal spanning tree of
G and that the vertices x and y are in the same bicomponent of G. Then either

{x, y} is an edge that is a bicomponent by itself

or
there is a cycle containing x and y.

In either case, since T is a lineal spanning tree, {x, y} is a lineal pair. This leads to an algorithm for
finding bicomponents: Suppose e = {x, y} is an edge that is not in T . If f is an edge on the path

6.1 Spanning Trees 155

from x to y in T , write e ∼ f . As it stands, ∼ is not an equivalence relation; however, it can be made
into one by adding what is needed to insure reflexivity, symmetry and transitivity. In the resulting
relation it turns out that, e ∼ f if and only if e and f are in the same bicomponent. (This requires
proof, which we omit.) You might like to experiment with this idea.

Exercises

6.1.1. A cycle approach to forming a minimum weight spanning tree was discussed in Example 6.2: Throw
away largest weight edges that do not disconnect the graph. Prove that it actually leads to a minimum
weight spanning tree as follows.

(a) Let T be a minimum weight spanning tree and let e be the first edge that is removed by the
algorithm but is contained in T . Prove that T with e deleted consists of two components, T1 and
T2.

(b) Call any edge in the original graph that has one end in T1 and one in T2 a connector. Prove
that, if f is a connector, then λ(f) ≥ λ(e).

(c) Let T ∗ be the spanning tree produced by the algorithm. Prove that, if e is added to T ∗, then
the resulting graph has a cycle containing e and some connector f .

(d) Let f be the edge in (c). Prove that λ(f) ≥ λ(e).

(e) Let f be the edge in (c). Prove that T with e removed and f added is also a minimum weight
spanning tree.

*(f) Complete the proof.

6.1.2. Let G be a connected simple graph and let B1 and B2 6= B1 be two bicomponents of G. Prove that
B1 and B2 have at most one vertex in common.

6.1.3. Let G be a connected simple graph. Let Q(G) be the set of bicomponents of G and let P (G) be the
set of all vertices of G that belong to more than one bicomponent; i.e., P (G) is the union of the sets
H ∩ K over all pairs H 6= K with H, K ∈ Q(G). Define a simple bipartite graph B(G) with vertex
set W = P (G) ∪ Q(G) and {u, X} an edge if u ∈ P (G) and u ∈ X ∈ Q(G). (See Exercise 5.3.2 for a
definition of bipartite.)

(a) Construct three examples of B(G), each containing at least four vertices.

(b) Prove that B(G) is a connected simple graph.

(c) Prove that B(G) is a tree.
Hint. Prove that a cycle in B(G) would lead to a cycle in G that involved edges in different
bicomponents.

(d) Prove that P (G) is precisely the articulation points of G. (See Exercise 5.3.3 for a definition.)

6.1.4. Using the proof of Theorem 6.1, prove: If λ is an injection from E to R (the real numbers), then the
minimum weight spanning tree is unique.

*6.1.5. We will study the greedier algorithm that was mentioned in the text. Suppose the graph G = (V, E, ϕ)
has n vertices. From previous work on trees, we know that any spanning tree has n − 1 edges. Let
g1, g2, . . . , gn−1 be the edges in the order chosen by the greedier algorithm. Let e1, e2, . . . , en−1 be
the edges in any spanning tree of G, ordered so that λ(ei) ≤ λ(ei+1). Our goal is to prove that
λ(gi) ≤ λ(ei) for 1 ≤ i < n. It follows immediately from this that the greedier algorithm produces a
minimum weight spanning tree.

(a) Prove that the vertices of G together with any k edges of G that contain no cycles is a graph
with n − k components each of which is a tree.

(b) Let Gk be the graph with vertices V and edges g1, . . . , gk. Let Hk be the graph with vertices V
and edges e1, . . . , ek. Prove that one of the edges of Hk+1 can be added to Gk to give a graph
with no cycles.
Hint. Prove that there is some component of Hk+1 that contains vertices from more than one
component of Gk and then find an appropriate edge in that component of Hk+1.

(c) Prove that λ(gi) ≤ λ(ei) for 1 ≤ i < n.

156 Chapter 6 A Sampler of Graph Topics

6.1.6. Using the result in Exercise 6.1.5, prove that whenever λ is an injection the minimum weight spanning
tree is unique.

6.1.7. For each of the following graphs:

•

• •

•

A B

CD

(1)

•

• •

•

A B

CD

(2)

•

• •

•

A B

CD

(3)

(a) Find all spanning trees.

(b) Find all spanning trees up to isomorphism; that is, find all distinct trees when the vertex labels
are removed.

(c) Find all depth-first spanning trees rooted at A.

(d) Find all depth-first spanning trees rooted at B.

6.1.8. For each of the following graphs:

•

• •

•

A B

CD

1

2

2

2(1)

•

• •

•

A B

CD

2

2

1

21(2)

•

• •

•

A B

CD

1

2

1

2
1
2(3)

(a) Find all minimal spanning trees.

(b) Find all minimal spanning trees up to isomorphism; that is, find all distinct trees when the
vertex labels are removed.

(c) Find all minimal depth-first spanning trees rooted at A.

(d) Find all minimal depth-first spanning trees rooted at B.

6.1.9. In the following graph, the edges are weighted either 1, 2, 3, or 4.

•

•
•

•

•

•
•

•

A

B

C

D

E

F

G

H

1

1

3

3

2

1

1

4

1

2

1

3

2

•

•
•

•

•

•
•

•

I

J

K

L

M

N

O

P 1

1

4

2

2

3

2

4

• • •

• • •

R S

T U V

2

4

3 3

2 1

31 4 2 1

(a) Find a minimal spanning tree using the method of Theorem 6.1.

(b) Find a minimal spanning tree using the method of Example 6.2.

(c) Find a minimal spanning tree using the method of Exercise 6.1.5.

(d) Find a depth-first spanning trees rooted at K.

6.2 Coloring Graphs 157

6.2 Coloring Graphs

Example 6.5 Register allocation Optimizing compilers use a variety of techniques to produce

faster code. One obvious way to produce faster code is to keep variables in registers so that memory

references are eliminated. Unfortunately, there are often not enough registers available to do this,

so choices must be made. For simplicity, assume that the registers and variables are all the same

size. Suppose that, by some process, we have gotten a list of variables that we would like to keep in

registers.

Can we keep them in registers? If the number of variables does not exceed the number of

available registers, we can obviously do it. This sufficient condition is not necessary: We may have

two variables that are only used in two separate parts of the program. They could share a register.

This suggests that we can define a binary relation among variables. We could say that two

variables are “compatible” if they may share a register. Alternatively, we could say that two variables

“conflict” if they cannot share a register. Two variables are either compatible or in conflict, but not

both. Thus we can derive one relation from the other and it is rather arbitrary which we focus on.

For our purposes, the conflict relation is better.

Construct a simple graph whose vertices are the variables. Two variables are joined by an edge

if and only if they conflict. A register assignment can be found if and only if we can find a function

λ from the set of vertices to the set of registers such that whenever {v, w} is an edge λ(v) 6= λ(w).

(This just says that if v and w conflict they must have different registers assigned to them.) This

section studies such ““vertex labelings” λ.

Definition 6.3 Graph coloring Let G = (V, E) be a simple graph and C a set. A proper

coloring of G using the “colors” in C is a function λ: V → C such that λ(v) 6= λ(w) whenever

{v, w} ∈ E.

Some people omit “proper” and simply refer to a “coloring.” A solution to the register allocation

problem is a proper coloring of the “conflict graph” of the variables using the set of registers as

colors.

Given G and C, we can ask for reasonably fast algorithms to answer various questions about

proper colorings:

1. Does there exist a proper coloring of G with C?

2. What is a good way to find a proper coloring of G with C, if one exists?

3. How many proper colorings of G with C are there?

Question 1 could be answered by an algorithm that attempts to construct a proper coloring and

fails only if none exist. It could also be answered by calculating the number of proper colorings and

discovering that this number is zero. Before trying to answer these questions, let’s look at more

examples.

158 Chapter 6 A Sampler of Graph Topics

Example 6.6 Scheduling problems Register allocation is an example of a simple scheduling

problem. In this terminology, variables are scheduled for storage in registers. A scheduling problem
can involve a variety of constraints. Some of these can be sequential in nature: Problem definition
must occur before algorithm formulation, which must in turn occur before division of programming
tasks. Others can be conflict avoidance like register allocation. The simplest sort of conflict avoidance
conditions are of the form “v and w cannot be scheduled together,” which we encountered with
register allocation. These can be phrased as graph coloring problems.

Here’s an example. Suppose we want to make up a course schedule that avoids obvious conflicts.
We could let the vertices of our graph be the courses. Two courses are connected by an edge if we
expect a student in one course will want to enroll in the other during the same term. The colors are
the times at which courses meet.

Example 6.7 Map coloring In loose terms, a map is a collection of regions, called countries
and water, that partition a sphere. (A sphere is the surface of a ball.) To make it easy to distinguish
regions that have a common boundary, they should be different colors. (“Common boundary” means
an actual line segment or curve and not just a single point.) This can be formulated as a graph
coloring problem by letting the regions be vertices and by joining two vertices with an edge if the
corresponding regions have a common boundary. What problems, if any, are caused by our loose
definition of a map? A country may consist of several pieces, like the United States which includes
Alaska and Hawaii. This is ruled out in a careful definition of a map.

It is easy to find a map that requires four colors. Try to find such a map yourself. Later we will
prove that any map can be colored with five colors. How many colors are needed? From the past few
sentences, at least four and at most five. Four colors suffice. This fact is known as the Four Color

Theorem. At present, the only way this can be proved is by extensive computer calculations. This
was done by Appel and Haken in 1976.

Maps can be defined on more complicated surfaces (like a torus—the surface of a doughnut).
For each such surface S there is a number n(S) such that some map requires n(S) colors and no
map requires more. A fairly simple formula has been found and proved for n(S). It is somewhat
amusing that computer calculations are needed only in what appears to be the simplest case—when
S is equivalent to a sphere.

How can we construct a proper coloring of a graph? Suppose we have n vertices and c colors. We
could systematically try all cn possible assignments of colors to vertices until we find one that works
or we find that there is no proper coloring. Backtracking on a decision tree can save considerable
time. A decision corresponds to assigning a color to a vertex. Suppose that we are at some node t in
the decision tree where we have already colored vertices v1, . . . , vk of the graph. The edges leading
out of t correspond to the different ways of coloring vk+1 so that it is not the same color as any
of v1, . . . , vk that are adjacent to it. It is not clear how fast this algorithm is or if we could find a
substantially better one.

We’ll abandon the construction problem in favor of the counting problem. We will prove

Theorem 6.3 Chromatic polynomial existence Let G be a simple graph with n vertices.
There is a polynomial PG(x) of degree n such that for each positive integer m, the number of
ways to properly color G using m is PG(m).

PG(x) is called the chromatic polynomial of G. Various properties of it are found in the exercises.

We’ll give two proofs of the theorem. The first is simple but it does not provide a useful method
for determining PG(x). The second is more complicated, but the steps of the proof provide a recursive
method for calculating chromatic polynomials. We’ll explore the method after the proof.

6.2 Coloring Graphs 159

G

• •
u v

e

G − e

• •
u v

Ge

•
ζ

Figure 6.2 Forming G − e and Ge from G by deletion and contraction.

Proof: (Nonconstructive) Let dG(k) be the number of ways to properly color the graph using

k colors such that each color is used at least once. Clearly dG(k) = 0 when k > n, the number of

vertices of G. If we are given x colors, then the number of ways we can use exactly k of them to

properly color G is
(

x
k

)

dG(k). (Choose k colors AND use them.) If dG(k) 6= 0, this is a polynomial

in x of degree k because
(

x
k

)

= x(x − 1) · · · (x − k + 1)/k!, a polynomial in x of degree k. Since the

number of colors actually used is between 1 and n,

PG(x) =
n

∑

k=1

(

x

k

)

dG(k), 6.3

a sum of a finite number of polynomials in x. Note that

• dG(n) 6= 0, since it is always possible to color a graph with each vertex colored differently and

• the k = n term in the sum (6.3) is the only term in the sum that has degree n.

Thus, PG(x) is a polynomial in x of degree n. (We needed to know that there was only one term of

degree n because otherwise there might be cancellation, giving a polynomial of lower degree.)

Proof: (Constructive) Let G = (V, E). We’ll use induction on |E|, the number of edges in the

graph. If the graph has no edges, then PG(x) = xn because any function from vertices to colors is

acceptable as a coloring in this case.

You may find Figure 6.2 helpful. Suppose e = {u, v} ∈ E. Let G− e = (V, E − e), a subgraph of

G. This is called deleting the edge e. Every proper coloring of G is a proper coloring of G − e, but

not conversely—a proper coloring λ of G − e is a proper coloring of G if and only if λ(u) 6= λ(v).

A proper coloring λ of G − e with λ(u) = λ(v) can be thought of as a proper coloring of a graph

Ge in which u and v have been identified. This is called contracting the edge e. Let’s define Ge

precisely. Choose ζ 6∈ V , let Ve = V ∪ {ζ} − {u, v} and let Ee be all two element subsets of Ve in E

together with all sets {ζ, y} for which either {u, y} ∈ E or {v, y} ∈ E or both. The proper colorings

of Ge = (Ve, Ee) are in one-to-one correspondence with the proper colorings λ of G − e for which

λ(u) = λ(v)—we simply have λ(ζ) = λ(u) = λ(v). Thus every proper coloring of G − e is a proper

coloring of either G or Ge, but not both. By the Rule of Sum, PG−e(x) = PG(x) + PGe
(x) and so

PG(x) = PG−e(x) − PGe
(x). 6.4

Since G− e and Ge have less edges than G, it follows by induction that PG−e(x) is a polynomial of

degree |V | = n and that PGe
(x) is a polynomial of degree |Ve| = n − 1. Thus (6.4) is a polynomial

of degree n.

160 Chapter 6 A Sampler of Graph Topics

Example 6.8 Some chromatic polynomial calculations What is the chromatic polynomial
of the graph with all

(

n
2

)

possible edges present? In this case each vertex is connected to every other

vertex by an edge so each vertex has a different color. Thus we get x(x − 1)(x − 2) · · · (x − n + 1).
The graph with all edges present is called the complete graph and is denoted by Kn.

What is the chromatic polynomial of the n vertex graph with no edges? We can color each
vertex any way we choose, so the answer is xn. By using the first proof of the theorem, we will
obtain another formula for this chromatic polynomial. The graph can be colored using k colors
(with each color used) by first partitioning the vertices into k blocks and then assigning a color to
each block. By the Rule of Product, dG(k) = S(n, k)k!, where S(n, k) is a Stirling number of the
second kind, introduced in Example 1.27. By the first proof and the fact that PG(x) = xn, we have

xn =

n
∑

k=1

(

x

k

)

S(n, k)k! =

n
∑

k=1

x(x − 1) · · · (x − k + 1) S(n, k). 6.5

What is the chromatic polynomial of a path containing n vertices? Let the vertices be n and
the edges be {i, i + 1} for 1 ≤ i < n. Color vertex 1 using any of x colors. If the first i vertices have
been colored, color vertex i + 1 using any of the x− 1 colors different from the color used on vertex
i. Thus we see that the chromatic polynomial of the n vertex path is x(x − 1)n−1.

We now consider a more complicated problem. What is the chromatic polynomial of the graph
that consists of just one cycle? Let n be the length of the cycle and let the answer be Cn(x). Call
the graph Zn. Since Z2 is just two connected vertices, C2(x) = x(x − 1). It is easy to calculate
C3(x): color one vertex arbitrarily, color the next vertex in a different color and color the last vertex
different from the first two. Thus C3(x) = x(x−1)(x−2). What is C4(x)? We use (6.4). If we delete
an edge e from Z4, we obtain a path on 4 vertices, which we have dealt with. If we contract e, we
obtain Z3, which we have dealt with. Thus

C4(x) = x(x − 1)3 − x(x − 1)(x − 2).

What is the general formula? The previous argument generalizes to

Cn(x) = x(x − 1)n−1 − Cn−1(x) for n > 2. 6.6

How can we solve this recursion? This is not so clear. It is easier to see if we repeatedly use Figure 6.2
to expand things out until we obtain paths. The result for Z5 is shown in the left side of Figure 6.3.
In the right side of Figure 6.3, we have replaced each leaf by its chromatic polynomial. We can now
work upwards from the leaves to compute the chromatic polynomial of the root.

This is a good way to do it for a graph that has no nice structure. In this case, however, we
can write down the chromatic polynomial of the root directly. Notice that the kth leaf from the left
(counting the leftmost as 0) has chromatic polynomial x(x − 1)n−k−1. If k is even it appears in the
chromatic polynomial of the root with a plus sign, while if k is odd it appears with a minus sign.
This shows that, for n > 1,

Cn(x) =

n−2
∑

k=0

(−1)kx(x − 1)n−k−1 = x(x − 1)n−1
n−2
∑

k=0

(

1

1 − x

)k

,

which is a geometric series. Thus

Cn(x) = x(x − 1)n−1
1 −

(

1
1−x

)n−1

1 − 1
1−x

.

You should show that this simplifies to

Cn(x) = (x − 1)n + (−1)n(x − 1) 6.7

for n > 1.

6.2 Coloring Graphs 161

Z5

P5

+

Z4

−

P4

+

Z3

−

P3

+

Z2 = P2

−

C5 = (x − 1)5 − x + 1

x(x − 1)4

+

C4 = (x − 1)4 + x − 1

−

x(x − 1)3

+

C3 = (x − 1)3 − x + 1

−

x(x − 1)2

+

x(x − 1)

−

Figure 6.3 The calculation for C5(x) expanded. Pn is the n vertex path.

Exercises

6.2.1. Give an alternate proof of (6.7) by induction as follows: Prove by substitution that (6.7) satisfies
(6.6) and show that (6.7) is correct for n = 2.

6.2.2. Conjecture and prove a formula for the chromatic polynomial of a tree. Your formula may include the
number of vertices, the degrees of the vertices and anything else that you need. Be sure to indicate
how you arrived at your conjecture. This formula can be useful in computing chromatic polynomials
by the recursive method.
Hint. There is a simple formula.

6.2.3. The results in this exercise make it easier to calculate some chromatic polynomials using the recursive
method.

(a) Suppose that G consists of two graphs H and K with no vertices in common. Prove that
PG(x) = PH(x)PK(x).

(b) Suppose that G consists of two graphs H and K sharing exactly one vertex. Prove that
PG(x) = PH(x)PK(x)/x.

(c) Suppose that G is formed by taking two graphs H and K with no vertices in common, choosing
vertices v ∈ H and w ∈ K, and adding the edge {v, w}. Express PG(x) in terms of PH(x) and
PK(x).

6.2.4. Let n and k be integers such that 1 < k < n−1. Let G have V = n and edges {i, i+1} for 1 ≤ i < n,
{1, n}, and {k, n}. Thus G is Zn with one additional edge. Obtain a formula for PG(x).

6.2.5. Let Ln be the simple graph with V = n × 2 and {(i, j), (i′, j′)} an edge if and only if i = i′ or

j = j′ and |i− i′| = 1. The graph looks somewhat like a ladder and has 3n− 2 edges. Prove that the

chromatic polynomial of Ln is (x2 − 3x + 3)n−1x(x − 1).

6.2.6. Let G be the simple graph with V = 3×3 and {(i, j), (i′, j′)} an edge if and only if |i−i′|+|j−j′ | = 1.
It looks like a 2 × 2 board. Compute its chromatic polynomial.
Hint. It appears that any way it is done requires some computation. Using the edges joined to (2, 2)
for deletion and contraction is helpful.

*6.2.7. Construct a graph from the cube by removing the interior and the faces and leaving just the vertices
and edges. What is the chromatic polynomial of this graph? (There is not some quick neat way to
do this. Quite a bit of careful calculation is involved. A bit of care in selecting edges for removal and
contraction will help.)

6.2.8. Give a proof of (6.5) by counting all functions from n to x in two ways.

6.2.9. Adapt the second proof that PG(x) is a polynomial of degree n to prove that the coefficients

of the polynomial alternate in sign; that is, the coefficient of xk is a nonnegative multiple of

(−1)n−k.

162 Chapter 6 A Sampler of Graph Topics

6.3 Planar Graphs

Recall that, drawing a graph in the plane without edges crossing is called embedding the graph in
the plane. Any graph that can be embedded in the plane can be embedded in the sphere (i.e., the
surface of a ball) and vice versa. The idea is simple: Cut a little hole out of the sphere in such a
way that you don’t remove any of the graph, then, pretending the sphere is a rubber sheet, stretch
it flat to form a disc. Conversely, any map on the plane is bounded, so we can cut a disc containing
a map out of the plane and curve it around to fit on a sphere. Thus, studying maps on the plane is
equivalent to studying maps on the sphere.

Sometimes fairly simple concepts in mathematics lead to a considerable body of research. The
research related to planar graphs is among the most accessible such bodies for someone without
extensive mathematical training. Here are some of the research highlights and what we’ll be doing
about them.

1. The earliest is probably Euler’s relation, which we’ll discuss soon. If the sphere is cut along the
edges of an embedded connected graph, we obtain pieces called faces. Euler discovered that the
number of vertices and faces together differed from the number of edges by a constant. This has
been extended to graphs embedded in other surfaces and to generalizations of graphs in higher
dimensions. The result is an important number associated with a generalized surface called its
Euler characteristic.

2. The four color problem has already been mentioned in the section on chromatic polynomials. As
noted there, it has been generalized to other surfaces. We’ll use Euler’s relation to prove that
five colors suffice on the plane.

3. A description of those graphs which can be drawn in the plane was obtained some time ago by
Kuratowski: A graph is planar if and only if it does not “contain” either

• K5, the five vertex complete graph, or

• K3,3, the graph with V = {a1, a2, a3, b1, b2, b3} and all nine edges of the form {ai, bj}.
We say that G contains H if, except for labels we can obtain H from G by repeated use of the
three operations:

(a) delete an edge,

(b) delete a vertex that lies on no edges and

(c) if v lies only on the edges e1 = {v, a1} and e2 = {v, a2}, delete v, e1 and e2 and add the
edge {a1, a2}.

Research has developed in two directions. One is algorithmic: Find good algorithms for deciding
if a graph is planar and, if so, for embedding it in the plane. We’ll discuss the algorithmic
approach a bit. The other direction is more theoretical: Develop criteria like Kuratowski’s for
other surfaces. It has recently been proved that such criteria exist: There is always a finite list
of graphs, like K5 and K3,3, that are bad. We will not be able to pursue this here; in fact, we
will not even prove Kuratowski’s Theorem.

4. Let’s allow loops in our graphs. A graph embedded in the plane has a dual. A dual is constructed
as follows for an embedded graph G. Place a vertex of D(G) in each face of G. Thus there is a
bijection between faces of G and vertices of D(G). Every edge e of G is crossed by exactly one
edge e′ of D(G), and vice versa, as follows. Let the face on one side of e be f1 and the face on
the other side be f2. (Possibly, f1 = f2.) If v′1 and v′2 are the corresponding vertices in D(G),
then e′ connects v′1 and v′2. Attempting to extend the idea of a dual to other graphs leads to
what are called “matroids” or “combinatorial geometries.” We won’t discuss this subject at all.

The algorithmic subsection does not require the earlier material, but it does require some knowl-
edge of spanning trees, which were discussed in Section 6.1.

6.3 Planar Graphs 163

Our terminology “G contains H” in Item 3 is not standard. People are likely to say “G contains
H homeomorphically.” You should note that this is not the same as H being a subgraph of G.
Repeated application of Rules (a) and (b) gives a subgraph of G. Conversely, all subgraphs of G can
be obtained this way. Rule (c) allows us to contract an edge if it has an endpoint of degree 2. The
result is not a subgraph of G. For example, applying (c) to a cycle of length 4 produces a cycle of
length 3.

Euler’s Relation

We’ll state and prove Euler’s relation and then examine some of its consequences.

Theorem 6.4 Euler’s relation Let G = (V, E, ϕ) be a connected graph. Suppose that G
has been embedded in the plane (or sphere) and that the embedding has f faces. Then

|V | − |E| + f = 2. 6.8

This remains true if we extend the notion of a graph to allow loops.

Proof: In Exercise 5.4.3 (p. 140) you were asked to prove that v = e + 1 for trees. Since cutting
along the edges of a tree does not make the plane (or sphere) fall apart, f = 1. Thus Euler’s relation
holds for all trees.

Is there some way we can prove the general result by using the fact that it is true for trees? This
suggests induction, but on what should we induct? By Exercise 5.4.2 (p. 139), a tree has the least
number of edges of any connected v-vertex graph. Thus we should somehow induct on the number of
edges. With care, we could do this without reference to v, but there are better ways. One possibility
is to induct on d = e − v, where d ≥ −1. Trees correspond to the case d = −1 and so start the
induction.

Another approach to the induction is to consider v to be fixed but arbitrary and induct on e.
From this viewpoint, our induction starts at e = v − 1, which is the case of trees.

The two approaches are essentially the same. We’ll take the latter approach.

Let G = (V, E, ϕ) be any connected graph embedded in the plane. From now on, we will work
in the plane, removing edges from this particular embedding of G. By Exercise 5.4.2, G contains a
spanning tree T = (V, E′), say. Let x ∈ E − E′; that is, some edge of G not T . The subgraph G′

induced by E − {x} is still connected since it contains T .
Let e′ = e − 1 and f ′ be the number of edges and faces of G′. By the induction assumption, G′

satisfies (6.8) and so v − e′ + f ′ = 2. We will soon prove that the opposite sides of x are in different
faces of G. Thus, removing x merges these two faces and so f ′ = f −1. This completes the inductive
step.

We now prove our claim that opposite sides of x lie in different faces. Suppose ϕ(x) = {a, b}. Let
P be a path from a to b in T . Adding x to the path produces a cycle C. Any face of the embedding
must lie entirely on one side of C. Since one side of x is inside C and the other side of x is outside
C, the two sides of x must lie in different faces.

One interesting consequence of Euler’s relation is that it tells us that no matter how we embed
a graph G = (V, E) in the plane—and there are often many ways to do so—it will always have
|E| − |V | + 2 faces. We’ll derive more interesting results.

Corollary 1 If G is a planar connected simple graph with e edges and v > 2 vertices, then
e ≤ 3v − 6.

164 Chapter 6 A Sampler of Graph Topics

Proof: When we trace around the boundary of a face of G, we encounter a sequence of vertices
and edges, finally returning to our starting position. Call the sequence v1, e1, v2, e2, . . . , vd, ed, v1. We
call d the degree of the face. Some edges may be encountered twice because both sides of them are
on the same face. A tree is an extreme example of this: Every edge is encountered twice. Thus the
degree of the face of a tree with e edges is 2e. Let fk be the number of faces of degree k. Since there
are no loops or multiple edges, f1 = f2 = 0. If we trace around all faces, we encounter each edge
exactly twice. Thus

2e =
∑

k≥3

kfk ≥
∑

k≥3

3fk = 3f

and so f ≤ 2e/3. Consequently, 2 = v− e+ f ≤ v− e+2e/3. Rearrangement gives the corollary.

Example 6.9 Nonplanarity of K5 The graph K5 has 5 vertices and 10 edges and so
3v − 6 = 9 < e. Thus, it cannot be embedded in the plane.

The following result will be useful in discussing coloring.

Corollary 2 If G is a planar connected simple graph, then at least one vertex of G has degree
less than 6.

Proof: We suppose that the conclusion of the corollary is false and derive a contradiction. Let vk

be the number of vertices of degree k. Since each edge contains two vertices, 2e =
∑

kvk. Since no
vertex has degree less than 6, vk = 0 for k < 6 and so

2e =
∑

k≥6

kvk ≥ 6v.

Thus e ≥ 3v, contradicting the previous corollary when v ≥ 3. If v ≤ 3, there are at most 3 edges,
so the result is trivial.

Exercises

6.3.1. Suppose that G is a planar connected graph with e edges and v > 2 vertices and that it contains no
cycles of length 3. Prove that e ≥ 2v − 4.

6.3.2. Prove that K3,3 is not a planar graph. (K3,3 was defined on page 162.)

6.3.3. We will call a connected graph embedded in the sphere a regular graph if all vertices have the same
degree, say dv and all faces have the same degree, say df .

(a) If e is the number of edges of the graph, prove that

e

(

2

dv
+

2

df
− 1

)

= 2. 6.9

(b) The possible graphs with dv = 2 are simple to describe. Do it.

(c) By the previous part, we may as well assume that dv ≥ 3. Since both sides of (6.9) are positive,
conclude that one of dv and df must be 3 and that the other is a most 5.

(d) Draw all embedded regular graphs with dv > 2.

6.3 Planar Graphs 165

6.3.4. Chemists have discovered a compound whose molecule is shaped like a hollow ball and consisting
of sixty carbon atoms. It is called buckminsterfullerene. (This is not a joke.) There is speculation
that this and similar carbon molecules may be common in outer space. A chemical compound can
be thought of as a graph with the atoms as vertices and the chemical bonds as edges. Thus buck-
minsterfullerene can be viewed as a graph on the sphere. Because of the properties of carbon, it is
reasonable to suppose that each atom is bound to exactly 3 others and that the faces of the associ-
ated embedded graph are either hexagons or pentagons. How many hexagons are there? How many
pentagons are there?
Hint. One method is to determine the number of edges and then obtain two relations involving the
number of pentagons and number of hexagons, one by counting edges and another from Euler’s
relation.

*6.3.5. A graph can be embedded on other finite surfaces besides the sphere. In this case, there is usually
another condition: If we cut along all the edges of the graph, we get faces of the embedded graph
and they all look like stretched polygons. This is called properly embedding the graph. To see that
all embeddings are not proper, consider a torus (surface of a donut). A 3-cycle can be embedded
around the torus like a bracelet. When we cut along the edges and straighten out the result, we have
a cylinder, not a stretched polygon.

For proper embeddings in any surface, there is a relation like Euler’s relation (6.8):
|V | − |E| + f = c, but the value of c depends on the surface. For the sphere, it is 2.

(a) Properly embed some graph on the torus and compute c for it.

(b) Prove that your value in (a) is the same for all proper embeddings of graphs on the torus.
Hint. Cut around the torus like a bracelet, avoiding all vertices. Fill in each of the holes with a
circle, introducing edges and vertices along the cuts.

The Five Color Theorem

Our goal is to prove the five color theorem:

Theorem 6.5 Heawood’s Theorem Every planar graph G = (V, E) can be properly

colored with five colors (i.e., adjacent vertices have distinct colors).

Although four colors are enough, we will not prove that since the only known method is quite

technical and requires considerable computing resources. On the other hand, if we were satisfied

with six colors, the proof would much easier. We’ll begin with it because it lays the foundation for

five colors.

Proof: (Six colors) The proof will be by induction on the number of vertices of G.

A graph with at most six vertices can obviously be properly colored: Give each vertex a different

color. Thus we can assume G has more than six vertices. We can also assume that G is connected

because otherwise each component, which has less vertices than G, could be properly colored by the

induction hypothesis. This would give a proper coloring of G.

Let x ∈ V be a vertex of G with smallest degree. By Corollary 2, d(x) ≤ 5. Let G − x be the

graph induced by V −{x}. By the induction hypothesis, G−x can be properly 6-colored. Since there
are at most 5 vertices adjacent to x in G, there must be a color available to use for x.

This proof works for proving that G can be properly 5-colored except for one problem: The

induction fails if x has degree 5 and the coloring of G − x is such that the 5 vertices adjacent to x

in G are all colored differently. We now show two different ways to get around this problem.

166 Chapter 6 A Sampler of Graph Topics

Proof: (Five colors, first proof) As noted above, we may assume that d(x) = 5. Label the vertices
adjacent to x as y1, . . . , y5, not necessarily in any particular order. Not all of the yi’s can be joined
by edges because we would then have K5 as a subgraph of G and, by Example 6.9, K5 is not planar.

Suppose that y1 and y2 are not joined by an edge. Erase the edges {x, yj} from the picture in
the plane for j = 3, 4, 5. Contract the edges {x, y1} and {x, y2}. This merges x, y1 and y2 into a
single vertex which we call y. We now have a graph H in the plane with two less vertices than G.
By induction, we can properly 5-color H . Do so.

Color all vertices of G using the same coloring as for H , except for x, y1 and y2, which are
colored as follows. Give y1 and y2 the same color as y. Give x a color different from all the colors
used on the four vertices y, y3, y4 and y5. (There must be one since we have five colors available.)
Since H was properly colored and {y1, y2} is not an edge of G, we have properly colored G.

*Proof: (Five colors, second proof) As noted above, we may assume that d(x) = 5. Label the
vertices adjacent to x as y1, . . . , y5, reading clockwise around x. Properly color the subgraph induced
by V − x. Let ci be the color used for yi. As noted above we may assume that the ci’s are distinct,
for otherwise we could simply choose a color for x different from c1, . . . , c5.

Call this position in the text HERE for future reference. Let H be the the subgraph of G − x
induced by the those vertices that have the same colors as y1 and y3. Either y1 and y3 belong to
different components of H or to the same component. We consider the cases separately.

Suppose y1 and y3 belong to different components. Interchange c1 and c3 in the component
containing y1. We claim this is still a proper coloring of G − x. Why? First, it is still a proper
coloring of the component of H containing y1 and hence of H . Second, the vertices not in H are
colored with colors other than c1 and c3, so those vertices adjacent to vertices in H remain properly
colored. We have reduced this situation to the earlier case since only 4 colors are now used for the yi.

Suppose that y1 and y3 belong to the same component. Then there is a path in H from y1 to
y3. Add the edges {x, y1} and {x, y3} to the path to obtain a cycle. This cycle can be viewed as
dividing the plane into two regions, the inside and the outside. Since y2 and y4 are on opposite sides
of the cycle, any path joining them must contain a vertex on the cycle. Since all vertices on the cycle
except y are colored c1 or c3, there is no path of vertices colored c2 and c4 in G−x joining y2 and y4.
Now go back to HERE, using the subscripts 2 and 4 in place of 1 and 3. Since y2 and y4 will belong
to different components, we will not return to this paragraph. Thus, the proof is complete.

Exercises

6.3.6. Let G be the simple graph with V = 7 and edge set

E = {{1, 2}, {1, 3}, {1, 4}, {1, 7}, {2, 3}, {2, 4},

{2, 5}, {2, 6}, {2, 7}, {3, 4}, {4, 7}, {5, 6}, {6, 7}}.

(a) Embed G in the plane.

(b) The vertices of V have a natural ordering. Thus a function specifying a coloring of V can be
written in one-line form. In this one-line form, what is the lexicographically least proper coloring
of G when the available “colors” are a, b, c, d, e and f?

(c) What is the lexicographically least proper coloring of G using the colors a, b, c and d?
Notice that the lexicographically least proper coloring in (b) uses five colors but there is another
coloring that uses only four colors in (c).

6.3.7. Prove that if G is a planar graph with V = 5, then the lexicographically least proper coloring of G
using the colors a, b, c, d and e uses only 4 colors.

6.3.8. Suppose V = 6 and the available colors are a, b, c, d, e. Find a planar graph G with vertex set V
such that the lexicographically least proper coloring of G is not a four coloring of G.

6.3 Planar Graphs 167

*6.3.9. What’s wrong with the following idea for showing that 4 colors are enough? By the argument for
5 colors, our only problem is a vertex of degree 5 or less such that the adjacent vertices require 4
colors. Use the idea in second argument in the text. With a vertex of degree 4, the argument can be
used as stated in the text with all mention of y5 deleted.

Now suppose the vertex has degree 5. The argument in the text guarantees that y1, . . . , y5 can
be colored with 4 colors. Do so. We can still select two vertices that are colored differently and are
not adjacent in the clockwise listing. Thus the argument given in the text applies and we can reduce
the number of colors needed for y1, . . . , y5 from 4 to 3.

*6.3.10. In Exercise 6.3.5 we looked at proper embeddings of graphs in a torus. It can be shown that every
embedding (proper or not) of a graph in a torus can be properly colored using at most seven colors.
Find a graph embedded in a torus that requires seven colors.
Hint. There is one with just seven vertices.

*Algorithmic Questions

We do not know of an algorithm for 4 coloring a planar graph in a reasonable time. The first proof

of the Five Color Theorem leads to a reasonable algorithm for coloring a planar graph with 5 colors.

At each step, the number of vertices is decreased by 2. Once the reduced graph is colored, it is a

simple matter to color the given graph: Adjust the previous coloring in1 O+(1) time by assigning

colors to the three vertices x, y1 and y2 that were merged to form y. The time required is O+(1). If

R(n) is the maximum time needed to reduce an n vertex planar graph, then The total time is2

R(n) + R(n − 2) + · · · + O+(n),

where the O+(n) is due to the roughly n/2 times the coloring must be adjusted. Note that R(n)

comes primarily from finding a vertex of degree 5 or less. It should be fairly clear to you that R(n)

is O+(n) and so the time for coloring is O+(n2). One would expect that using a sophisticated data

structure to represent the graph would allow us to improve this time. We will not pursue this here.

We now turn our attention to the problem of deciding if a graph is planar. At first glance,

there is no obvious algorithm for doing this except to use Kuratowski’s Theorem. This involves a

tremendous amount of computer time because there are so many possible choices for the operations

(a)–(c) described at the start of Section 6.3. Because of this, it is somewhat surprising that there are

algorithms with worst case running times that are Θ(|V |). We’ll examine some of the ideas associated

with one such algorithm here but will not develop the complex data structures needed to achieve

Θ(|V |) running time.

To check if a graph is planar, it suffices to merge multiple edges and to check that each connected

component is planar. This should be obvious. A bit less obvious is the fact that it suffices to check

each biconnected component. (This was defined in Example 6.4 (p. 154).) To see this, note that we

can begin by embedding one bicomponent in the plane. Suppose that some subgraph H of the given

graph has been already embedded. Any unembedded bicomponent C that shares a vertex v with H

can then be embedded in a face of H adjacent to v in such a way that the v of C and the v of H

can be merged into one vertex. This process can be iterated. Because of this, we limit our attention

to simple biconnected graphs.

1 The notation for O+() is discussed in Appendix B.
2 Recall that f(n) + O+(n) means f(n) plus some function that is in O+(n).

168 Chapter 6 A Sampler of Graph Topics

Definition 6.4 st-labeling Let G = (n, E) be a simple biconnected graph with {s, t} ∈ E,

an st-labeling of G is a permutation λ of n such that

(a) λ(s) = 1,

(b) λ(t) = n and,

(c) whenever 1 < λ(v) < n, there are vertices u and w adjacent to v such that

λ(u) < λ(v) < λ(w).

We will soon prove that such a vertex labeling exists and give a method for finding it, but first,

we explain how to use it.

Start embedding G in the plane by drawing the edge {s, t}. Suppose that we have managed to

embed the subgraph Hk induced by the vertices with λ(v) < k together with t. If λ(x) = k, then

we must embed x in the same face as t. Why is this? By (c), there exist vertices x = w1, w2, . . . = t

such that {wi, wi+1} is an edge and λ(wi) is an increasing function of i. Since none of these vertices

except t have been embedded, they must all lie in the same face of Hk. Thus we know which face

of Hk to put x in. Unfortunately, parts of our embedding of Hk may be wrong in the sense that we

cannot now embed x to construct Hk+1. How can we correct that?

The previous observation implies that we can start out by placing the vertices of G in the plane

so that v is at (λ(v), 0). Correcting the problems with Hk can be done by redrawing edges without

moving the vertices. There are systematic, but rather complicated, ways of finding a good redrawing

of Hk (or proving that none exists if the graph is not planar). We will not discuss them. For relatively

small graphs, this can be done by inspection.

We now present an algorithm for finding an st-labeling. The validity of the algorithm implies that

such a labeling exists, thus completing the proof of our planarity algorithm. We’ll find an injection

λ: n → R that satisfies (a)–(c) in Definition 6.4. It is easy to construct an st-labeling from such a λ

by replacing the kth smallest value of λ with k. Suppose that we specified λ for a subgraph GZ of G

induced by some subset Z of the vertices of G. We assume that s, t ∈ Z and that λ satisfies (a)–(c)

on GZ . Suppose that {x, y} is not in GZ . Since G is biconnected, there is a cycle in G containing

{x, y} and {s, t}. This means that there are disjoint paths in G either

(i) from s to x and from t to y or

(ii) from s to y and from t to x.

If (ii) holds, interchange the meanings of x and y to convert it to (i). Thus we may assume that (i)

holds.

Let the paths in (i) be s = u1, u2, . . . = x and t = w1, w2, . . . = y. Suppose that ui and wj are

the last vertices in Z on these two paths. Let vk be the kth vertex on the path

ui, ui+1, . . . , x, y, . . . , wj+1, wj 6.10

and let m be the total number of vertices on the path. Except for ui and wj , none of the vertices in

(6.10) are in Z. Add them to Z and define λ(vk) for k 6= 1, m such that λ is still an injection and

λ(vk) is monotonic on the path. In other words, if λ(ui) < λ(wj), then λ will be strictly increasing

on the path, and otherwise it will be strictly decreasing. Making λ an injection is easy since there

are an infinite number of real numbers between λ(ui) and λ(wj). We leave it to you to show that
this function satisfies (c) for the vertices that were just added to Z.

6.3 Planar Graphs 169

Example 6.10 Let G be the simple graph with V = 7 and edge set

E = {{1, 2}, {1, 3}, {1, 4}, {1, 7}, {2, 3}, {2, 4},
{2, 5}, {2, 6}, {2, 7}, {3, 4}, {4, 7}, {5, 6}, {6, 7}}.

We’ll use the algorithm to construct a 2,5-labeling for it. The labeling λ will be written in two line
form with blanks for unassigned values; i.e., for vertices not yet added to Z. To begin with Z = {2, 5}
and

λ =
(

1 2 3 4 5 6 7
1 7

)

.

Let {x, y} = {2, 6}. In this case, a cycle is 2,6,5. Thus s = u1 = x, t = w1 and w2 = y. Hence i = 1,
j = 1 and the path (6.10) is s = x, y, t = 2, 6, 5. We must choose λ(6) between 1 and 7, say 4. Thus

λ =
(

1 2 3 4 5 6 7
1 7 4

)

.

Let {x, y} = {3, 4}. A cycle is 3, 4, 7, 6, 5, 2 and the path (6.10) is 2, 3, 4, 7, 6. We must choose λ(x),
λ(y) and λ(7) between 1 and 4 and monotonic increasing. We take

λ =
(

1 2 3 4 5 6 7
1 2 3 7 4 3.5

)

.

Finally, with {x, y}, a cycle is 2, 1, 4, 7, 6, 5 and the path (6.10) is 2,1,4. We take

λ =
(

1 2 3 4 5 6 7
2.5 1 2 3 7 4 3.5

)

.

Adjusting to preserve the order and get a permutation, we finally have

λ =
(

1 2 3 4 5 6 7
3 1 2 4 7 6 5

)

.

This algorithm for deciding planarity can be adapted to produce an actual embedding in the
plane, if the graph is planar. In practical problems, one usually imposes other constraints on the
embedding. For example, if one is looking at pictures of graphs, the embedding should spread the
vertices and edges out in a reasonably nice fashion. On the other hand, in VLSI design, one often
assumes that the maximum degree of the vertices is at most four and requires that the edges be laid
out on a regular grid. Other VLSI layout problems involve vertices which take up space on the plane
and various edge constraints. In VLSI design, one would also like to keep the edge lengths as small
as possible. A further complication that arises in VLSI is that the graph may not be planar, but
we would like to draw it in the plane with relatively few crossings. These are hard problems—often
they are “NP-hard,” a term discussed in Section B.3 (p. 377).

Exercises

6.3.11. Let G be the simple graph it V = 7 and edge set

E = {{1, 2}, {1, 3}, {1, 4}, {1, 7}, {2, 3}, {2, 4},

{2, 5}, {2, 6}, {2, 7}, {3, 4}, {4, 7}, {5, 6}, {6, 7}}.

(a) Use the algorithm in the text to construct a 1, 7-labeling for G.

(b) Use the algorithm in the text to construct a 7, 1-labeling for G.

6.3.12. Construct an st-labeling for K5. (Since K5 is completely symmetric, it doesn’t matter what vertices
you choose for s and t.)

6.3.13. Construct an st-labeling for K3,3. (Again, the symmetry guarantees that it doesn’t matter which

edge is chosen for {s, t}.)

170 Chapter 6 A Sampler of Graph Topics

1 2, 7, 12
2 1, 6, 3, 10
3 2, 4, 17, 22, 25
4 3, 5, 29, 24, 27
5 4, 6, 28, 30
6 5, 20, 25, 7, 2
7 6, 8, 16, 1, 19, 15
8 7, 9, 10
9 10, 12, 11, 8

10 8, 9, 1

11 9, 12, 13, 14
12 11, 9, 1
13 11, 14, 15
14 13, 11
15 13, 7
16 7, 18, 19, 17
17 16, 18, 3
18 17, 16
19 16, 7
20 6, 21, 22

21 20, 22, 23, 24
22 21, 20, 3
23 21, 24
24 23, 21, 4
25 6, 26, 27
26 3, 25
27 4, 25
28 5, 29, 30
29 4, 28
30 5, 28

Figure 6.4 The adjacency lists of a simple graph for Exercise 6.3.16.

6.3.14. We return to Exercise 5.5.11: Suppose that G is a connected graph with no isthmuses. We want to
prove that the edges of G can be directed so that the resulting directed graph is strongly connected.

(a) Suppose that G is biconnected and has at least two edges. Use st-labelings to prove that the
result is true in this case.

(b) Prove if a graph has no isthmuses, then every bicomponent has at least two edges.

(c) Complete the proof of this exercise.

6.3.15. Prove that a graph is biconnected if and only if it has an st-labeling.
Hint. Given any edge different from {s, t}, use the properties of an st-labeling to find a cycle containing
that edge and {s, t}.

*6.3.16. G = (30, E) is a simple graph given by Figure 6.4. Row k lists the vertices of G that are adjacent to
k. Embed G in the plane using the algorithm described in the text. Produce a 5 coloring of G and,
if you can, make it a 4 coloring.

6.4 Flows in Networks

We now discuss “flows in networks,” an application of directed graphs. Examples of this concept
are fluid flowing in pipes, traffic moving on freeways and telephone conversations through telephone
company circuits. We’ll use fluid in pipes to motivate and interpret the mathematical concepts.

The Concepts

In Figure 6.5 we see a simple directed graph. Note that its edges are labeled; e.g., the directed edge
(D1, P1) has label 2. Imagine that the directed edges of the graph represent pipes through which
a fluid is flowing. A label on an edge represents the rate (measured in liters per second) at which
the fluid is flowing along the pipe represented by that edge. We denote this flow rate function by f .
Thus, f(D1, P1) = 2 liters/sec is an example of a value of f in Figure 6.5.

The vertices V in Figure 6.5 are divided into two classes,

D = {D1, D2, D3, D4} and P = {P1, P2, P3, P4}.
Think of the vertices in D as depots and those in P as pumps. Fluid can enter or leave the system
at a depot but not at a pump. This corresponds to practical experience with pumps: If the rate at
which fluid is flowing into a pump exceeds that at which it is flowing out, the pump will rupture,
while, if the inflow is less than the outflow, the pump must be creating fluid.

6.4 Flows in Networks 171

D1

bf (D1) = +3

bf (D2) = +2 D2

D3 bf (D3) = −1

D4

bf (D4) = −4

P1

P2

P3

P4

1
2

0

2

1

5

5

1

1 1

3

3

2

Figure 6.5 A network of pipes with depots Di, pumps Pi and flow function f (on edges).

We now associate with each vertex v ∈ V a number bf (v) which measures the balance of fluid
flow at the vertex: bf (v) equals the sum of all the flow rates for pipes out of v minus the sum of
all the flow rates for pipes into v. By the previous paragraph, bf (v) = 0 if v ∈ P . In Figure 6.5,
the nonzero values of bf are written by the depots. The fact that bf(D2) = +2 means that we must
constantly pump fluid into D2 from outside the system at a rate of 2 liters/sec to keep the flow
rates as indicated. Likewise, we must constantly extract fluid from D4 at the rate of 4 liters/sec to
maintain stability.

It is useful to summarize some of the above ideas with a precise definition. Note that we do not
limit ourselves to directed graphs which are simple.

Definition 6.5 Flow in a digraph Let G = (V, E, ϕ) be a directed graph. For v ∈ V ,
define

IN(v) = {e ∈ E : ϕ(e)=(x, v) for some x ∈ V }
and

OUT(v) = {e ∈ E : ϕ(e)=(v, y) for some y ∈ V }.
Let f be a function from E to the nonnegative real numbers; i.e., f : E → R

+. Define bf : V → R

by

bf (v) =
∑

e∈OUT(v)

f(e) −
∑

e∈IN(v)

f(e).

Let (D,P) be an ordered partition of V into two sets. The function f will be called a flow with
respect to this partition if bf (v) = 0 for all v ∈ P. We call the function bf the balance of the
flow f .

You may have noticed that our discussion of flows in networks is missing something important,
namely the capacities of the pipes to carry fluid. In Figure 6.6, we have included this information.
Attached to each edge is a dotted semicircle containing the maximum amount of fluid in liters/sec
that can flow through that pipe. This is the capacity of the edge (pipe) and is denoted by c; e.g.,
c(P1, D3) = 6 in Figure 6.6. The capacity c is a function from E to the set of positive real numbers.
We are interested in flows which do not exceed the capacities of the edges. Realistically, it would
also be necessary to specify capacities for the pumps and depots. We will do that in the exercises,
but for now we’ll assume they have a much larger capacity than the pipes and so can handle any
flow that the pipes can.

172 Chapter 6 A Sampler of Graph Topics

D1

bf (D1) = +3

bf (D2) = +2 D2

D3 bf (D3) = −1

D4

bf (D4) = −4

P1

P2

P3

P4

1(1)
2 2(2)

3
0(2) 2

2(2) 3

1(4)
4

5(3)5

5(6)6

1(2)
2

1(0)
2

1(2)

2

3(4)
4

3(3)
3

2(0)

2

Figure 6.6 The network in Figure 6.5 with capacities c (in dotted semicircles), the flow from Figure 6.5,
and another admissible flow p (in parentheses).

The set D will now be divided into two subsets called the sources, where fluid can enter the
network, and the sinks, where fluid can leave the network. Our goal is to maximize the rate at which
fluid passes through the network; that is to maximize the sum of bf (v) over all sources. We’ll present
a formal definition and then look at how it applies to Figure 6.6. Since we will spend some time
working with Figure 6.6, you may find it useful to make some copies of it for scratch work.

Definition 6.6 Some network flow terminology Let G = (V, E, ϕ) be a directed graph.
Let c be a function from E to the nonnegative reals, called the capacity function for G. Let f
be a flow function on the directed graph G = (V, E, ϕ) with vertex partition (D,P) and balance
function bf , as defined in Definition 6.5. The flow f will be called admissible with respect to
the capacity function c if f(e) ≤ c(e) for all edges e. Let (Din,Dout) be an arbitrary ordered
partition of D into two nonempty sets. We call Din the set of source vertices for this partition
and Dout the set of sink vertices. We define the value of f with respect to this partition to be

value(f) =
∑

v∈Din

bf (v).

An admissible flow f will be called maximum with respect to (Din,Dout) if value(g) ≤ value(f)
for all other admissible flows g.

In general, the partitioning you are given of the set D of depots into the two subsets Din and Dout is
completely arbitrary. Once this is done, the two sets will be kept the same throughout the problem
of maximizing value(f). It is sometimes convenient to write (G, c, (Din,Dout)) to refer to the graph
G with the capacity function c and the “source-sink” partition (Din,Dout). Our basic problem is,
given (G, c, (Din,Dout)), find an admissible flow that is maximum.

In Figure 6.6 let {D1, D2} = Din and {D3, D4} = Dout. Intuitively, value(f) is the amount of
fluid in liters/sec that must be added to D1 and D2 to maintain the flow f . (The same amount
overflows at D3 and D4.) You have to be careful though! If you just pick some admissible flow f
without worrying about maximizing value(f), you might pick one with value(f) < 0, in which case
fluid will have to be extracted from the source Din to maintain the flow. It is only for the flow f
that maximizes value(f) that we can be sure that fluid is added to the source vertices (or at least
not extracted).

6.4 Flows in Networks 173

An Algorithm for Constructing a Maximum Flow

Now we’ll study Figure 6.6 more carefully to help us formulate an algorithm for finding an admissible
flow function f which maximizes value(f) = bf(D1) + bf(D2), where bf is the balance function of
the function f .

In addition to the capacities shown on the edges of Figure 6.6 there are two sets of numbers.
One number has parentheses around it, such as (4) on the edge (D2, P3). The other number does
not have parentheses, such as 1 on (D2, P3). The parenthesized numbers define a flow, which we
call p for “parentheses,” and the other numbers define a flow which we call f . Referring to the edge
e = (D2, P3), f(e) = 1 and p(e) = 4. You should check that f and p satisfy the definitions of a
flow with respect to the depots D and pumps P. Computing the values of f and p with respect to
Din = {D1, D2} we obtain value(f) = 3 + 2 = 5 and value(p) = 5 + 5 = 10. Thus p has the higher
value. In fact, we will later prove that p is a flow of maximum value with respect to the set of sources
Din.

To begin with, concentrate on the flow f . Go to Figure 6.6 and follow the edges connecting the
sequence of vertices (D2, P3, P4, D3). They form an (undirected) path on which you first go forward
along the edge (D2, P3), then backwards along the edge (P4, P3), then backwards along the edge
(D3, P4). Note that for each forward edge e, f(e) < c(e) and for each backward edge e, f(e) > 0.
These conditions, f(e) < c(e) on forward edges and f(e) > 0 on backward edges are very important
for the general case, which we discuss later.

For each forward edge e, define δ(e) = c(e)−f(e). For each backward edge e, define δ(e) = f(e).
In our particular path we have δ(D2, P3) = δ(P4, P3) = δ(D3, P4) = 2. Let δ denote the minimum
value of δ(e) over all edges in the path. In our case δ = 2. We now define a new flow g based on f ,
the path, and δ:

• For each forward edge e on the path, add δ to f(e) to get g(e).

• For each backward edge e on the path, subtract δ from f(e) to get g(e).

• For all edges e not on the path, g(e) = f(e).

This process is called “augmenting the flow” along the path. You should convince yourself that in
our example, value(g) = value(f) + δ = value(f) + 2. This type of relation will be true in general.

If you now study Figure 6.6, you should be able to convince yourself that there is no path from
Din to Dout along which p can be augmented. This observation is the key to proving that p is a
maximum flow: We will see that maximum flows are those which cannot be augmented in this way.

We are now ready for some definitions and proofs. The next definition is suggested by our
previous discussion of augmenting flows.

Definition 6.7 Let f be an admissible flow function for (G, c, (Din,Dout)). Suppose that
(v1, v2, ..., vk) is an undirected path in G with v1 ∈ Din and vi /∈ Din for i > 1. If for each
forward edge e in this path, f(e) < c(e) and for each backward edge e, f(e) > 0 then we
say that the path is augmentable. If in addition vk ∈ Dout then we say that the path is a
complete augmentable path. Let δ(e) = f(e) if e is a backward edge on the path and let
δ(e) = c(e) − f(e) if e is a forward edge. The minimum value of δ(e) over all edges of the path,
denoted by δ, will be called the increment of the path. Let A(f) be those vertices that lie on
some augmentable path of f , together with all the vertices in Din.

In Figure 6.6, with respect to the admissible flow f , the path (D1, P1, P3) is augmentable. The path
(D2, P2, P3, P4, D3) is a complete augmentable path. So is the path (D2, P3, P4, D3).

Theorem 6.6 Augmentable Path Theorem A flow f is a maximum flow if and only if
it has no complete augmentable path; that is, if and only if A(f) ∩ Dout = ∅.

174 Chapter 6 A Sampler of Graph Topics

Proof: If such a complete augmentable path exists, use it to augment f by δ and obtain a new flow
p. Since the first vertex on the path lies in Din, it follows that value(p) = value(f) + δ > value(f).
Therefore f was not a maximum flow.

Now suppose that no complete augmentable path exists for the flow f . Let A = A(f) and
B = V − A. We will now consider what happens to flows on edges between A and B. For this
purpose, it will be useful to have a bit of notation. For C and D subsets of V , let FROM(C, D) be
all e ∈ E with ϕ(e) ∈ C × D; i.e., the edges from C to D. We claim:

1. For any flow g,

value(g) =
∑

e∈FROM(A,B)

g(e) −
∑

e∈FROM(B,A)

g(e). 6.11

2. For the flow f , if e ∈ FROM(A, B) then f(e) = c(e), and if e ∈ FROM(B, A) then f(e) = 0.

The proofs of the claims are left as exercises. Suppose the claims are proved. Since 0 ≤ g(e) ≤ c(e)
for any flow g, it follows that

value(g) =
∑

e∈FROM(A,B)

g(e) −
∑

e∈FROM(B,A)

g(e)

≤
∑

e∈FROM(A,B)

c(e) −
∑

e∈FROM(B,A)

0

= value(f).

Since g was any flow whatsoever, it follows that f is a maximum flow.

This theorem contains the general idea for an algorithm that computes a maximum flow for
(G, c, (Din,Dout)). The first thing to do is to choose an admissible flow f . The flow f(e) = 0 for all
e will always do. Usually, by inspection, you can do better than that. The general idea is that, given
a flow f such that A(f)∩Dout 6= ∅, we can find a complete augmentable path and use that path to
produce a flow of higher value. Here’s the procedure

/* The main procedure */

Procedure maxflow

Set f(e) = 0 for all e.

While A(f) ∩Dout 6= ∅, augment(f).

Return f.

End

/* Replace f with a bigger flow. */

Procedure augment(f)

Find a complete augmentable path (v1, v2, ..., vk).

Compute the increment δ of this path.

If e is a forward edge of the path, set f(e) = f(e) + δ.

If e is a backward edge of the path, set f(e) = f(e) − δ.

Return f.

End

We have left it up to you to do such nontrivial things as decide if A(f) ∩ Dout is empty and to
find a complete augmentable path. In the examples and exercises in this book it will be fairly easy
to do these things. On larger scale problems, the efficiency of the algorithms used for these things
can be critical. This is a topic for a course in data structures and/or algorithm design and is beyond
the scope of this book.

6.4 Flows in Networks 175

v w x y z20 5

15

5 10

q r s t u10 5 20 10

20 10 10 15 105 5 20 5

f h i k n10 10

10

10 20

15 15 20 20 1515
15

a b c d e
15 15

5

10 20

10 5 10 15 20

5
10 10 5

Figure 6.7 The network for Exercise 6.4.1.

It is possible that, like Zeno’s paradox, our algorithm will run forever: augment could simply

produce a flow f with value(f) halfway between the value of the flow it was given and the value of
a maximum flow. In fact, the algorithm will always stop. We’ll prove a weaker version:

Theorem 6.7 Integer Flow Theorem If the capacities of a network are all integers, then

the maxflow algorithm stops after a finite number of steps and produces a maximum flow which

assigns integer flows to the edges.

Proof: We claim that the calculations in the algorithm involve only integer values for f and δ.

This can be proved by induction: Before any iterations, f is an integer valued function. Suppose

that we call augment(f) with an integer valued f . Since δ is a minimum of numbers of the form f(e)

and c(e) − f(e), which are all integers, δ is a positive integer. Thus the new f is integer valued and
has a value at least one larger than the old f . Thus, after n steps, value(f) ≥ n. If a maximum flow
has value F , then a maximum flow is reached after at most F steps.

Although this algorithm stops, it is a poor algorithm. Quite a bit of work has been done on
finding fast network flow algorithms. Unfortunately, improvements usually lead to more complex

algorithms that use more complicated data structures. One easy improvement is to use a shortest

complete augmentable path in augment. This leads to an easily programmed algorithm which often

runs fairly quickly. Another poor feature of our algorithm lies in the fact that all the calculations
needed to find an augmentable path are thrown away after the path has been found. With just a

little more work, one may be able to do several augmentations at the same time. The worst case
behavior of the resulting algorithm is good, namely O(|V |3). Unfortunately, it is rather complicated

so we will not discuss it here.

176 Chapter 6 A Sampler of Graph Topics

==⇒P3 P ′
3

c(P3)
P ′′

3

Figure 6.8 Converting pump capacity to edge capacity for Exercise 6.4.4.

Exercises

6.4.1. The parts of this problem all refer to Figure 6.7.

(a) With Din = {v, w, x, y, z} and Dout = {a, b, c, d, e}, find a maximum flow. Also, find a minimum
cut set and verify that its capacity is equal to the value of your maximum flow.

(b) Returning to the previous part, find a different maximum flow and a different minimum cut
set.

(c) With Din = {v} and Dout = {e}, find a maximum flow. Also, find a minimum cut set and verify
that its capacity is equal to the value of your maximum flow.

(d) In the previous part, is the maximum flow unique? Is the minimum cut set unique?

6.4.2. Prove Claim 2 in the proof of the Augmentable Path Theorem.
Hint. Prove that f(e) < c(e) for e ∈ FROM(A,B) implies that the ends of e are in A, a contradiction.
Do something similar for FROM(B,A).

6.4.3. Prove (6.11).
Hint. Prove that value(g) =

∑

v∈A b(v) and that each edge e with both ends in A contributes both

c(e) and −c(e) to
∑

v∈A b(v).

6.4.4. We didn’t consider the capacities of the pumps in dealing with Figure 6.6. Essentially, we assumed
that the pumps could handle any flow rates that might arise. Suppose that pumps P1, P2 and
P3 are having mechanical problems and can only pump 3 liters/sec. What is a maximum flow for
(G, c, (Din,Dout)) with Din = {D1, D2} and Dout = {D3, D4}? Figure 6.8 shows how to convert a
pump capacity into an edge capacity.

6.4.5. Consider again the network flow problem of Figure 6.6. The problem was defined by N =
(G, c, (Din,Dout)) where Din = {D1, D2} and Dout = {D3, D4}. Imagine that two new depots are
created as shown in Figure 6.9, and all of the original depots are converted into pumping stations.
Let N ′ = (G′, c′, (D′

in,D′
out)) denote this new problem, where D′

in = {D0} and D′
out = {D5}.

(a) What are the smallest values of c′(D0, P ′
1) = c′1, c′(D0, P ′

2) = c′2, c′(P ′
3, D5) = c′3 and

c′(P ′
4, D5) = c′4 that guarantees that if p′ is a maximum flow for N ′ then p′ restricted to

the edges of G is a maximum flow for N? Explain.

(b) With your choices of c′i, will it be true that any maximum flow on N can be used to get a

maximum flow on N ′? Explain.

*Cut Partitions and Cut Sets

The “Max-Flow Min-Cut Theorem” is closely related to our augmentable path theorem; however,
unlike that theorem, it does not lead immediately to an algorithm for finding the maximum flow.
Instead, its importance is primarily in the theoretical aspects of the subject. It is an example of
a “duality” theorem, many of which are related to one another. If you are familiar with linear
programming, you might like to know that this duality theorem can be proved from the linear
programming duality theorem. We need a definition.

6.4 Flows in Networks 177

D0

D5

P ′
1

P ′
2

P ′
3

P ′
4

P1

P2

P3

P4

c′1

c′2

c′3

c′4

2
3

2

3

4

5

6

2

2 2

4

3

2
Figure 6.9 New depots for Exercise 6.4.5.

Definition 6.8 Cut partition Given (G, c, (Din,Dout)), any ordered partition (A, B) of V
with Din ⊆ A and Dout ⊆ B will be called a cut partition. A cut set is a subset F of the edges
of G such that every directed path from Din to Dout contains an edge of F . If F is a set of edges
in G, the sum of c(e) over all e ∈ F is called the capacity of F . If (A, B) is a cut partition, we
write c(A, B) instead of c(FROM(A, B)) and call it the capacity of the cut partition.

The following lemma shows that cut partitions and cut sets are closely related.

Lemma If (A, B) is a cut partition, FROM(A, B) is a cut set. Conversely, if F is a cut set,
then there is a cut partition (A, B) with FROM(A, B) ⊆ F .

Proof: This is left as an exercise.

Theorem 6.8 Max-Flow Min-Cut Theorem Let f be any flow and (A, B) any cut
partition for (G, c, (Din,Dout)). Then

value(f) ≤ c(A, B)

and, if f is a maximum flow, then there is a cut partition (A, B) such that value(f) = c(A, B).
The results are valid if we replace the cut partition (A, B) with the cut set F .

Proof: The inequality value(f) ≤ c(A, B) follows immediately from (6.11) and the fact that f
takes on only nonnegative values. Suppose that f is a maximum flow. Let A = A(f) (and, therefore,
B = V −A(f)). It follows from the claim following (6.11) that value(f) = c(A, B). To change from
cut partition to cut set, apply the lemma.

Why is this called the Max-Flow Min-Cut Theorem? The inequality value(f) ≤ c(A, B) implies
that the maximum value(f) over all possible admissible flows f is less than or equal to minimum
value of c(A, B) over all possible cut partitions (A, B). The fact that equality holds for maximum
flows and certain cut partitions says that “The maximum value over all flows is equal to the minimum
capacity over all cut partitions.”

178 Chapter 6 A Sampler of Graph Topics

0

the set S: s1 s2 s3 s4 s5

c = 1

the set I : 1 2 3 4

c = M

∞

c = 1

Figure 6.10 The network for n = 4, A1 = {s1, s2}, A2 = {s1, s3, s4}, A3 = {s1, s5} and A4 = {s3, s5}.
Capacities appear on the left side.

Example 6.11 Systems of distinct representatives Let S be a finite set and suppose that
Ai ⊆ S for 1 ≤ i ≤ n. A list a1, . . . , an is called a system of representatives for the Ai’s if ai ∈ Ai

for all i. If the ai’s are distinct, we call the list a system of distinct representatives for the Ai’s.
Systems of distinct representatives are useful in a variety of situations. A classical example is the

marriage problem: There are n tasks and a set S of resources (e.g., employees, computers, delivery
trucks). Each resource can be used to carry out some of the tasks; however, we must devote one
resource to each task. If Ai is the set of resources that could carry out the ith task, then a system
of distinct representatives is an assignment of resources to tasks. An extension of this, which we will
not study, assigns a value for each resource-task pair. A higher value means a greater return from
the resource-task pairing due to increased speed, capability, or whatever. The assignment problem

asks for an assignment that maximizes the sum of the values.
We will use the Max-Flow Min-Cut Theorem to prove the following result, which is also called

the Philip Hall Theorem and the SDR Theorem.

Theorem 6.9 Marriage Theorem With the notation given above, a system of distinct
representatives (SDR) exists if and only if

∣

∣

∣

∣

⋃

i∈I

Ai

∣

∣

∣

∣

≥ |I| 6.12

for every subset of indices I ⊆ n. In other words, every collection of Ai’s contains at least as
many distinct aj ’s as there are Ai’s in the collection.

Proof: By renaming the elements of S if necessary, we may assume that S contains no integers or
∞. Let G be the simple digraph with V = S ∪ n ∪ {0,∞} and edges of three kinds:

• (0, s) for all s ∈ S;

• (i,∞) for all i ∈ n;

• (s, i) for all s ∈ S and i ∈ n such that s ∈ Ai.

Let all edges of the form (s, i) have capacity M , a very large integer and let all other edges have
capacity 1. Let Din = {0} and Dout = {∞}. Such a network is shown in Figure 6.10.

Consider a flow f which is integer valued. Since a vertex s ∈ S has one edge directed in and
that edge has capacity 1, the flow out of s cannot exceed 1. Similarly, since a vertex i ∈ n has one
edge directed out and that edge has capacity 1, the flow into i cannot exceed 1. It also follows that
f takes on only the values 0 and 1.

We can interpret the edges that have f(e) = 1:

• f(0, s) = 1 for s ∈ S means s is used as a representative;

• f(i,∞) = 1 for i ∈ n means Ai has a representative;

6.4 Flows in Networks 179

• f(s, i) = 1 for s ∈ S and i ∈ n means s is the representative of Ai.

You should convince yourself that this interpretation provides a bijection between integer valued flows
f and systems of distinct representatives for some of the Ai’s, viz., those for which f(i,∞) = 1. To
do this, note that for a given s ∈ S, f(s, i) = 1 for at most one i ∈ n because the flow into s is at
most 1. Experiment with integer flows and partial systems of distinct representatives in Figure 6.10
to clarify this.

From the observation in the previous paragraph, value(f) is the number of sets for which distinct
representatives have been found. Thus a system of distinct representatives is associated with a flow
f with value(f) = n. If we can understand what a minimum capacity cut set looks like, we may be
able to use the Max-Flow Min-Cut Theorem to complete the proof.

What can we say about a minimum capacity cut set F? Note that F contains no edges of
the form (s, i) because of their large capacity. Thus c(e) = 1 for all e ∈ F and so c(F) = |F |.
Consequently, we are concerned with the minimum of |F | over all cut sets F containing no edges of
the form (s, i). Thus F contains edges of the form (0, s) and/or (i,∞).

Let I be those i ∈ n such that (i,∞) 6∈ F . What edges of the form (0, s) are needed to form a
cut set? If i ∈ n and s ∈ Ai, then we must have an edge from the path 0, s, i,∞ in the cut set. Thus,
i ∈ I implies that (0, s) ∈ F . It follows that (0, s) ∈ F for every s ∈ ⋃

i∈I

Ai.

This is enough to form a cut set: Suppose 0, s, i,∞ is a path. If i 6∈ I, then (i,∞) ∈ F . If i ∈ I,
then (0, s) ∈ ⋃

i∈I

Ai ⊆ F .

What is |F | in this case? (Figure 6.10 may help make the following discussion clearer.) We have

n − |I| edges of the form (i,∞) and
∣

∣

∣

⋃

i∈I

Ai

∣

∣

∣
edges of the form (0, s). Thus |F | is the sum of these

and so the minimum capacity is

min
I⊆n

{∣

∣

∣

⋃

i∈I

Ai

∣

∣

∣
+ n − |I|

}

= n + min
I⊆n

{∣

∣

∣

⋃

i∈I

Ai

∣

∣

∣
− |I|

}

. 6.13

By the Max-flow Min-cut Theorem, a system of distinct representatives will exist if and only if this is
at least n. Consequently, the expression in the right hand set of braces of (6.13) must be nonnegative
for all I ⊆ n.

Exercises

6.4.6. Prove the lemma about cut partitions.

*6.4.7. Prove that for a given max-flow problem, A(f) is the same for all maximum flows f .

6.4.8. For r ≤ n, and r × n Latin rectangle is an r × n array in which each row is a permutation of n
and each column contains no element more than once. If r = n, each column must therefore be a
permutation of n. Such a configuration is called a Latin square. The goal of exercise is to prove that
it is always possible to add n − r rows to such an r × n Latin rectangle to obtain a Latin square.

(a) Suppose we are given and r × n Latin rectangle L with r < n. In the notation for systems of
distinct representatives, let S = n and let Ai be those elements of S that do not appear in
the ith column of L. Prove that a system of distinct representatives could be appended to L to
obtain and (r + 1) × n Latin rectangle.

(b) Prove that each s ∈ S appears in exactly n − r of the Ai’s.

(c) Use the previous result and |Ai| = n − r to prove that |AI | ≥ |I | and so conclude that a system
of distinct representatives exists.

(d) Use induction on n − r to prove that an r × n Latin rectangle can be “completed” to a Latin
square.

180 Chapter 6 A Sampler of Graph Topics

6.4.9. The purpose of this exercise is to prove the Marriage Theorem without using flows in networks. The
proof will be by induction on n.

(a) Prove the theorem for n = 1.

(b) For the induction step, consider two cases, either (6.12) is strict for all I 6= n or it is not. Prove
the induction step in the case of strictness by proving that we may choose any a ∈ An as the
representative of An.

(c) Suppose that equality holds in (6.12) for I 6= n. Let X = ∪i∈IAi and Bi = Ai − X, the set of
those elements of Ai which are not in X. Prove that

∣

∣

∣

∣

⋃

i∈R

Bi

∣

∣

∣

∣

≥ |R|

for all R ⊆ (n−X). Use the induction hypothesis twice to obtain a system of distinct represen-
tatives.

*6.4.10. Let G be a directed graph and let u and v be two distinct vertices in G. Suppose that (u, v) is not
an edge of G. A set of directed paths from u to v in G is called “edge disjoint” if none of the paths
share an edge. A set F of edges of G is called an “edge cutset” for u and v if every directed path
from u to v in G contains an edge in F . Prove that the cardinality of the largest set of edge disjoint
paths equals the cardinality of the smallest edge cutset.
Hint. Make a network of G with source u and sink v.

*6.4.11. State and prove a result like that in Exercise 6.4.10 for graphs.

*6.4.12. Using the idea in Exercise 6.4.4 state and prove results like the two previous exercises with “edge”
replaced by “vertex other that u and v” in the definitions of disjoint and cutset. The undirected
result is called Menger’s theorem.

*6.5 Probability and Simple Graphs

Probability theory is used in two different ways in combinatorics.

It can be used to show that, if something is large enough, then it must have some property. For
example, it was shown in Example 1.25 (p. 29) that certain error correcting codes must exist if the
code words were long enough. Estimates obtained this way are often quite far from best possible.
On the other hand, better estimates may be hard to find.

Probability theory is also used to study how random objects behave. For example, what is the
probability that a “random graph” with n vertices and n − 1 edges is a tree?

What do we mean by random graphs? It may be more instructive to ask “What are some
questions asked about random graphs?” Here are some examples, sometimes a bit vaguely stated.
You should think of n as large and the graphs as simple.

• What is the probability that a random n-vertex, (n − 1)-edge graph is a tree?

• How many edges must an n-vertex random graph have so that it is likely to be connected?

• On average, how many leaves does an n-vertex tree possess and how far is a random tree likely
to differ from this average?

• How many colors are we likely to need to color a random n-vertex graph that has kn-edges?

• How can we generate graphs at random so that they resemble the graph of connections of
computers on the internet?

To answer questions like these, we must be clear on what is meant by “random” and “likely”.
Sometimes this can get rather technical; however, there are simple examples.

6.5 Probability and Simple Graphs 181

To begin, we usually consider a set Sn of (simple) graphs with n-vertices and make it into a

probability space. An obvious way to do this is with the uniform probability. For example, let Sn

be the set of (n − 1)-edge simple graphs with vertex set n and let Pr be the uniform distribution.

What is the probability that a random such graph is a tree? By Exercise 5.1.2 (p. 124), there are
(

N
k

)

k-edge graphs, where N =
(

n
2

)

. Since a tree has n − 1 edges, we want k = n − 1. By Example 5.10

(p. 143), there are nn−2 trees. Thus the answer is nn−2
/(

N
n−1

)

.

Example 6.12 Graphs with few edges Suppose a graph has few edges. What are some prop-

erties we can expect to see?

To answer such questions, we need a probability space. Let G(n, k) be the probability space

gotten by taking the uniform probability on the set of k-edge simple graphs with vertex set n. For

convenience, let N =
(

n
2

)

.

If our graph has n − 1 edges, it could be a tree; however, we’ll show that this is a rare event.

(You were asked to estimate this probability in Exercise 5.5.15(b). We’ll do it here.) The number of

such graphs is

(

N

n − 1

)

=
N(N − 1) · · · (N − (n − 1) + 1)

(n − 1)!
>

(

N − (n − 1)
)n−1

(n − 1)!

=

(

(n − 2)(n − 1)/2
)n−1

(n − 1)!

∼
(

(n − 2)(n − 1)/2
)n−1

√

2π(n − 1)
(

(n − 1)/e
)n−1 by Stirling’s formula

>

(

e(n − 2)/2
)n−1

√
2πn

.

Since there are nn−2 trees, for large n the probability that a random graph in G(n, n − 1) is a tree

is less than

nn−2
√

2πn
(

e(n − 2)/2
)n−1 =

√

2π/n (2/e)n−1

(

1 +
2

n − 2

)n−1

. 6.14

From calculus, limx→0(1 + x)a/x = ea. With x = 2
n−2 and a = 2, we have

(

1 + 2
n−2

)n−2

∼ e2. Since

2/e < 1, (6.14) goes to zero rapidly as n gets large. Thus trees are rare.

You should be able to show that a simple graph with n vertices and n − 1 edges that is not a

tree is not connected and has cycles. That leads naturally to two questions:

• How large must k be so that most graphs in G(n, k) have cycles?

• How large must k be so that most graphs in G(n, k) are connected?

The first question will be looked at some in the exercises. We’ll look at the second question a bit

later.

182 Chapter 6 A Sampler of Graph Topics

Of course, the uniform distribution is not the only possible distribution, but why would anyone

want to choose a different one? Suppose we are studying graphs with n vertices and k edges. The fact

that the number of edges is fixed can be awkward. For example, suppose u, v and w are three distinct

vertices. If we know whether or not {u, v} is an edge, this information will affect the probability that

{u, w} is an edge:

• If {u, v} is not an edge, there must be k edges among the remaining N − 1 possible edges, so

the probability that {u, w} is an edge is equal to k
N−1 .

• If {u, v} is an edge, there must be k − 1 edges among the remaining N − 1 possible edges, so

the probability that {u, w} is an edge is equal to k−1
N−1 .

Here is a way to avoid that. For each e ∈ P2(n), make the set {“e ∈ G”, “e /∈ G”} into a

probability space by setting Pr(e ∈ G) = p and Pr(e /∈ G) = 1 − p. We can think of “e ∈ G” as

the event in which e is in a randomly chosen graph. Let Gp(n) be the product of these probability

spaces over all e ∈ P2(n). Let X(G) be the number of edges in G. It can be written as a sum of the

N independent random variables

Xe(G) =
{

1 if e ∈ G,
0 if e /∈ G.

6.15

By independence, E(X) = pN and var(X) = Np(1 − p) because p(1 − p) is the variance of a

(0,1)-valued random variable whose probability of being 1 is p. With p = k/N , we expect to see k

edges with variance kp(1 − p) < k. By Chebyshev’s inequality (C.3) (p. 385)

Pr(|X − k| > Ck1/2) < 1/C2.

Thus, with C = k1/3, dividing |X − k| > k1/6 by k, and using Pr(A′) = 1 − Pr(A), we have

Pr

(|X − k|
k

≤ k−1/6

)

> 1 − k−2/3. 6.16

Since (|X−k|/k)×100 is the percentage deviation of the X from k, (6.16) tells us that this deviation

is very likely to be small when k is large.3

Because a random graph in Gp(n) has very nearly pN edges, results for Gp(n) with p = k/N

almost always hold for G(n, k) as well. Since Gp(n) is usually easier to study than G(n, k), people

often study it.

If we want to consider all graphs with vertex set n with each of the 2N graphs equally likely, we

simply study G1/2(n) because any particular graph with q edges occurs with probability

(1/2)q(1 − 1/2)N−q = (1/2)N = 2−N ,

a value that is the same for all n-vertex graphs.

3 For those familiar with the normal approximation to the binomial distribution, the number of

edges is binomially distributed. Using this, one can avoid using Chebyshev’s inequality and derive

stronger results than (6.16).

6.5 Probability and Simple Graphs 183

Example 6.13 The clique number of a random graph A clique in a graph G is a subgraph
H such that every pair of vertices of H is connected by an edge. The size of the clique is the number
of vertices of H . The clique number of a graph is the size of its largest clique. A k-vertex clique is
called a k-clique.

What can we say about the clique number of a random graph; that is, a graph chosen using
G1/2(n)? We’ll get an upper bound on this number for most graphs.

Notice that if a graph contains a K-clique, then it contains an k-clique for all k ≤ K. Thus if a
graph does not contain a k-clique, its clique number must be less than k. If we can show that most
n-vertex graphs do not have a k-clique, it will follow that the clique number of most n-vertex graphs
is less than k.

We’ll begin by looking at the expected number of k-cliques in an n-vertex graph. When W ⊆ n,
let XW be 1 if the vertices W form a clique and 0 otherwise. The probability that XW = 1 is

(1/2)(
|W |
2) since there are

(

|W |
2

)

pairs of vertices in W , each of which must be connected by an edge
to form a clique. Edges that do not connect two vertices in W don’t matter—they can be present
or absent. Summing over all k-element subsets of n, we have

E(number of k-cliques) = E

(

∑

W⊂n
|W |=k

XW

)

=
∑

W⊂n
|W |=k

E(XW) =
∑

W⊂n
|W |=k

Pr(XW = 1)

=
∑

W⊂n
|W |=k

(1/2)(
k

2) =

(

n

k

)

2−(k

2).

Since the number of k-cliques in a graph is a nonnegative integer,

Pr(at least one k-clique) =
∑

j>0

Pr(exactly j k-cliques)

≤
∑

j≥0

j Pr(exactly j k-cliques) = E(number of k-cliques)

=

(

n

k

)

2−(k

2) ≤ nk

k!
2−(k

2) =
2k(log

2
n−k/2)

2−k/2k!
.

Since 2−k/2k! is large when k is large, the probability of a k-clique will be small when k/2 ≥ log2 n.
Thus almost all graphs have clique number less than 2 log2 n.

What can be said in the other direction? A lower bound is given in the Exercise 6.5.6.

Example 6.14 Triangles in random graphs Using Gp(n) for our probability space, we want
to look at the number of triangles in a random graph. For u, v, w ∈ n, let

Xu,v,w =
{

1 if the edges {u, v}, {u, w}, {v, w} are present,
0 otherwise.

We claim Pr(Xu,v,w = 1) = p3. How can we see this? Intuitively, each edge has probability p of

being present and they are independent, so we get p3. More formally, since our probability space is
a product space,

Xu,v,w = X{u,v}X{u,w}X{v,w} = p3,

where the Xx,y are the random variable defined in (6.15).

Thus the expected value of Xu,v,w is p3. Since there are
(

n
3

)

choices for {u, v, w}, the expected

number of triangles in
(

n
3

)

p3.

184 Chapter 6 A Sampler of Graph Topics

Let’s compute the variance in the number of triangles. We have to be careful: Triangles are not

independent because they may share edges. The safest approach is to define a random variable T

that equals the number of triangles:

T =
∑

t∈P3(n)

Xt, where X{u,v,w} = Xu,v,w.

Since var(T) = E(T 2)−E(T)2 and we know E(T) =
(

n
3

)

p3, we need to compute E(T 2). It equals
∑

E(XsXt), the sum ranging over all s, t ∈ P3(n). There are three cases to consider:

• s = t There are
(

n
3

)

terms like this and E(XsXt) = E(X2
s) = E(Xs) = p3.

• |s∩ t| = 2 There are
(

n
3

)(

3
2

)(

n−3
1

)

terms like this since we have
(

n
3

)

choices for s,
(

3
2

)

ways to

select two elements of s to include in t, and
(

n−3
1

)

ways to complete t. Since there are a total of

five edges in the two triangles, E(XsXt) = p5.

• |s ∩ t| < 2 Since there are a total of
(

n
3

)2
terms in the sum

∑

E(XsXt) and we have dealt

with
(

n
3

)

+
(

n
3

)

3(n − 3) terms already, there are

(

n

3

)2

−
(

n

3

)

−
(

n

3

)

3(n − 3)

remaining. Since there are six edges in the two triangles, E(XsXt) = p6. Putting all this together

var(T) =
(

(

n

3

)2

−
(

n

3

)

−
(

n

3

)

3(n − 3)
)

p6 +

(

n

3

)

3(n − 3)p5 +

(

n

3

)

p3 −
((

n

3

)

p3

)2

=

(

n

3

)

3(n − 3)p5(1 − p) +

(

n

3

)

p3(1 − p3).

Now we want to use Chebyshev’s inequality to find out when most graphs have at least one

triangle. Chebyshev’s inequality (C.3) (p. 385) is

Pr
(

|T − E(T)| > t
√

var(T)
)

< 1/t2.

If T = 0, then |T − E(T)| = E(T) > E(T) − 1. If we set t
√

var(T) = E(T) − 1, Chebyshev’s

inequality tells us the probability that there is no triangle is 1/t2, a number that we want to be

small. Solving t
√

var(T) = E(T) − 1 and putting it all together with our previous calculations:

Pr(T =0) <
var(T)

(E(T) − 1)2
=

(

n
3

)

3(n − 3)p5(1 − p) +
(

n
3

)

p3(1 − p3)
((

n
2

)

p3 − 1
)2 .

When p is such that p is small and
(

n
3

)

p3 is large, we have
(

n
3

)

p3 ≈ n3p3/6 and so we are assuming

that L = np is large. Using this,

var(T)

(E(T) − 1)2
≈ n4p5/2 + n3p3/6

n6p6/36
= 6

3Lp + 1

L3
= 18p/L2 + 6/L3,

We’ve shown that, if np is large and p is small, then a random graph in Gp(n) almost certainly

contains a triangle. If we let p be larger, then edges are more likely and so triangles are more likely.

This we don’t need “p is small.” In summary, If np is large then a random graph in Gp(n) almost

certainly contains a triangle.

6.5 Probability and Simple Graphs 185

Example 6.15 Growing random graphs Imagine starting out with vertices V = n and then
growing a simple graph by randomly adding edges one by one. We’ll describe the probable growth
of such a graph.

In the first stage, we have a lot of isolated vertices (vertices on no edges) and pairs of vertices
joined by an edge. As time goes by (more edges added), the single edges join up forming lots of
small trees which continue to grow. Next the trees start developing cycles and so are no longer trees.
Of course there are still a lot of isolated vertices and small trees around. Suddenly a threshold is
passed and, in the blink of an eye, we have one large (connected) component and lots of smaller
components, most of which are trees and isolated vertices. The large component starts “swallowing”
the smaller ones, preferring to swallow the larger ones first. Finally, all that is left outside the large
component is a few isolated vertices which are swallowed one by one and so the graph is connected.
Growth continues beyond this point, but we’ll stop here.

When does the graph get connected?

We can’t answer this question; however, we can easily compute the expected number of isolated
vertices in a random graph. When this number is near zero, we expect most random graphs to be
connected. When it is not near zero, we expect a significant number of random graphs to still contain
isolated vertices. We’ll study this with the Gp(n) model. This isn’t quite the correct thing to do since
we’re adding edges one by one. However, it’s harder to use G(n, k) and we’re not planning on proving
anything—we just want to get an idea of what’s true.

In Gp(n), a vertex v will be isolated if none of the possible n− 1 edges connecting it to the rest

of the graph are present. Thus the probability that v is isolated is (1 − p)n−1. Since there are n

vertices, the expected number of isolated vertices is n(1 − p)n−1. When p is small, 1 − p ≈ e−p and

so the expected number of isolated vertices is about ne−p(n−1) = elnn−p(n−1). This number will
be near zero if p(n − 1) − lnn is a large positive number. This is the same as pn − lnn being large
and positive. In this case, isolated vertices are unlikely. In other words, they’ve all probably been
swallowed by the big component and the graph is connected. On the other hand, if pn− lnn is large

and negative, eln n−p(n−1) will be large. In other words, we expect a lot of isolated vertices. Thus

p ≈ ln n
n is the critical point when a graph becomes connected. Since we expect about

(

n
2

)

p ≈ n ln n
2

edges, a graph should become connected when it has around n lnn
2 edges.

So far we’ve studied random graphs and asked what can be expected. Now we’ll look at a
different problem: we want to guarantee that something must happen in a graph.

Example 6.16 Bipartite subgraphs A graph (V ′, E′) is bipartite if its vertices can be parti-
tioned into two sets V ′

1 and V ′
2 = V ′ − V ′

1 such that the edges of the graph only connect vertices in
V ′

1 and V ′
2 . In other words, if {x, y} ∈ E′, then one of x, y is in V ′

1 and the other is in V ′
2 .

Given a graph G = (V, E) with n vertices and k edges, we want to find a bipartite subgraph
with as many edges as possible. How many edges can we guarantee being able to find? Since we
want as many edges a possible, we may as well use all the vertices in G. Thus our bipartite graph
will be (V, E′) where V is partitioned into V ′

1 and V ′
2 and E′ ⊆ E are those edges which connect a

vertex in V ′
1 to a vertex in V ′

2 . Thus, our partition V ′
1 , V ′

2 determines E′.

Since the example is in this section, you can tell we’re going to use probability somehow. But
how? (Our previous methods won’t work since we are given a particular graph G.) We can choose
the partition of V randomly.

Our probability space will be the uniform probability on the set of all subsets of V . A subset
will be V ′

1 and its complement V − V ′
1 will be V ′

2 . For every edge e = {x, y} ∈ E, define a random
variable Xe by

Xe(V
′
1) =

{

0, if both ends of e are in V ′
1 or in V ′

2 ,
1, if one end of e is in V ′

1 and the other in V ′
2 .

186 Chapter 6 A Sampler of Graph Topics

You should be able to see that the number of edges in the bipartite graph is X(V ′
1), which we define

by

X(V ′
1) =

∑

e∈E

Xe(V
′
1).

We can think of the probability space as a product space as follows. For each v ∈ V , choose
it with probability 1/2, independent of the choices made on the other vertices. The chosen vertices
form V ′

1 . The probability of choosing V ′
1 is

(1/2)|V
′
1
|(1/2)|V −V ′

1
| = (1/2)|V |,

where (1/2)|V
′
1
| is the probability of choosing each of the vertices in V ′

1 and (1/2)|V −V ′
1
| is the prob-

ability of not choosing each of the vertices in V − V ′
1 . Thus, this probability space gives equal

probability to every subset of V , just like our original space. Consequently, we can carry out calcu-
lations in either our original probability space or the product space we just introduced. Since the
product space has a lot of independence built into it, calculation here is often easier. In particular,
Pr(Xe = 1) = 1/2 for any edge {u, v} since Xe = 1 if and only if we make the same decisions for
u and v (both included or both excluded) and this has probability (1/2)2 + (1/2)2 = 1/2. Thus
E(Xe) = 1 × (1/2) + 0 × (1/2) = 1/2.

Since a random variable must sometimes be at least as large as it’s average, there must be a
V ′

1 ⊆ V with X(V ′
1) ≥ E(X). Thus there is a bipartite subgraph with at least E(X) edges. Since

E(Xe) = 1/2, E(X) = k/2. Since the expected number of edges in a randomly constructed
bipartite subgraph is k/2, at least one of these subgraphs has at least k/2 edges. In other words,
there is a bipartite subgraph containing at least half the edges of G.

Exercises

Remember the following!

• Expectation is linear: E(X1 + · · · + Xk) = E(X1) + · · · + E(Xk).

• Pr(A1 ∩ · · · ∩ Am) ≤ Pr(A1) + · · · + Pr(Am), especially when Pr(A1) = · · · = Pr(Am).

6.5.1. Compute the following for a random graph in Gp(n).

(a) The expected number of vertices of degree d.
Hint. Let Xv = 1 if v has degree d and Xv = 0 otherwise. Study

∑

Xv .

(b) The expected number of 4-cycles.

(c) The expected number of induced 4-cycles. (An induced subgraph of a graph G is a subset of
vertices together with all the edges in G that connect the vertices.)

6.5.2. An embedding of a simple graph H = (VH , EH) into a simple graph G = (VG, EG) is an injection ϕ :
VH → VG such that ϕ(EH) ⊆ EG, where we define ϕ{u, v} = {ϕ(u), ϕ(v)}. If ϕ(EH) = EG∩P2(VH),
we call the embedding induced.

(a) Prove that the expected number of embeddings of H in a random graph in Gp(n) when n ≥ |VH | is

n(n − 1) · · · (n − |VH | + 1)p|EH | =
n! p|EH |

(n − |VH |)!
.

(b) Repeat (a) for induced embeddings.

(c) In Example 6.14, we showed that the expected number of triangles in a random graph is
(

n
3

)

p3.

If part (a) of the present exercise is applied when H is a triangle, we obtain 6
(

n
3

)

p3 for the

expected number of embeddings. Explain the difference.

6.5 Probability and Simple Graphs 187

6.5.3. In this exercise we’ll find a bound on k (as a function of n) so that most graphs in G(n, k) do not
have cycles. Since we know most graphs in G(n, n−1) have cycles, we’ll assume k ≤ n−1. For C ⊆ n,

let GC be those graphs in which C is a cycle. As usual, N =
(

n
2

)

.

(a) Show that

Pr(G has a cycle) ≤
∑

Pr(GC),

where the sum is over all subsets of n that contain at least three elements.

(b) By arranging the vertices in C in a cycle and then inserting the remaining edges, prove that

Pr(GC) =
(c − 1)!/2

(

N−c
k−c

)

(

N
k

) where c = |C|.

Remember that, unlike cycles in permutations, cycles in graphs do not have a direction.

(c) Conclude that

Pr(G has a cycle) ≤

k
∑

c=3

(

n

c

)

(c − 1)!/2
(

N−c
k−c

)

(

N
k

) .

(d) Show that the term c in the previous sum equals

k!

2c (k − c)!

c−1
∏

i=0

n − i

N − i
<

kc

2c

(

n

N

)c

.

6.5.4. We’ll redo the previous exercise using Gp(n).

(a) Let v1, . . . , vk be a list of vertices. Compute the probability that v1, . . . , vk, v1 is a cycle

(b) Show that the probability that a random graph in Gp(n) contains a k-cycle is less than nkpk.

(c) Show that the probability that a random graph in Gp(n) has a cycle is less than (pn)3 when
pn < 2/3.

6.5.5. This exercise relates to Example 6.16.

(a) A simple graph G = (V, E) is complete if it contains all possible edges; that is, E = P2(V).

Prove that, if |V | = 2n, we can construct a bipartite subgraph with n2 edges. Obtain a similar
result if |V | = 2n + 1.

(b) How close is this result to the lower bound in the example?

(c) Prove that when |V | and k are large, there is a graph G = (V, E) such that |E| = k and the

relative error between the lower bound and the best bipartite subgraph of G is O(1/k1/2). (Of
course we need k ≤ |P2(V)| or there will be no simple graph.)
Hint. Use a complete graph in your construction.

(d) Prove that, if G(V, E) can be properly colored using three colors, then it has a bipartite subgraph
with at least 2|E|/3 edges.

6.5.6. We want to find a number k (depending on n) such that most n-vertex graphs have a k-clique.
Divide the vertices in bn/kc sets of size k and one (possibly empty) smaller set.

(a) Show that the probability that none of these bn/kc sets is a k-clique is (1 − 2−(k

2
))bn/kc.

(b) It can be shown that 1 − x < e−x for x > 0. Using this and the previous part, conclude that,

for some constant A, almost all n-vertex graphs have a k-clique when k ≤ A(log n)1/2.

188 Chapter 6 A Sampler of Graph Topics

6.6 Finite State Machines

A “finite state machine” is simply a device that can be in any one of a finite number of situations and
is able to move from one situation to another. The classic example (and motivation for the subject)
is the digital computer. If no peripherals are attached, then the state at any instant is what is stored
in the machine. You may object that this fails to take into account what instruction the machine is
executing. Not so; that information is stored temporarily in parts of the machine’s central processing
unit. We can expand our view by allowing input and output to obtain a finite state machine with
I/O.

By formalizing the concept of a finite state machine, computer scientists hope to capture the
essential features of some aspects of computing. In this section we’ll study a very restricted formal-
ization. These restricted devices are called “finite automata” or “finite state machines.” The input
to such machines is fed in one symbol at a time and cannot be reread by the machine.

Turing Machines

A Turing machine, introduced by A.M. Turing in 1937, is a more flexible concept than a finite
automaton. It is equipped with an arbitrarily long tape which it can reposition, read and write. To
run the machine, we write the input on a blank tape, position the tape in the machine and turn the
machine on. We can think of a Turing machine as computing a function: the input is an element of
the function’s domain and the output is an element of the function’s range, namely the value of the
function at that input. The input and/or the output could be nothing. In fact, the domain of the
function is any finite string of symbols, where each symbol must be from some finite alphabet; eg.
{0, 1}. Of course, the input might be something the machine wasn’t designed to handle, but it will
still do something.

How complicated a Turing machine might we need to build? Turing proved that there exists a
“universal” Turing machine U by showing how to construct it. If U ’s input tape contains

1. D(T), a description of any Turing machine T and

2. the input I for the Turing machine T ,

then U will produce the same output that would have been obtained by giving T the input I. This
says that regardless of how complicated an algorithm we want to program, there is no need to build
more than one Turing machine, namely the universal one U . Of course, it might use a lot of time and
a lot of tape to carry out the algorithm, so it might not be practical. Suprisingly, it can be shown
that U will, in some sense, be almost as fast as the the Turing machine that it is mimicking. This
makes it possible to introduce a machine independent measure of the complexity of a function.

Although Turing machines seem simple, it is believed that anything that can be computed by
any possible computer can be computed by a Turing machine. (This is called Church’s Thesis.) Such
computable functions are called recursive functions. Are there any functions which are not recursive?

Examples of nonrecursive functions are not immediately obvious. Here’s one. “Given a Turing
machine T and input I, will the Turing machine eventually stop?” As phrased this isn’t quite a fair
function since it’s not input for a Turing machine. We can change it slightly: “Given D(T) (a machine
readable description of T) and the input I, will the universal Turing machine U eventually stop?”
For obvious reasons, this is called the halting problem. You may wonder why this can be thought of
as a function. The domain of the function is all possible pairs D, I where D is any machine readable
description of a machine and I is any possible input for a machine. The range is {“yes”, “no”}. The
machine U computes the value of the function.

Theorem 6.10 The halting problem is nonrecursive.

6.6 Finite State Machines 189

Proof: We can’t give a rigorous proof here; in fact, we haven’t even defined our terms precisely.
Nevertheless, we can give the idea for a proof. Suppose there existed a Turing machine H that could
solve the halting problem. Create a Turing machine B that contains within itself what is essentially
a subroutine equivalent to H and acts as follows. Whatever is written on the input tape, it makes a
copy of it. It then “calls” H to process as input the original input together with the copy. If H says
that the answer is “Doesn’t stop,” then B stops; otherwise B enters an infinite loop.

How does this rather strange machine behave? Suppose B is given D(T) as input. It then passes
to H the input D(T) D(T) and so H solves the halting problem for T with D(T) as input. In other
words:

If B is given D(T), it halts if and only if T with input D(T) would run for ever. 6.17

What does B do with the input D(B)? We simply use (6.17) with T equal to B. Thus, B with
input D(B) halts if and only if B with input D(B) runs for ever. Since this is self-contradictory,
there is either an error in the proof, an inconsistency in mathematics, or a mistake in assuming the
existence of H. We believe that the last is the case: There cannot be a Turing machine H to solve
the halting problem.

We can describe the previous proof heuristically. If H exists, then it predicts the behavior of
any Turing machine. B with input D(B) is designed to ask H how it will behave and then do the
opposite of the prediction.

Finite State Machines and Digraphs

Consider a finite state machine that receives input one symbol at a time and enters a new state
based on that symbol. We can represent the states of the machine by vertices in a digraph and the
effect of the input i in state s by a directed edge that connects s to the new state and contains i
and the associated output in its name. The following example should clarify this.

Example 6.17 Binary addition We would like to add together two nonnegative binary num-
bers and output the sum. The input is given as pairs of digits, one from each number, starting at
the right ends (units digits) of the input. The pair 22 marks the end of the input. Thus to add 010
and 110 you would input the four pairs 00, 11, 01 and 22 in that order. In other words,

the sum problem

AnAn−1· · ·A1

+ BnBn−1· · ·B1

Cn+1CnCn−1· · ·C1

becomes A1B1, . . . , An−1Bn−1, AnBn, 22.

The output is given as single digits with 2 marking the end of the output, so the output for our
example would be 00012. (The sum is backwards, C1 . . . Cn−1, Cn, Cn+1, 2, because the first output
is the units digit.) We have two internal states: carry (C) and no carry (N) You should verify that
the adder can be described by the table in Figure 6.11. The entry (o, s2) in position (s1, i) says that
if the machine is in state s1 and receives input i, then it will produce output o and move to state
s2. It is called the state transition table for the machine. Note that being in state C (carry) and
receiving 22 as input causes two digits to be output, the carry digit and the termination digit 2.

We can associate a digraph (V, E, ϕ) with the tabular description, where V = {N, C}, each
edge is a 4-tuple e = (s1, i, o, s2), ϕ(e) = (s1, s2) and i and o are the associated input and output,
respectively. In drawing the picture, a shorthand is used: the label 00, 22 : 1, 12 on the edge from C
to N in Figure 6.11 stands for the two edges (C, 00, 1, N) and (C, 22, 12, N).

This example is slightly deficient. We tacitly assumed that everyone (and the machine!) somehow
knew that the machine should start in state N. We should really indicate this by labeling N as the
starting state.

190 Chapter 6 A Sampler of Graph Topics

00 01 10 11 22

N 0, N 1, N 1, N 0, C 2, N
C 1, N 0, C 0, C 1, C 12, N

start

NC
00, 01, 10, 22 :

0, 1, 1, 2

01, 10, 11 :

0, 0, 1

00, 22 : 0, 12

11 : 0

Figure 6.11 Tabular and graphical descriptions of a finite state machine for adding two binary numbers.
The starting and accepting states are both N.

You can use the associated digraph to see easily what an automaton does with any given input
string. Place your finger on the starting state and begin reading the input. Each time you read an
input symbol, follow the directed edge that has that input symbol to whichever state (vertex) it
leads and write down the output that appears on the edge. Keep this process up until you have used
up all the input.

Suppose we want a machine that simply recognizes a situation but takes no action. We could
phrase this by saying that the machine either accepts (recognizes) or rejects an input string. In this
case, we need not have any output; rather, we can label certain states of the machine as “accepting.”
This is represented pictorially by a double circle around an accepting state. If the machine ends up
in an accepting state, then the input is accepted; otherwise, it is rejected.

Example 6.18 No adjacent ones Let’s construct a machine to recognize (accept) all strings
of zeroes and ones that contain no adjacent ones. The idea is simple: keep track of what you saw
last and if you find a one followed by a one, reject the string. We use three states, labeled 0, 1 and
R, where 0 and 1 indicate the digit just seen and R is the reject state. Both 0 and 1 are accepting
states. What is the start state? We could add an extra state for this, but we get a smaller machine
if we let 0 be the start state. This can be done because the string s1 · · · sn is acceptable if and only
if 0s1 · · · sn is. You should be able to draw a diagram of this machine.

Example 6.19 Divisibility by five Let’s construct a machine to recognize (accept) numbers
which are divisible by 5. These numbers will be presented from left to right as binary numbers; i.e.,
starting with the highest order digits. To construct such a machine, we simply design it to carry
out the usual long division algorithm that you learned many years ago. At each step in usual long
division algorithm you produce a remainder to which you then append the next digit of the dividend.
In effect, this multiplies the remainder by ten and adds the next digit to it. Since we are working
in binary, we follow the same process but multiply by two instead of by ten. The digraph for the
machine appears in Figure 6.12. No output is shown because there is none.

Here’s a formal definition of the concept of a finite automaton, which we’ve been using rather
loosely so far.

Definition 6.9 Finite automaton A finite automaton is a quadruple (S, I, f, s0) where
S and I are finite sets, s0 ∈ S and f : S×I → S. S is called the set of states of the automaton, I
the set of input symbols and s0 the starting state. If the automaton has accepting states,
we append them to the quadruple to give a quintuple. If the automaton has a set output

symbols O, then we append it to the tuple and change the definition of f to f : S × I → O×S.
If an input string leaves the automaton in an accepting state, we say that the automaton accepts

the string or that it recognizes the string.

6.6 Finite State Machines 191

2

4

1 3

0 start

0

0

1

1

1 0

10

0

1

Figure 6.12 A machine to test divisibility of binary numbers by 5. The starting and accepting states are
both 0. Input begins with the high order (leftmost) bit.

Example 6.20 An automaton grammar We can represent a finite automaton without output

in another fashion. For each edge (s1, i, s2) we write s1 → i, s2. If s2 is an accepting state, we also

write s1 → i. Suppose we begin with the starting state, say s0 and replace it with the right side of

some s0 →. If this leads to a string contains a state s, then replace s in the string with the right side

of some s →. After n such steps we will end up with either a string of n input symbols or a string

of n input symbols followed by a state.

We claim that any string of input symbols (with no appended state) that can be produced in

this fashion is accepted and conversely. Why is this true? Our replacement process mimics travelling

along the digraph as dictated by the input string. We can only omit the state symbol at the end by

moving to an accepting state. This is an example of a “grammar.” We’ll say more about grammars

in Section 9.2.

We can attempt to endow our string recognizer with “free will” by allowing random choices. At

present, for each state s ∈ S and each i ∈ I there is precisely one t ∈ S such that (s, i, t) is an edge

of the digraph. Remove the phrase “precisely one.” We can express this in terms of the function f
by saying that f : S × I → 2S , the subsets of S, instead of f : S × I → S. Here f(s, i) is the set of all

states t such that (s, i, t) is an edge.

Since the successor of a state is no longer uniquely defined, what happens when the machine is

in state s and receives input i? If f(s, i) = ∅, the empty set, the machine stops and does not accept

the string; otherwise, the machine selects by its “free will” any t ∈ f(s, i) as its next state.

Since the outcome of a given input string is not uniquely determined, how do we define accep-

tance? We simply require that acceptance be possible: If it is possible for the machine to get from its

starting state to an accepting state by any sequence of choices when it receives the input string X ,

then we say the machine accepts X . Such a machine is called a nondeterministic finite automaton.

What we have called finite automata are often called deterministic finite automata.

Theorem 6.11 No “free will” Given a nondeterministic finite automaton, there exists a

(deterministic) finite automaton that accepts exactly the same input strings.

The conclusions of this theorem are not as sweeping as our name for it suggests: We are speaking

about a rather restricted class of devices and are only concerned about acceptance. The rest of this

section will be devoted to the proof.

192 Chapter 6 A Sampler of Graph Topics

Proof: Let N = (S, I, f, s0, A), with f : S×I → 2S , be a nondeterministic finite automaton. We will
construct a deterministic finite automaton D = (T, I, g, t0, B) that accepts the same input strings
as N .

Let the states T of D be 2S , the set of all subsets of S. The initial state of D will be t0 = {s0}
and the set of accepting states B of D will be the set of all those subsets of S that contain at least
one element from A. We now define g(t, i). Let g(∅, i) = ∅. For t a nonempty subset of S, let g(t, i)
be the union of f(s, i) over all s ∈ t; that is,

g(t, i) =
⋃

s∈t

f(s, i). 6.18

This completes the definition of D.

We must prove that D recognizes precisely the same strings that N does. Let tn be the state
that D is in after receiving the input string X = i1 . . . in. We claim that

N can be in a state s after receiving X if and only if s ∈ tn. 6.19

Before proving (6.19), we’ll use it to prove the theorem.

Suppose that N accepts X . Then it is possible for N to reach some accepting state a ∈ A, which
is in tn by (6.19). By the definition of B, tn ∈ B. Thus D accepts X .

Now suppose that D accepts X . Since tn is an accepting state of D, it follows from the definition
of B that some a ∈ A is in tn. By (6.19), N can reach a when it receives X . We have shown that
(6.19) implies the theorem.

It remains to prove (6.19). We’ll use induction on n. Suppose that n = 1. Since t0 = {s0}, it
follows from (6.18) that t1 = f(t0, i1). Since this is the set of states that can be reached by N with
input i1, we are done for n = 1.

Suppose that n > 1. By (6.18),

tn =
⋃

s∈tn−1

f(s, in).

By the induction assumption, tn−1 is the set of states s that N can be in after receiving the input
i1 . . . in−1. By the definition of f , f(s, in) is the set of states that N can reach from s with input in.
Thus tn is the set of states that N can be in after receiving the input i1 . . . in.

Exercises

6.6.1. What is the state transition table for the automaton of Example 6.19?

6.6.2. We now wish to check for divisibility by 3.

(a) Give a digraph like that in Example 6.19 for binary numbers.

(b) Give the state transition table for the previous digraph.

(c) Repeat the two previous parts when the input is in base 10 instead of base 2.

*(d) Construct an automaton that accepts decimal input, starting with the unit’s digit and checks
for divisibility by 3.

*(e) Construct an automaton that accepts binary input, starting with the unit’s digit and checks for
divisibility by 3.

6.6.3. Design a finite automaton to recognize all strings of zeroes and ones in which no maximal string of
ones has even length. (A maximal string of ones is a string of adjacent ones which cannot be extended
by including an adjacent element of the string.)

6.6 Finite State Machines 193

6.6.4. An automaton is given by ({b, s, d, z}, {+,−, 0, 1, . . . , 9}, f , b, {d}), where f(b, +) = s, f(b,−) = s,
f(t, k) = d for t = b, s, d and 0 ≤ k ≤ 9, and f(t, i) = z for all other (t, i) ∈ S × I .

(a) Draw the digraph for the machine.

(b) Describe the strings recognized by the machine.

(c) Describe the strings recognized by the machine if both s and d are acceptance states.

6.6.5. A “floating point number” consists of two parts. The first part consists of an optional sign followed
by a nonempty string of digits in which at most one decimal point may be present. The second part is
either absent or consists of “E” followed by a signed integer. Draw the digraph of a finite automaton
to recognize floating point numbers.

6.6.6. A symbol ik a string ii . . . in is “isolated” if (i) either k = 1 or ik 6= ik−1, and (ii) either k = n or
ik 6= ik+1. For example, 0111010011 contains two isolated zeroes and one isolated one.

(a) Draw a digraph for a finite automaton that accepts just those strings of zeroes and ones that
contain at least one isolated one.

(b) Now draw a machine that accepts strings with precisely one isolated one.

6.6.7. In this exercise you are to construct an automaton that behaves like a vending machine. To keep
things simple, there are only three items costing 15, 20 and 25 cents and indicated by the inputs
A, B and C, respectively. Other allowed inputs are 5, 10 and 25 cents and R (return coins). The
machine will accept any amount of money up to 30 cents. Additional coins will be rejected. When
input A, B or C is received and sufficient money is present, the selection is delivered and change (if
any) returned. If insufficient money is present, no action is taken.

(a) Describe appropriate states and output symbols. Identify the starting state.

(b) Give the state transition table for your automaton.

(c) Draw a digraph for your automaton.

6.6.8. Suppose that M = (S, I, f, s0, A) and M′ = (S′, I, f ′, s′0, A′) are two automata with the same input

symbols and with acceptance states A and A′ respectively.

(a) Describe in terms of sets and functions an automaton that accepts only those strings acceptable

to both M and M′.
Hint. The states can be S × S′.

(b) When is there an edge from (s, s′) to (t, t′) in your new automaton and what input is it associated
with?

(c) Use this idea to describe an automaton the recognizes binary numbers which are divisible by 15
in terms of those in Example 6.19 and Exercise 6.6.2.

(d) Design a finite automaton that recognizes those binary numbers which are either divisible by 3
or divisible by 5 or both.

194 Chapter 6 A Sampler of Graph Topics

Notes and References

Spanning trees are one of the most important concepts in graph theory. As a result, they are
discussed in practically every text. Our point of view is like that taken by Tarjan [7; Ch.6], who
treats the subject in greater depth.

An extensive treatment of planarity algorithms can be found in Chapters 6 and 7 of the text by
Williamson [8]. Wilson’s book [98] is a readable account of the history of the four color problem.

Since flows in networks is an extremely important subject, it can be found in many texts.
Papadimitriou and Steiglitz [6] and Tarjan [7] treat the subject extensively. In addition, network
flows are related to linear programming, so you will often find network flows discussed in linear
programming texts such as the book by Hu [4].

The marriage theorem is a combinatorial result about sets. Sperner’s theorem, which we studied
in Example 1.22, is another such result. For more on this subject, see the text by Anderson [1].
Related in name but not in results is the Stable Marriage Problem. In this case, we have two sets
of the same size, say men and women. Each woman ranks all of the men and each man all of the
women. The men and women are married to each other. The situation is considered stable if we
cannot find a man and a woman who both rank each other higher than their mates. It can be proved
that a stable marriage always exists. Gusfield and Irving [3] discuss this problem and its applications
and generalizations.

The books on the probabilistic method are more advanced than the discussion here. Perhaps
the gentlest book is the one by Molloy and Reed [5].

Automata are discussed in some combinatorics texts that are oriented toward computer science.
There are also textbooks, such as Drobot [2] devoted to the subject.

1. Ian Anderson, Combinatorics of Finite Sets, Dover (2002).

2. Vladimir Drobot, Formal Languages and Automata Theory, W. H. Freeman (1989).

3. Dan Gusfield and Robert W. Irving, The Stable Marriage Problem: Structure and Algorithms,
MIT Press (1989).

4. T.C. Hu, Integer Programming and Network Flows, Addison-Wesley (1969).

5. Michael Molloy and Bruce Reed, Graph Coloring and the Probabilistic Method, Springer-Verlag
(2002).

6. Christos H. Papadimitriou and Kenneth Steiglitz, Combinatorial Optimization: Algorithms and

Complexity, Dover (1998).

7. Robert E. Tarjan, Data Structures and Algorithms, SIAM (1983).

8. S. Gill Williamson, Combinatorics for Computer Science, Dover (2002).

9. Robin Wilson, Four Colours Suffice: How the Map Problem was Solved, Penguin Press (2002).

