TOPICS
Search

Saalschützian


A generalized hypergeometric function

 _pF_q[alpha_1,alpha_2,...,alpha_p; beta_1,beta_2,...,beta_q;z],

is said to be Saalschützian if it is k-balanced with k=1,

 sum_(i=1)^qbeta_i=1+sum_(i=1)^palpha_i.

See also

Generalized Hypergeometric Function, k-Balanced, Nearly-Poised, Well-Poised

Explore with Wolfram|Alpha

References

Bailey, W. N. Generalised Hypergeometric Series. Cambridge, England: Cambridge University Press, p. 11, 1935.Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, p. 43, 1998.Whipple, F. J. W. "Well-Poised Series and Other Generalized Hypergeometric Series." Proc. London Math. Soc. 25, 525-544, 1926.

Referenced on Wolfram|Alpha

Saalschützian

Cite this as:

Weisstein, Eric W. "Saalschützian." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Saalschuetzian.html

Subject classifications

  NODES