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Abstract 

Pharmaceutical residues, now recognized as a new category of environmental pollutants, have potentially risks 
to both ecosystems and human health effects. Recently, biosorption has emerged as one of the most promising strat-
egies for managing these pharmaceutical wastes in water. Nevertheless, the environmental impact of the adsorbents 
presents a challenge to the advancement of this process. Therefore, the present study proposed two biosorbent: 
Chlorella vulgaris and Synechocystis sp. microalgae to manage Ciprofloxacin (CIP) in water. The experimental findings 
revealed that the optimal conditions for adsorption conditions are CIP initial concentration 4.0 mg/L and pH 5 and 3 
for Synechocystissp. and C. vulgaris, respectively. The adsorption process followed the Pseudo-second-order kinetic 
model. The main mechanism of biosorption is the complexation of CIP with carboxyl, hydroxyl, carbonyl, and amido 
groups which was confirmed by Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) 
and energy-dispersive X-ray spectrometry (EDX) analyses. These analyses confirmed the presence of CIP on the sur-
face of tested microalgal cells. These results indicated that the adsorption mechanism of CIP by Synechocystis sp. 
PCC6803 and C. vulgaris offers theoretical insights into the biosorption mechanisms of pharmaceutical residues.

Keywords  Adsorption, Antibiotics, C. vulgaris, Ciprofloxacin, Contaminants of emerging concern (CEC), Synechocystis 
sp. PCC6803

Introduction
Conventional water treatment systems have been shown 
to provide inadequate treatment of contaminants of 
emerging concern (CEC) [1]. The increasing worldwide 
contamination of freshwater with a manifold of pharma-
ceutical residues threatens aquatic organisms and human 
health. The environmental effects of pharmaceuticals, 
antibiotics, and disinfectants are of increasing concern 
[2]. The CEC has posed raising concerns recently. They 
are increasingly discharged in water and wastewater at 
worryingly high levels and being treated ineffectively in 
drinking water and wastewater treatment systems. The 
CEC can be classified as pharmaceuticals, personal care 
products, pesticides and industrial chemicals [3]. Due 
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to the inevitable environmental release, antibiotics have 
been detected in global water which brings challenges to 
not only targeted bacteria but also to the health of non-
target species such as fishes, plants, and algae [4]. Waste-
waters from animal husbandry, aquaculture, and the 
pharmaceutical industry are the major sources of antibi-
otics in the environment [5]. Pharmaceutical residues are 
responsible for a number of harmful pollutants, such as 
antibiotics [6].

Antibiotics are often found in various environments 
and can be extremely dangerous for both human health 
and ecosystems [7]. Pollutants not subject to regulation 
are increasingly found in wastewater discharges, due to 
modern consumption patterns. These compounds are 
generally referred to be CEC due to the potential effects 
of their existence in the water systems world wide. Phar-
maceuticals, personal care products, industrial additives, 
insecticides, and a variety of chemical compounds have 
all been detected in wastewater [3, 8]. Antibiotics, includ-
ing ciprofloxacin (CIP), are used to mitigate or cure 
microbial infections and illnesses in veterinary, human, 
and aquatic systems by targeting specific bacteria. These 
antibiotics continually enter the aquatic environment by 
multiple pathways, such as hospital wastewater and phar-
maceutical wastewater, veterinary, human excretions, 
and sewers, reaching treatment facilities in amounts 
ranging from ng/L to μg/L [9]. The occurrence of CIP 
in the surface water could achieved 5.02 mg/L [10]. The 
emergence of antibiotic-resistant genes (ARGs) and anti-
biotic-resistant bacteria (ARBs), which cause 700,000 
annual fatalities, arethe main issues connected to anti-
biotic-polluted water [11]. Due to their resistance to the 
specific antibiotics suggested for their therapy, ARBs are 
extremely difficult to be treated [12].

Ciprofloxacin is a significant pharmaceutical drug 
belonging to the fluoroquinolone (FQ) class that targets 
both Gram-positive and Gram-negative bacteria to treat 
serious illnesses. Its global emissions are primarily found 
in surface water, which accounts for 25% of the total 
emission, and municipal wastewater, which accounts for 
58% of the total emission [13]. This family of antibiotics 
is extremely mobile in the aquatic environment due to its 
hydrophilic characteristics. Fluoroquinolone antibiotic 
ciprofloxacin is found in a variety of sources, including 
drinking water and WWTP effluents, due to its signifi-
cant usage in both human and veterinary medicine [14]. 
Like other antibiotics, CIP can stack up in the cells of 
organisms and pose a major risk to human health. The 
successful removal of CIP is therefore given adequate 
consideration to their high levels in wastewaters, stabil-
ity, resistance to decomposition, and possible ecotoxic-
ity [15]. Antibiotic removal has been accomplished by 
different methods, including coagulation, membrane 

separation, advanced oxidation, adsorption, photoca-
talysis, electrolysis, and biological degradation. These 
methods have several drawbacks, including high energy 
and material costs and a secondary contamination from 
the addition of other chemicals. Adsorption, on the other 
hand, is the most adaptable and extensively utilized of 
these removal processes because of its great removal 
capacity, high efficiency, straightforward design, and sim-
plicity of usage. In this regard, biosorption which relies 
on the ability of various types of live and inactive dead 
biomasses (heat, dried, chemically treated) to bind and 
concentrate contaminants from water-based solutions 
has emerged as an environmentally friendly, practical, 
and financially viable method for the removal of anti-
biotics [16]. An ecologically benign method with great 
promise for antibiotic elimination is microalgae-based 
wastewater treatment. The precise antibiotics and micro-
algae species used, however, determine how well CIP is 
removed by microalgae [7, 17].

Microalgae are photosynthetic eukaryotic or prokary-
otic organisms that can grow single, in chains, incolonies 
or in filamentous forms. They can be found in a variety 
of ecosystems, including airborne, aquatic, and terres-
trial habitats [18, 19] and easily adjust to varying envi-
ronments [20]. Microalgae serve a significant role in 
the oxygen production in aquatic ecosystems, as well as 
an important element of the food chain [21]. They have 
attracted interest in the bioremediation research for their 
capacity to accumulate and eliminate antibiotics from 
contaminated water, and yielding important biomass 
[11]. The antibiotic removal effectiveness by adsorp-
tion process is strongly reliant on the adsorbent, which 
is often costly. Oxidation and photocatalysis are usually 
effective, but they require expensive chemical agents or 
catalysts, as well as they could generate secondary pol-
lutants. In contrast, microalgae wastewater treatment 
is an effective biological process to remove antibiotics 
requiring minimal chemical agents [22].The biosorption 
efficiency depends essentially on the sorbent properties 
and pollutants structures [23]. Algal cell walls containa 
variety of polymer assemblages and functional groups 
that can facilitate the biosorption of pollutants on their-
surface [16].

Factors affecting antibiotic removal performance by 
microalgae are algal species, antibiotic classes and con-
centration, and algal growth conditions [22].

This study aimed to determine the biosorption capa-
bility of Synechocystis sp. and C. vulgaris for CIP at dif-
ferent concentrations. The selected microalgae species 
are used without modification in powder form at a con-
stant concentration in the removal of CIP. A thorough 
investigation is conducted on process optimization by 
the adjustment of process parameters, such as time, pH, 
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and starting concentration, in addition to the isotherm of 
adsorption and kinetic investigations.

Materials and methods
Ciprofloxacin
Ciprofloxacin, C
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Results and discussion
Effect of pH
To investigate the effect of pH on the adsorption of CIP, 
20  mg/L ofCIP solution was mixed with 0.5  g/L micro-
algae by using a shaker for 12  h at different pH values 
ranging from 3.0 to 11.0. The optimum pH values for the 
biosorption CIP onto C. vulgarisandSynechocystissp.is 
3.5 and 5.5, respectively which corresponds to removal 
efficiency of 90%. The optimal pH is vital because it 
affects ionization degree, adsorbent surface charge, and 
speciation of the adsorbate [30, 31]. Two pKa values of 
CIP Table 1: for the basic-N moiety is 8.89 ± 0.11 and for 
the carboxylic acid group is 5.90 ± 0.15 [24].The acid dis-
sociation constant (pKa) of CIP is less than 6.0 when it 
is in its cation form because the amine group has been 
protonated, and it is more than 8.7 when it is in its anion 
form because the carboxylic group has lost a proton. The 
majority of CIP molecules are zwitterionic species, and 
their pH range is 6.0–8.7 [32, 33]. C. vulgaris and Syn-
echocystissp. have a pHZPC of 3.0. Hence, when the pH 
increased from pH 1 to pH 3 Fig. 1, the removal of CIP 
increased because of improved electrostatic attraction 
which results from the opposite charge between the CIP 
and the microalgae. In contrast, at high pH, CIP removal 
was significantly reduced. This may be due to the zwitte-
rionic nature of CIP. At higher pH pH > 5.9, both CIP and 
the algal biomass possess negative charges and the repul-
sion forces will be the dominant.

Figure 1 illustrates that pH ranges from 3 to 7 resulting 
in higher CIP adsorption because of hydrophobic inter-
actions between functional groups on the waste surface 
of C. vulgaris and CIP are responsible for the mechanism 
of biosorption. Comparing the removal of CIP efficiency 
at different pH, the adsorption of CIP decreases due to 

increased pH. pKa value of CIP was 8.7 for the amine 
group and the value of pKa of CIP was 6.1 for the car-
boxylic acid group on piperazine moiety [34]. Due to the 

Fig. 1  Effects of pH solution on the CIP biosorption in C. vulgaris 
and Synechocystis sp. at an initial concentration 20 mg/L and room 
temperature 20 °C

Fig. 2  Effects of initial concentration on the CIP biosorption in C. 
vulgaris and Synechocystis sp. at room temperature 20 °C

Fig. 3  Adsorption isotherm modeling of CIP biosorption 
onto biomass (a) Chlorella vulgaris and (b) Synechocystis sp
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carboxyl group’s proton being removed, CIP is present in 
an anion form [35, 36]. CIP is a cation that is present in 
solutions with a pH lower than 6.1, but likewise, CIP is 
present in solution as a zwitterionic form when the pH 
of the solution ranges from 6.1 to 8.7. The removal of 
CIP increased when the pH was less than 6, for the rea-
son that electrostatic charge on the algae surface and CIP 
[37]. However, CIP removal was significantly reduced at 
high pH. It may occur due to algae surface charging and 
the zwitterion nature of CIP. High removal efficiencies 
are the result of ionic interactions between the surface 
of the adsorbent and CIP in acidic solutions [32, 37, 38]. 
The opposite charge between the electrostatic charging 
on the microalgae surface and the CIP causes electro-
static attraction, which leads to high removal efficiency.

Effect of initial concentration
According to Fig. 2, it can be observed that when the CIP 
initial concentration increased from 5  mg L−1 to 25  mg 
L−1, the adsorption capacity increased from 1.14 mg/g to 
9.07 mg/g for C. vulgaris and from 0.33 mg/g to 9.84 mg/
gfor Synechocystis sp. This is attributed to that the 
increase in CIP concentration in the solution, resulting 
in an increment in the difference between CIP concentra-
tion in the solution and CIP concentration at the micro-
alga surface resulting in a greater driving force for mass 
transfer which promote the adsorption process at higher 
concentrations.

Adsorption isotherm modeling
Ten models have been investigated for the biosorp-
tion of CIP onto C. vulgaris and Synechocystissp.1 
Fig. 3. and Table 2. The results showed that Freundlich 
model isthe best to describe the CIP@C. vulgaris sys-
tem where the calculated adsorption capacity is close 
to the calculated one in addition to a high correlation 
coefficient (R2 = 0.944), followed by Dubinin-Radushk-
evich and Langmuir with qmax10.32 and 14.37 mg/g and 
R2 = 0.903 and 0.943, respectively [39]. The other mod-
els are not suitable for describing the CIP@C. vulgaris 
system such as Baudu, Redlich-Peterson, and Khan 
even with their high correlation coefficients (R2 = 0.953, 
0.948, and 0.948, respectively) where the predicted qmax 
according to these models are less than the experimen-
tal one. Also, Sips and Toth models didn’t fit the data 
well where the calculated values of qmax according to 
these models are higher than the experimental one 
even with their high R2 values (0.944, and 0.944). Fritz-
schlunder, and Langmuir–Freundlich can’t be used for 
the modeling of CIP@C. vulgaris system where the val-
ues ofR2are low (0.82 and 0.832, respectively) and the 
calculated values of qmax are far away than the experi-
mental one.

For the CIP@Synechocystis sp. system, Freundlich is the 
best model to describe the system with acalculated qmax 
close to the experimental one and acceptable R2 (0.80).
Followed by Redlich-Peterson (R2 = 0.805). Baudu, Sips, 

Table 2  The parameters of the adsorption isotherm modelling for CIP@C. Vulgaris and CIP@Synechocystissp. systems

Adsorption models Parameter C. Vulgaris Syn. Sp Adsorption models Parameter C. Vulgaris Syn. Sp

2- parameters 
isotherm

Langmuir qmax(mg/g) 14.373 8.135 3-parameters 
isotherm

Redlich-Peterson KR 1.567 12.0

KL 0.063 0.303 aR 0.452 4.3

R2 0.943 0.748 Β 0.630 0.686

Freundlich Kf 1.283 2.286 R2 0.948 0.805

1/nF 0.598 0.370 Sips qm(mg/g) 11939.624 16276

R2 0.944 0.800 Ks 0.000 0.000

Dubinin-Radush-
kevich

qmax (mg/g) 10.322 7.452 1/n 0.598 0.370

Kad 0.001 0.000 R2 0.944 0.800

R2 0.903 0.726 Langmuir–Freun-
dlich

qMLF(mg/g) 938.18 938.180

4-parameters 
isotherm

Baudu qm(mg/g) 1.379 2.43 KLF 9.563 9.6E-08

b0 76.783 998.2 MLF 0.372 0.372

x 0.574 0.370 R2 0.832 0.800

y 47.678 22.71 Toth Ke 23362 46048

R2 0.953 0.86 KL 45336 32002

5-parameters 
isotherm

Fritz-schlunder qmFSS(mg/g) 67.409 84.8 n 0.401 0.629

K1 0.202 0.254 R2 0.944 0.800

K2 9.924 8.305 Kahn Qm(mg/g) 2.705 1.169

m1 6.385 6.25 bK 0.486 6.695

m2 5.808 5.93 aK 0.512 0.62

R2 0.953 0.82 R2 0.948 0.86
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Langmuir–Freundlich, Toth, Fritz-schlunder, and Kahn 
failed to describe the CIP system where the predicted 
qmax values according to these models are far away from 
the experimental one. Although Langmuir and Dubinin-
Radushkevich yield calculated qmax close to the experi-
mental, however, the values ofR2arelow (0.748 and 0.726, 
respectively).

Effect of time
The equilibrium time for the adsorption of CIP at initial 
concentration 10  mg/L onto C. vulgaris Fig.  4a shows 
that the adsorption capacity increases rapidly during the 
30 min until it reaches qt1.48 mg/g, then there is a grad-
ual increasein qt (1.79 mg/g) up to 300 min, beyond this 

time there in no significant increase was noticed. Increas-
ing the CIP initial concentration to 20  mg/L Fig.  4b, 
decrease the equilibrium time where the equilibrium 
occur after 60  min and the maximum qtwas 7.11  mg/g. 
This is attributed to that increasing the CIP initial con-
centration increase the driving force for the adsorp-
tion to reach the equilibrium faster than that at lower 
concentration. For Synechocystis sp., and at CIP initial 
concentration 10  mg/L, Fig.  4c  shows that increasing 
the contact time from 0 to 60 min increase qt from 0 to 
1.17 mg/g and increasing the time to 1440 min resulting 
in reduction in qt (0.7  mg/g). This may be attributed to 
occurrence of partial desorption at longer time. At higher 
CIP initial concentration (20  mg/L), Fig.  4d shows that 
increasing the contact time from 0 to 180 min increase qt 

Fig. 4  The kinetic modelling of the CIP biosorption onto C. vulgaris at (a)10 mg/L, (b)20 mg/L, and onto Synechocystis sp. at (c)10 mg/L, 
and (d)20 mg/L
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from 0 to 16.31 mg/g and beyond this time, no significant 
change was recorded.

Kinetics
The kinetic of the adsorption process yields significant 
insights to design a batch adsorption system and it also 
provides optimum operating conditions for full-scale 
operation. Therefore, the experimental results of CIP 

adsorption onto both microalgae were studied using 
Pseudo 1storder (PFO), Pseudo 2ndorder (PSO), Avrami, 
Mixed 1st and 2nd (MFSO) and intraparticle diffu-
sion models, whose results are represented in Fig. 4 and 
Table 3.

Four models; PFO, PSO, Avrami, and MFSO can 
describe the CIP@C. Vulgaris system, especially at 
the higher concentration of CIP following the order: 

Table 3  The parameters of kinetic models describing the adsorption of CIP onto C. vulgaris and Synechocystissp

Model Parameters C.vulgaris Synechocystissp.

Conc.10 mg/L Conc.20 mg/L Conc.10 mg/L Conc.20 mg/L

Pseudo-first-order qe [mg/g] 1.600 7.083 0.887 15.715

k1[L/mg] 0.094 0.478 0.100 0.253

R2 0.890 0.981 0.708 0.923

Pseudo-second-order qe[mg/g] 1.712 7.145 0.892 16.138

k2 0.077 0.349 0.278 0.032

R2 0.937 0.979 0.631 0.962

Mixed 1, 2-order qe[mg/g] 1.710 7.098 0.887 16.124

K 0.000 0.175 0.100 0.001

f2 0.998 0.859 0 0.998

R2 0.937 0.982 0.708 0.962

Avrami qe[mg/g] 1.600 7.083 0.887 15.715

kav 0.380 0.854 0.390 0.621

nav 0.249 0.559 0.256 0.407

R2 0.890 0.981 0.708 0.923

Intraparticle diffusion kip 0.033 0.050 0.003 0.137

cip 0.826 6.200 0.678 11.793

R2 0.484 0.065 0.020 0.292

Table 4  Ciprofloxacin removal by different microalgae species

Microalgae Antibiotic 
concentration, 
removal rate and 
retention time

Removal mechanisms Wastewatercategory References

Chlamydomonas mexicana 2 mg/L and 13%, 11 d Biodegradation, accumulation, and adsorp-
tion

Bold’s Basal medium [40]

Nannochloris sp. 57 ng/L and 100%, 7 d Direct photolysis Water from Las Vegas wash [41]

Chlamydomonaspitschmannii 2 mg/L and 1.6%, 11 d Biodegradation, accumulation, and adsorp-
tion

Bold’s Basal medium [40]

Ourococcus multisporus 2 mg/L and 2%, 11 d Biodegradation, accumulation, and adsorp-
tion

Bold’s Basal medium [40]

Chlorella Vulgaris 2 mg/L and 0%, 11 d Biodegradation, accumulation, and adsorp-
tion

Bold’s Basal medium [40]

Chlamydomonas Mexicana 2 mg/L and 56%, 11 d Biodegradation, accumulation, and adsorp-
tion

Bold’s Basal 
medium + sodium acetate 
(4 g/L)

[40]

The mixture of algae-bacteria con-
sortia in pilot high-ratealgae pond 
(HRAP)

1.31 mg/L and 20.1%, 
24 h (8 h sun-
light/16 h dark)

Photodegradation during daytime, 
and adsorption during nighttime

Real domestic wastewater [42]
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MFSO (R2 = 0.982) > PFO (R2 = 0.981) and Avrami 
(R2 = 0.981) > PSO (R2 = 0.979) while in the lower concen-
tration of CIP, MFSO (R2 = 0.937) and PSO (R2 = 0.937) 
are better than PFO (R2 = 0.890) and Avrami (R2 = 0.890).

On the other hand, the intraparticle diffusion model is 
not suitable for this system where the predicted data do 
not agree with the experimental one as well as R2 values 
are low (0.484–0.065). Forthe CIP@SynechocystisSp.,PFO 
(R2 = 0.923), PSO (R2 = 0.962), Avrami (R2 = 0.923), and 
MFSO (R2 = 0.962) can fit the data at CIP initial concen-
tration 20 mg/Lwell with excellent matching between the 
experimental and the predicted data in addition to high 
values of R2 while at lower concentrations(10 mg/L), the 
correlation coefficients decreased to 0.708, 0.631, 0.708 
and 0.708 for PFO, PSO, MFSO and Avrami models, 
respectively. On the other hand, the intraparticle diffu-
sion model is not suitable for CIP@Synechocystissp. at 
both initial concentrations of CIP where the predicted 
values don’t agree with the experimental one in addition 
to low values of R2 Table 3.

Comparative study
Table 4 list different microalgae species used to manage 
CIP in water.

FTIR
Fourier transform infrared spectroscopy (FT-IR) is a 
common instrumental tool used for the identification of 
several functional groups of any organic material (liq-
uids, solids, and gases) by the measurement and deter-
mination of its emission spectra or infrared absorption 
[43].The impact of CIP adsorption onto C. vulgaris and 
Synechocystissp. on the change in theirchemical struc-
tures was detected via FTIR analyses Fig.  5. The results 
showed that stretching vibration of water molecules 
owning to the intermolecular bonding of OH- appear 
at 3293.452  cm−1 and 3414.190  cm−1for C. vulgaris and 
Synechocystissp., respectively [44]. The asymmetri-
cal (–C–H) and stretching (–C–H) vibration have been 
detected at 2933.767  cm−1and 1400.41  cm−1for C. vul-
garis and 2929.20  cm−1for Synechocystis sp [45]. The 
band at2933.767 cm−1isbelonging to CH and CH2 groups 
of the aliphatic of carbohydrates lipids and proteins. 
The band at1646.01  cm−1is attributed to C = O group of 
amide Ib and of protein. The band of carbohydrate CO 
group is appearedat1041.408 cm−1. The amide II band is 
confirmed at1535.336 and 1539.176 cm−1 [46]. The pres-
ence of band at1539.176  cm−1 indicates the stretching 
vibration of N–H of amide II and the bending vibration 
of C–N.For C. vulgaris, the characteristic bands appear 
at 3293.452  cm−1 (stretching, N–H of protein) [45, 47], 
1648.624  cm−1 (stretching, C = O of protein and C = C) 
[48], 1539.176 cm−1(bending, amide (N–H and C–H) and 
(C–N) stretching vibration of protein [49] and stretch-
ing, C = C) [49]. The band at1400.407  cm−1referred to 
stretching of C = C [49] while that at1108.482  cm−1may 
be attributed to the carbohydrate V (–O–C) of polysac-
charides, nucleic acid, stretching of phosphodiesters 
carbohydrate [47] and alkyl stretching [45]. The band at 
1041.408  cm−1is attributed to carbohydrate V(C–O–C) 
of polysaccharides and alkyl stretching. Moreover, the 
latter is confirmed by another band at 613.338  cm−1. 
For Synechocystis sp., the characteristic bands were 
detected at 1646.01  cm−1 (C = O highly conjugated [50] 
and the stretching vibration of amide I in proteins [48], 
1535.336  cm−1(carboxyl group in salt from –COO–
,the stretching vibration of amide II in proteins [48], 
1400.593  cm−1(CH3) [50], asymmetrical C–H bending 
mode of –CO–CH2– or CO–CH3 groups [51], stretch-
ing vibration of C = O in the carboxyl group [52, 53], 
and1114.017  cm−1(C–O stretch and O–H bend in phe-
noxy structures, ethers [50].

After the CIP adsorption, there is no significant change 
in the two spectra of the microalgae except the variation 

Fig. 5  The FTIR spectra of (a) C. vulgaris biomass and (b) 
Synechocystis sp. biomass before and after CIP adsorption
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in the intensity of the bands. This may refer to that the 
adsorption process occurred due to the presence of 
amide, hydroxyl, carboxyl, and carbonyl groups. The 
intensity of the bands after CIP adsorption decreased in 
the case of C. vulgaris Fig. 5a and increased in the case 
of Synechocystis sp. Fig. 5b. This may be attributed to the 
involvement of various functional groups on C. vulgaris 
in the attachment of CIP and the formation of new bands 
with higher density in the case of Synechocystis sp. which 
agreed with the SEM results and adsorption isotherm 
modeling.

SEM
The surface morphology of the two biomasses before and 
after CIP adsorption was observed using SEM Fig. 6. The 
two biomasses exhibit heterogeneous surfaces and pos-
sess small cavities/crakes on their surfaces. Figure 6a con-
firms that C. Vulgaris is irregularly shaped, with a close, 
compact, and smoother structure, and after the biosorp-
tion of CIP Fig. 6b, it exfoliated which may be attributed 
to the attachment of CIP to specific functional groups 

onto the biomass in monolayer form which is agreed with 
the results of the adsorption isotherm modeling.

Figure 6c shows that Synechocystis sp. biomass has an 
irregular shape. After adsorption Fig.  6d, the surfaces 
of the cells were compact with some roughness. Also, it 
can be seen the aggregation of some attachments onto 
the surface owing to the precipitation or accumulation of 
CIP on the cavity on the cell surface which agreed with 
the modeling results suggesting that Freundlich isotherm 
is the predominant in CIP.

Mapping and EDX
The elemental composition of the selected areas in SEM 
images of C. vulgaris Fig.  7 and Synechocystis sp. Fig.  8 
was determined by Energy Dispersive X-Ray (EDX) Anal-
ysis. The EDX analytical data indicated that oxygen, car-
bon, nitrogen, and iron were present in the C. vulgaris 
Fig. 7 and Synechocystis sp. Fig. 8 microalgae. This result 
confirmed the successful incorporation of CIP molecules 
into the C. vulgaris and Synechocystis sp. algae [54].The 
study showed that applying microalgae successfully 
removes CIP compounds from contaminated water.

Fig. 6  The SEM images of C. vulgaris (a) before and (b) after CIP biosorption and Synechocystis sp. (c) before and (d) after CIP biosorption
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Fig. 7  Mapping and EDX of C. vulgaris biomass
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Fig. 8  Mapping and EDX of Synechocystis sp.biomass
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Conclusion
In the current study, the removal of CIP was investi-
gated from contaminated water by using microalgae as 
an adsorbent. The two types of algae used in the current 
research are chlorella vulgaris and Synechocystis sp. The 
effects of several factors on removing CIP by microalgae 
were tested (e.g., pH, CIP dosage, adsorbent concentra-
tions, contact time, and temperature).The adsorption of 
CIP increases with an increase in CIP initial concentra-
tion and contact time, up to a definite limit. Based on iso-
therm data, the adsorption of CIP by microalgae follows 
Langmuir isotherm model. The kinetic data show that 
CIP adsorption fits second-order kinetic models depend-
ing on R2 values and the comparison of calculated and 
experimental qe values.
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