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production, AAB also contribute to the fermentation of 
other foods, including kefir grains, kombucha and cocoa 
beans [8–11]. Acetic acid fermentation in AAB is medi-
ated by membrane-bound alcohol dehydrogenase (ADH) 
and aldehyde dehydrogenase (ALDH), which catalyze 
the transformation of ethanol to acetic acid while con-
currently reducing ubiquinone to ubiquinol. This pro-
cess funnels electrons from ethanol oxidation directly 
into the electron transport chain, culminating in oxygen 
reduction to water and ATP generation [12]. Currently, 
the efficient production of acetic acid is limited by harsh 
environmental conditions during fermentation, particu-
larly the stresses caused by acetic acid, ethanol, and ele-
vated temperatures.

Acetic acid is highly toxic to microorganisms; concen-
trations above 5  g/L can significantly inhibit microbial 
growth and metabolism, and may even be lethal to most 

Introduction
Acetic acid bacteria (AAB) are Gram-negative, strictly 
aerobic bacteria that exhibit diverse cellular morpholo-
gies [1, 2] and are found in orchard soil, fruit juices, 
insect intestinal tracts, and on the surfaces of spoiled 
food [3]. As of June 2024, this group includes 22 genera 
and 122 species (data from LPSN, https://lpsn.dsmz.de/) 
(Fig. 1). The most distinctive feature of AAB is the ability 
to incompletely oxidize ethanol into acetic acid, the prin-
cipal component of vinegar [4–7]. In addition to vinegar 
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Abstract
Acetic acid bacteria (AAB) play a pivotal role in the food fermentation industry, especially in vinegar production, 
due to their ability to partially oxidize alcohols to acetic acid. However, economic bioproduction using AAB 
is challenged by harsh environments during acetic acid fermentation, among which initial ethanol pressure, 
subsequent acetic acid pressure, and consistently high temperatures are common experiences. Understanding the 
stress-responsive mechanisms is essential to developing robust AAB strains. Here, we review recent progress in 
mechanisms underlying AAB stress response, including changes in cell membrane composition, increased activity 
of membrane-bound enzymes, activation of efflux systems, and the upregulation of stress response molecular 
chaperones. We also discuss the potential of advanced technologies, such as global transcription machinery 
engineering (gTME) and Design-Build-Test-Learn (DBTL) approach, to enhance the stress tolerance of AAB, aiming 
to improve vinegar production.
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microorganisms [13]. Its toxic effect on microorganisms 
primarily results from its ability to penetrate the cell 
membrane and damage intracellular macromolecules. 
Research on acid tolerance mechanisms in bacteria has 
been more thoroughly studied in Escherichia coli and 
lactic acid bacteria [14, 15], with most studies predomi-
nantly addressing the toxicity of inorganic acids, such as 
hydrochloric acid. In contrast, AAB often face adverse 
effects from organic acids such as acetic acid. Because 
of the unique physicochemical properties of organic 
acids, with a low dissociation constant (Ka), acetic acid 
largely exists in its undissociated form, allowing it to 
pass through the cell membrane and into the cell [16], 

thereby severely inhibiting cellular growth and metabolic 
activities.

AAB utilize ethanol as a substrate to produce ace-
tic acid. The concentration of ethanol can significantly 
influence the rate of product synthesis. Higher ethanol 
concentrations tend to accelerate the production of ace-
tic acid, thereby enhancing the overall efficiency of the 
fermentation process. However, the beneficial effects of 
increased ethanol concentrations have their limitations. 
Excessive ethanol levels can inhibit AAB growth, chal-
lenging the maintenance of a stable and productive fer-
mentation process. When ethanol concentrations exceed 
4%, the inhibitory effect significantly reduces AAB 

Fig. 1 Phylogenetic tree of AAB based on 16 S rRNA gene sequences and their derived products
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growth [17]. Therefore, understanding the mechanisms 
of ethanol tolerance in AAB is crucial for improving 
industrial fermentation processes.

Most AAB thrive at an optimal growth temperature 
of around 30  °C. When the fermentation temperature 
exceeds 34 °C, the growth and fermentation of most AAB 
are severely affected, whereas thermotolerant strains 
can grow normally at 37  °C, with some even maintain-
ing good growth capability at temperatures up to 42  °C 
[18, 19]. Acetic acid fermentation, similar to other oxi-
dative fermentation processes, is exothermic, caus-
ing fermentation temperatures to frequently rise above 
40  °C. Without artificial cooling methods, AAB would 
gradually die at such high temperatures. Thermotoler-
ant AAB can significantly improve production efficiency 
and reduce costs [19]. Typically, the thermotolerance of 
AAB is achieved through directed evolution, resulting 
in strains with enhanced heat resistance [20, 21]. Most 
research on the thermotolerance mechanisms of AAB 
has focused on Acetobacter pasteurianus, mainly through 
genomic sequencing and comparative analysis. However, 
the thermotolerance mechanisms of AAB require further 
in-depth study.

Understanding the response mechanisms of AAB to 
harsh conditions not only facilitates the development of 
more robust strains, reducing the need for stringent con-
trol of fermentation parameters and potentially lowering 
production costs, but also supports the optimization of 
industrial fermentation processes, thereby improving 
efficiency and product quality. However, there is a signifi-
cant gap in our understanding of how AAB adapt physi-
ologically to various stresses and the genetic factors that 
enable them to survive under extreme conditions. This 
review seeks to address this gap by compiling, analyz-
ing, and summarizing the stress responses of AAB during 
vinegar production.

Mechanisms of acetic acid tolerance
Acetic acid fermentation is a typical case in which prod-
uct toxicity conflicts with cell growth [12]. High con-
centrations of acetic acid inhibit cell growth, which in 
turn affects product synthesis. Therefore, to improve the 
production of acetic acid, researchers have conducted 
numerous studies on the mechanisms of acetic acid toler-
ance in AAB. AAB responds to acetic acid stress through 
several key mechanisms: (1) alteration of capsule and cell 
membrane components, (2) enhancement of membrane-
bound enzyme activity, particularly PQQ-ADH, (3) accel-
eration of acetic acid efflux efficiency, (4) enhancement of 
acetic acid peroxidation in the cytoplasm, (5) upregula-
tion of stress response molecular chaperones, (6) activa-
tion of the quorum sensing system, and (7) reliance on 
type II toxin-antitoxin systems (Fig. 2).

Biofilm and plasma membrane
Biofilm, primarily composed of extracellular polysac-
charides (EPS), serves as a critical barrier that prevents 
the influx of unfavorable compounds into the cell. In 
Acetobacter spp., the EPS components—primarily cap-
sular polysaccharides (CPS) and pellicle polysaccharides 
(PPS)—confer resistance against exogenous acetic acid 
stress [22–24]. During acetic acid fermentation, CPS con-
centration increases significantly as the process reaches 
the stationary growth phase. CPS serves as a protective 
barrier that prevents the diffusion of acetic acid across 
the cell membrane [25]. Compared to non-PPS-forming 
A. pasteurianus strains, PPS-forming A. pasteurianus 
strains exhibit significantly greater resistance to acetic 
acid. Transport assays indicate that PPS functions as a 
biofilm-like barrier, restricting passive acetic acid diffu-
sion into cells and thereby enhancing resistance to acetic 
acid stress [24].

Regulation of cell membrane fatty acid composition is 
a crucial strategy that bacteria use to counteract envi-
ronmental stress [26]. Under acetic acid stress, AAB alter 
their fatty acid profiles by increasing the proportion of 
unsaturated fatty acids (UFAs), the chain length of fatty 
acids (FAs), and levels of lysophospholipids (LPLs) and 
cyclopropane fatty acids (CFAs). These modifications 
decrease membrane fluidity and strengthen membrane 
integrity, forming a more stable barrier that protects 
the cell from the harmful effects of acetic acid accumu-
lation [27–29]. Additionally, AAB adjust the head group 
composition of membrane phospholipids by increasing 
phosphatidylcholine (PC) and phosphatidylglycerol (PG) 
content, while reducing phosphatidylethanolamine (PE). 
This adjustment increases membrane hydrophilicity, lim-
iting passive transport of lipophilic molecules like acetic 
acid and thereby preventing their entry into the cell [27, 
30–32].

Acetic acid transport systems
Acid-tolerant AAB exhibit significantly lower intracellu-
lar acetic acid concentrations compared to non-tolerant 
strains. In addition to the biofilm and cell membrane lim-
iting acetic acid entry, acetic acid efflux systems in the 
cell membrane function to further reduce intracellular 
acetic acid concentration. In AAB, two primary mecha-
nisms for acetic acid efflux have been identified: a trans-
porter (PMF-efflux pump) dependent on proton motive 
force, and an ATP-binding cassette transporter, known as 
AatA [33].

When proton uncoupling agents and cyanide, which 
inhibit respiration, are added to the culture medium, 
acetic acid accumulates within AAB cells and cannot be 
expelled. This acetic acid efflux system, termed the PMF-
efflux pump, functions via a proton motive force-driven 
mechanism and operates independently of ATP [25]. 
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AAB converts ethanol to acetic acid via ADH and ALDH, 
generating electrons in the process. Ubiquinone oxidase 
(UOX) uses these electrons to reduce intracellular oxy-
gen to water. Simultaneously, a proton gradient is estab-
lished across the cell membrane, enabling the expulsion 
of acetic acid to mitigate its cytotoxic effects.

The ATP-binding cassette transporter, commonly 
known as the ABC transporter, is ubiquitously pres-
ent in both prokaryotic and eukaryotic cell membranes. 
Its primary function is to use energy from ATP hydro-
lysis to transport substrates across the cell membrane 
against their concentration gradients. These substrates 
include sugars, metal ions, and amino acids [34]. The 
ABC transporter also plays a critical role in facilitat-
ing acetic acid efflux from the cell. Nakano S et al. [35] 
identified several membrane proteins responsive to ace-
tic acid. Among these, AatA, a protein in the ABC trans-
porter superfamily, was most significantly induced by 
acetic acid. Mutations in the gene encoding AatA led to 
a significant reduction in acetic acid resistance. Introduc-
ing a plasmid containing the aatA gene into the AatA 
mutant restored acetic acid resistance, highlighting the 
crucial role of AatA in acetic acid tolerance. This specific 
ABC transporter is present in several Acetobacter spp. 
and Gluconacetobacter spp [35, 36]. In addition, com-
parative genomics revealed that the acetic acid-resistant 

Komagataeibacter spp. contains more genes encoding 
ABC transporter proteins compared to the acid-nontol-
erant AAB [37], which indicated that the number of ABC 
transporters is positively correlated with the acid-resis-
tant properties of AAB. Research on acetic acid mem-
brane transport proteins in AAB remains challenging. 
Although two-dimensional gel electrophoresis is effective 
in proteomics, the lipophilic nature of membrane pro-
teins limits its application for membrane analysis [38]. 
As a result, there are few reports on acetic acid efflux 
proteins in AAB membranes. Advances in biotechnol-
ogy, including ultra-high-speed centrifugation [39], cryo-
electron microscopy [40], and mass spectrometry [41], 
are useful to enrich the understanding of the acetic acid 
exocytosis system in AAB.

Membrane-bound pyrroloquinoline quinone dependent 
ethanol dehydrogenase (PQQ-ADH)
Membrane-bound ADH is a key enzyme in the oxida-
tive fermentation of acetic acid and plays a crucial role 
in enhancing the acid resistance of AAB. PQQ, an essen-
tial coenzyme predominantly found in Gram-negative 
bacteria, enhances bacterial tolerance to harsh environ-
ments, including strong acids and high temperatures. 
In AAB, PQQ-ADH and PQQ-ALDH are membrane-
bound enzymes responsible for catalyzing the oxidation 

Fig. 2 Overview of acetic acid tolerance mechanisms of AAB. (a) Alteration of capsule and cell membrane components prevents the influx of acetic acid. 
(b) Enhancement of membrane-bound enzyme activity, particularly PQQ-ADH. (c) Acceleration of acetic acid efflux efficiency by PMF- efflux pump and 
ABC-transporter. (d) Enhancement of acetic acid peroxidation in the cytoplasm. (e) Upregulation of stress response molecular chaperones. (f) Activation 
of the quorum sensing system. (g) Reliance on type II toxin-antitoxin systems
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of alcohol to aldehyde and the subsequent conversion 
of aldehyde to acetic acid, respectively. The synergis-
tic activity of these enzymes enables AAB to produce 
significant amounts of acetic acid extracellularly [42]. 
Moreover, PQQ-ADH has been identified in some non-
fermentative Gram-negative bacteria, such as Frateuria 
aurantia [43].

The activity and stability of PQQ-ADH are crucial for 
acid tolerance in AAB. In comparison to A. pasteuria-
nus KKP 584, Komagataeibacter europaeus V3 exhibited 
greater resistance to high concentrations of acetic acid, 
a trait primarily attributed to the enhanced activity and 
stability of PQQ-ADH in strain V3. Notably, the PQQ-
ADH activity in strain V3 is nearly twice that observed 
in strain KKP 584. Additionally, ADH from strain V3 
retains approximately 70% of its initial activity in a 10% 
acetic acid solution, whereas the ADH activity in strain 
KKP 584 drastically decreases under the same condi-
tion, retaining only 2.3% of its original activity [44]. 
These results underscore the crucial roles of PQQ-ADH 
enzyme activity and stability in the acid tolerance of 
AAB.

Omics technologies offer valuable insights into the 
complex relationship between the abundance of ADH 
and acetic acid tolerance. Komagataeibacter europaeus is 
capable of producing acetic acid concentrations as high 
as 15–20%, significantly exceeding the acid-producing 
capabilities of Komagataeibacter oboediens and A. pas-
teurianus [45]. High-throughput sequencing revealed 
that the gene copy number encoding PQQ-ADH in Kom-
agataeibacter europaeus 5P3 is more than three times 
that of other strains of A. pasteurianus. This high level 
of PQQ-ADH gene copies is a key factor enabling strain 
5P3 to accumulate high concentrations of acetic acid 
[46]. Overexpression of PQQ-ADH enhanced the ethanol 
oxidative pathway, thereby improving acid production 
and acid tolerance in AAB [47]. When the ADH gene is 
lacking in AAB, its acid tolerance is also lost [48]. There-
fore, increasing the PQQ-ADH gene copy number, either 
through artificial selection of AAB with enhanced PQQ-
ADH activity or via genetic engineering techniques, is an 
effective strategy to enhance the acid tolerance of AAB, 
thereby improving the efficiency and yield of acetic acid.

Acetic acid peroxidation
Acetic acid fermentation and peroxidation represent 
two distinct metabolic phases in AAB [49]. The fermen-
tation phase occurs at the cell membrane and predomi-
nantly takes place during the logarithmic growth phase. 
Conversely, acetic acid peroxidation occurs in the cyto-
plasm once the substrate is exhausted. During this phase, 
acetyl-CoA synthase (Acs) catalyzes the conversion of 
acetic acid into acetyl-CoA. Acetyl-CoA is then directed 
into the tricarboxylic acid cycle (TCA), promoting rapid 

acetic acid oxidation [50]. Finally, AAB completely oxi-
dizes intracellular acetic acid to carbon dioxide and water, 
generating ATP for secondary growth and enhancing the 
strain’s growth activity [20, 51]. Moreover, this peroxida-
tion process reduces the cytotoxic impact of acetic acid 
on the strain’s intracellular components and enhances its 
tolerance to acetic acid.

Using a plasmid-based genomic library screening tech-
nique, Fukaya et al. [52] identified a crucial gene clus-
ter—aarA, aarB, and aarC—that enhances acetic acid 
tolerance in Acetobacter aceti. The aarA gene encodes 
citrate synthase, a key enzyme in the TCA cycle, while 
aarB encodes acetate kinase (AckA), which converts 
intracellular acetic acid into acetyl-CoA for entry into the 
TCA cycle. Additionally, aarC encodes succinyl-CoA-
acetyl-CoA transferase, an enzyme that substitutes for 
succinyl-CoA synthetase in the TCA cycle. This enzyme 
catalyzes the conversion of succinyl-CoA and some intra-
cellular acetic acid into succinate and acetyl-CoA. Both 
products then re-enter the TCA cycle [36, 53–55]. The 
enhanced TCA cycle accelerates acetic acid peroxidation, 
maintaining its intracellular concentration at a low level.

There are also other enzymes in the TCA cycle that 
contribute to the acid resistance of AAB. Under high 
acidity conditions, the expression levels of several 
enzymes, including phosphate acetyltransferase, iso-
citrate dehydrogenase, and succinate dehydrogenase, 
were significantly increased in A. pasteurianus Ab3 and 
LMG 1262T. Overexpression of these enzymes improved 
the bacteria’s resistance to high concentrations of ace-
tic acid [56, 57]. Nakano et al. [58] utilized a multicopy 
plasmid to enhance the expression of the cis-aconitase 
(AcnB) gene in Acetobacter aceti. Strains with enhanced 
AcnB expression exhibited significant improvements in 
acid tolerance and acetic acid production. Although ace-
tic acid peroxidation is a process of acetic acid degrada-
tion and consumption by AAB, it does not favor acetic 
acid accumulation. However, intracellular peroxidation 
reduces acetic acid levels, preventing significant cellular 
damage. This reduction stimulates cellular activity, ulti-
mately enhancing extracellular acetic acid production.

Stress response molecular chaperones
Molecular chaperones are proteins that aid in the proper 
folding and assembly of other proteins, ensuring cor-
rect structure without integrating into the final product. 
Additionally, these chaperones prevent the aggregation 
of highly denatured proteins and assist in their degrada-
tion [59]. The molecular chaperones identified to date 
are predominantly stressed proteins, with heat shock 
proteins (HSPs) being a notable example. HSPs play a 
crucial role in enhancing acetic acid tolerance in AAB 
[60, 61]. In A. pasteurianus NBRC 3283, GroES and 
GroEL contribute not only to acetic acid fermentation 
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and tolerance but also to the strain’s response to various 
adverse environmental conditions, including ethanol and 
high temperature stresses [48, 62]. The expression of the 
groEL and groES genes was significantly up-regulated 
in A. pasteurianus NBRC 3283 when treated by ethanol 
and acetic acid. Overexpression of these genes enhanced 
the resistance of strains to adverse conditions including 
acetic acid, ethanol, and high temperatures [48]. GroEL 
and GroES also play critical roles in acetic acid fermen-
tation and tolerance in both A. pasteurianus LMG 1262 
and A. aceti DSMZ 2002 [51]. The dnaK, dnaJ, grpE and 
clpB genes are present in the genome of A. pasteurianus 
NBRC 3283, and the first three genes are present in tan-
dem, mainly acting as auxiliary molecular chaperones. 
During acetic acid fermentation, the expression of dnaK-
dnaJ-grpE and clpB genes were significantly upregulated 
[51, 63, 64], enhancing the strains’ activity under acid 
stress.

In AAB, the nucleotide excision repair protein UvrA, 
which is induced by acetic acid, is responsible for repair-
ing DNA damage resulting from acetic acid exposure 
[65]. Overexpression of the UvrA protein in A. pasteuria-
nus AC2005 significantly enhanced acetic acid tolerance. 
Under 6% acetic acid for 20 and 40 min, the survival rates 
of the UvrA overexpressing strain were 2% and 0.12%, 
respectively, compared to 1.5% and 0.06% in the control 
strain [66]. Additionally, UvrA protein in Lactobacillus 
helveticus CNBL1156 and Streptococcus mutans has also 
been identified, and its role in maintaining genomic DNA 
integrity and enhancing acid tolerance has been con-
firmed by analyzing the changes in UvrA protein activity 
under acidic conditions [67, 68].

Quorum sensing (QS)
QS is a collective behavior in microorganisms that 
involves the autonomous production and release of spe-
cific signal molecules in response to changes in the exter-
nal environment, and the perception of these molecules’ 
concentration variations for intercellular communica-
tion, thereby regulating microbial growth and metabo-
lism [69–71]. This QS phenomenon occurs only when 
bacterial populations reach a certain density and plays 
a crucial role in controlling microbial interactions, bio-
film formation, synthesis of virulence factors, and stress 
responses [72, 73]. The primary QS signal molecules 
identified to date include N-acyl-homoserine lactones 
(AHLs), 4-hydroxy-2-alkylquinolines (HAQ), autoin-
ducer-2 (AI-2), diketopiperazines (DKPs), and diffusible 
signal factors (DSFs). QS systems are commonly found 
in opportunistic pathogens such as Pseudomonas aeru-
ginosa, Pseudomonas fluorescens, Streptococcus mutans, 
Helicobacter pylori, and Staphylococcus aureus [70, 74–
77]. Research on QS in industrial microorganisms has 
primarily focused on lactic acid bacteria [76, 78, 79]. Iida 

et al. [80] first demonstrated the existence of a QS system 
in AAB (Komagataeibacter intermedius), where ginI and 
ginR are two key regulatory genes. The ginI gene encodes 
a signal molecule synthase, while the ginR gene encodes 
a signal molecule receptor protein. AHLs can bind to the 
GinR protein to form a complex that activates transcrip-
tion of the ginR gene, thereby regulating the transcription 
of target genes [80]. The GinI/GinR quorum-sensing sys-
tem suppresses acetic acid fermentation through the acti-
vation of GinA. GinA is an 89-amino-acid protein that 
can induce the expression of the gltA, pdeA, and gmpA 
genes [81]. Disruption of these genes leads to higher 
rates and increased final yields of acetic acid production. 
GmpA is located in the outer membrane, and its knock-
out facilitates the entry of the substrate ethanol into 
the periplasm, where ADH and ALDH convert ethanol, 
leading to enhanced production of acetic acid [81, 82]. 
QS signaling molecules and associated regulatory genes 
were also detected in various AAB, including Gluconac-
etobacter diazotrophicus and Komagataeibacter xylinus 
[83–85]. Although the QS systems and their downstream 
regulatory genes have been confirmed to be associated 
with acid production in AAB, the regulatory mecha-
nisms, such as how GinA regulates the expression of 
gmpA, require further research to elucidate [86].

Type II toxin-antitoxin systems (TAS)
TAS plays a pivotal role in microbial responses to envi-
ronmental stresses. This system usually consists of a pair 
of genes encoding a stable toxin and an unstable anti-
toxin [87]. Toxins can modulate the stress response by 
cleaving sequence-specific RNAs or inhibiting protein 
synthesis, while antitoxins neutralize toxicity through 
direct interaction with the corresponding toxins [88]. 
Eight distinct types of TAS (types I to VIII) have been 
identified in bacteria [89]. Bioinformatics analysis sug-
gested that the genome of AAB predominantly contains 
type II TAS, which include the gene pairs Ap_npoT/
Ap_npoA, HicA/HicB, HigB/HigA, VapC/VapB, MazF/
AbrB, HEPN/MNT, RelE/RelB, VapC/Phd, ParE/ParD, 
RelE/Xre, and Fic/Phd [89]. The first three TAS pairs 
have been experimentally identified in A. pasteurianus 
Ab3 based on genomic structure and activity assays. Het-
erologous expression of these gene pairs in E. coli signifi-
cantly enhanced bacterial resistance to acetic acid stress 
[90], indicating that TAS is effective in improving acetic 
acid tolerance.

Further studies by Xia et al. [91] revealed that hicAB 
positively modulates A. pasteurianus Ab3’s resistance 
to acetic acid stress, maintenance of acetic acid produc-
tion, and the formation of persistent cells. Under 5% 
acetic acid stress, knockout of hicAB was found to signifi-
cantly impair A. pasteurianus Ab3 viability. In contrast, 
when hicAB was restored or overexpressed, the survival 
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ratio of the cells under acetic acid stress was significantly 
improved, indicating that hicAB plays a crucial role in A. 
pasteurianus Ab3’s resistance to acetic acid stress. Fur-
thermore, the deletion of hicAB significantly reduced cell 
persistence during high-acid vinegar fermentation. The 
formation of acid-tolerant persister cells is an important 
way by which the strain resists high acetic acid stress. 
Consequently, the reduction in cell persistence leads to 
decreased strain activity, ultimately resulting in lower 
acetic acid production [89, 91].

Type II TAS also function as regulatory factors 
involved in the complex mechanisms of AAR [89]. Under 
acid stress, the expression of genes encoding type II 
TAS in AAB is significantly altered. For instance, in A. 
pasteurianus Ab3, the expression levels of the antitoxin 
proteins AbrB and RelB were significantly upregulated at 
higher acetic acid concentrations (93  g/L) compared to 
lower concentrations (36  g/L) [92]. TAS also contribute 
to the adaptation of AAB to acidic environments by mod-
ulating intracellular metabolic pathways. Deletion of the 
hicA/hicB significantly reduced the mRNA levels of genes 
involved in energy metabolism, including those associ-
ated with acetic acid overoxidation, 2-methylcitrate cycle 
(MCC), and oxidative phosphorylation [91]. Addition-
ally, hicA/hicB regulated the expression of genes related 
to transport systems, such as ABC and MFS transporters 
[91], which are essential for nutrient uptake and the elim-
ination of toxic substances in bacteria [93]. In summary, 

type II TAS provide valuable insights into the molecular 
mechanisms underlying acetic acid resistance in AAB.

Mechanisms of ethanol tolerance
Ethanol serves as a substrate for acetic acid fermenta-
tion, providing essential feedstock for the growth and 
metabolism of AAB. However, when ethanol concentra-
tion exceeds 4%, it inhibits the growth of AAB, thereby 
affecting the production of acetic acid during fermen-
tation [17]. Therefore, AAB capable of tolerating high 
ethanol concentrations are more suitable for vinegar 
production. Understanding the ethanol tolerance mecha-
nisms in AAB is crucial for the targeted development of 
strains that can withstand high ethanol concentrations 
[94]. Currently, research on microbial ethanol tolerance 
mechanisms has primarily focused on yeast, but the etha-
nol tolerance mechanisms of AAB are equally signifi-
cant. According to existing studies, the ethanol tolerance 
mechanisms in AAB primarily involve in cell membrane 
structure, ADH and ALDH enzyme activity, and intracel-
lular metabolites (Fig. 3).

Cell membrane fatty acid composition
Alterations in the fatty acid composition of the cell mem-
brane are a key cellular response to environmental stress, 
influencing membrane permeability and fluidity [26]. The 
ratio of saturated fatty acids (SFAs) to unsaturated fatty 
acids (UFAs) indirectly influences membrane fluidity. 

Fig. 3 Overview of ethanol tolerance mechanisms of AAB. AAB mitigate ethanol stress through multiple mechanisms, including structural adjustments 
of cell membranes, enhanced enzymatic activity for ethanol metabolism, accumulation of protective intracellular metabolites (such as amino acids and 
trehalose), and regulation of vital metabolic pathways
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Short-chain alcohols, such as ethanol, can integrate into 
the outer phospholipid bilayer of the cell membrane and 
penetrate the hydrophobic core. This process inhibits the 
synthesis of SFAs and increases UFAs content, thereby 
enhancing membrane fluidity [95]. To counteract the 
membrane fluidity caused by organic solvents, micro-
organisms gradually increase the proportion of SFAs, 
thereby reducing the damage inflicted by organic solvents 
on the cell membrane [96, 97]. Furthermore, alterations 
in the saturation of membrane fatty acids are energy-
intensive, requiring de novo synthesis of fatty acids [98].

The effect of changes in SFAs and UFAs on microbial 
ethanol tolerance is complex. Under 11% ethanol stress, 
the SFAs content in ethanol-tolerant A. pasteurianus 
T3-06 initially decreased and then increased, whereas the 
UFAs content showed the opposite trend. After 72  h of 
incubation, the SFA content reached 57.29%, while the 
UFA content reached 42.04%. The cell membrane fluid-
ity of strain T3-06 correlated with the fatty acid compo-
sition analysis, showing an initial increase followed by 
a decrease under ethanol stress [99]. Subsequently, as 
the strain upregulated SFAs synthesis, membrane fluid-
ity decreased. Reduced cell membrane fluidity helps the 
strain resist ethanol-induced damage, playing a crucial 
role in maintaining intracellular stability [99].

Cell membrane phospholipid head
Cell membranes play an important role in maintain-
ing intracellular homeostasis [100]. In response to stress 
induced by organic solvents like ethanol, microorgan-
isms adjust the fatty acid composition of their cell mem-
branes to maintain stability and fluidity. Additionally, 
they mitigate solvent-induced damage by modifying the 
phospholipid heads of the cell membranes [101, 102]. 
Pseudomonas putida S12 exhibited robust survival in 
supersaturated toluene solutions. The key mechanism 
underlying this tolerance involves a reduction in phos-
phatidylethanolamine (PE) and an increase in phospha-
tidylglycerol (PG) and cardiolipin (CL) under toluene 
stress. This adjustment helps the strain counteract the 
sudden increase in the acyl chain length of the bilayer, 
thereby maintaining cell membrane stability [103]. Trček 
et al. [30] demonstrated that a decrease in PE content and 
an increase in PG content enhanced the tolerance of AAB 
to ethanol and acetic acid. Despite differences in genus 
classification, AAB and Pseudomonas putida exhibit 
similar stress responses to ethanol and other organic 
solvents. This indicates that changes in cell membrane 
phospholipids head are a universal mechanism by which 
bacteria defend against the toxicity of organic solvents.

Cis-trans isomerization of unsaturated fatty acids
Some bacteria have evolved a mechanism to convert cis-
unsaturated fatty acids (cis-UFAs) into trans-unsaturated 

fatty acids (trans-UFAs) as a response to environmental 
challenges [104]. For cell membrane fatty acids, trans-
UFA structures are more stable than cis-UFA structures, 
increasing membrane density, resulting in a more tightly 
ordered membrane with reduced fluidity [105, 106]. 
Generally, the cis conformation accounts for the major-
ity of UFA configurations. When bacteria are exposed to 
organic solvents, membrane fluidity increases, exposing 
the cis-UFA double bonds. The enzyme cis-trans isom-
erase (Cti) rapidly catalyzes the conversion of cis-UFAs 
to trans-UFAs upon encountering the double bonds. This 
rapid reaction results in a tightly packed arrangement of 
fatty acids along the carbon chains, thereby enhancing 
the stability of the cell membrane [107].

At the beginning of ethanol stress, the cell mem-
brane of Pseudomonas putida S12 exhibited a signifi-
cant increase in trans-UFAs and a decrease in cis-UFAs, 
which enhanced the robustness of cell membrane [108]. 
This process serves as a short-term adaptive response, 
providing additional time for two long-term mechanisms: 
changes in the fatty acid saturation of the cell membrane 
and alterations in the phospholipid head groups. The 
cis-trans isomerization of unsaturated fatty acids is not 
unique to the genus Pseudomonas, but is also observed in 
other Gram-negative bacteria, such as Alcanivorax bor-
kumensis SK2 and Methylococcus capsulatus [109, 110]. 
A similar mechanism may exist in AAB, playing a critical 
role when these bacteria are exposed to organic solvents, 
such as ethanol and acetic acid.

Amino acid-related metabolites
Ethanol causes oxidative damage to proteins and DNA 
upon entering the cell [111]. In response to ethanol stress, 
AAB produces protective substances through a series of 
intracellular metabolic processes to sustain normal cell 
growth. Amino acids constitute a crucial class of cyto-
protective substances [99]. Notably, glutamate and pro-
line are the most common amino acid-derived protective 
metabolites. Both share the precursor α-ketoglutarate; 
glutamate can either synthesize proline or generate pro-
line through its own degradation. These amino acids are 
involved in various cellular metabolic responses under 
stress conditions, thus maintaining cellular stability [112, 
113].

The proline content in ethanol-resistant A. pasteur-
ianus T3-06 increased significantly under 11% ethanol 
stress, reaching levels 8.56 times higher than those in the 
control strain AP1.01 after 72 h. Additionally, the gluta-
mate content in strain T3-06 was initially much higher 
than in the control strain AP1.01 at the beginning of eth-
anol stress. However, as the ethanol stress persisted, glu-
tamate levels in strain T3-06 decreased significantly. This 
decline may be due to the utilization of synthesized glu-
tamate for the production of other cellular components 
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and energy metabolites. Under ethanol stress, the toler-
ant strain T3-06 exhibited upregulation not only of glu-
tamate and proline but also of other amino acids, such 
as leucine, isoleucine, and lysine [99]. Microorganisms 
modify amino acid profiles in response to environmental 
stresses, such as heat, ethanol, and freezing [114, 115]. In 
S. cerevisiae, increased levels of proline, threonine, gluta-
mate, leucine, and histidine enhance resistance to ethanol 
damage [116]. Similarly, AAB increase amino acid levels 
as a protective mechanism against ethanol stress.

Carbohydrate-related metabolites
Trehalose is necessary for maintaining cell membrane 
stability, reducing oxidative damage, and ensuring proper 
protein folding [117]. Bacteria and yeast protect them-
selves from osmotic pressure, high temperatures, and 
organic solvents by accumulating trehalose [118, 119]. 
After 24  h of exposure to ethanol stress, the trehalose 
content in the ethanol-tolerant A. pasteurianus T3-06 
was approximately ten times higher than that in the 
control strain AP1.01. The higher trehalose content pro-
vided better protection for the strain [99]. Some sugar 
alcohols, such as mannitol, exhibited changes in con-
tent in strain T3-06 similar to those of glutamate. These 
changes involved an initial increase upon ethanol addi-
tion, followed by a decrease as mannitol was consumed 
for synthesizing other protective substances [99]. Under 
ethanol stress conditions, the expression of genes encod-
ing trehalose in S. cerevisiae is upregulated, resulting in 
the accumulation of trehalose [120]. The higher intra-
cellular trehalose levels enhance ethanol tolerance in 
yeast. The ethanol stress response of trehalose in yeast is 
similar to that in A. pasteurianus T3-06, suggesting that 
trehalose-mediated protection may represent a common 
mechanism among microorganisms in response to etha-
nol stress.

Enzymatic activities of ADH and ALDH
ADH and ALDH are two important key enzymes in the 
oxidation of ethanol, with the former converting etha-
nol to acetaldehyde and the latter converting acetalde-
hyde to acetic acid [121]. To investigate the relationship 
between enzyme activities and ethanol tolerance in 
AAB, the activities of ADH and ALDH were tested in 
the ethanol-tolerant A. pasteurianus FY-24 and DY-5, as 
well as the control strain AS1.41, under different ethanol 
concentrations. At lower ethanol concentrations (4-6%), 
ethanol’s inhibitory effect on growth of the three strains 
was not significant, and the activities of ADH and ALDH 
remained high. With increasing ethanol concentrations 
(8-11%), the growth of the control strain AS1.41 was 
significantly inhibited, and the activities of ADH and 
ALDH decreased. In contrast, the A. pasteurianus FY-24 
and DY-5 continued to grow well, with ADH and ALDH 

activities remaining high, efficiently converting ethanol 
to acetic acid and reducing ethanol toxicity to the strains 
[122]. Similarly, ethanol-resistant A. pasteurianus JZ1601 
had high ADH activity at high ethanol concentrations to 
reduce ethanol damage to cells compared to the control 
strain AS1.41 [94]. These studies showed that ethanol tol-
erance in AAB is positively correlated with the enzyme 
activities of ADH and ALDH.

Central metabolic pathway
The activities of isocitrate dehydrogenase (ICDH), malate 
dehydrogenase (MDH) and isocitrate lyase (ICL) were 
enhanced in ethanol-tolerant A. pasteurianus JZ1601 
in response to ethanol stress [94, 123]. The increased 
activity of the TCA cycle generates more ATP and meta-
bolic intermediates essential for synthesizing molecules 
involved in cellular repair and detoxification to counter 
ethanol stress. The pentose phosphate pathway (PPP) 
primarily provides NADPH for reductive biosynthe-
sis reactions within cells. However, the enhanced PPP 
may consume energy through gluconeogenesis [121]. 
Under ethanol stress, the ethanol-tolerant A. pasteuria-
nus JZ1601 downregulated G6PDH activity to conserve 
energy for cell growth [94]. The glycolytic pathway also 
plays a crucial role in ethanol resistance in yeast, and its 
involvement in ethanol tolerance in AAB requires further 
investigation [124].

Mechanisms of thermotolerance
During the fermentation process, heat production such 
as bacterial metabolism often causes high temperature 
stress. In China, vinegar is produced using the traditional 
solid-state fermentation method, which has poor heat 
dissipation. This results in high-temperature conditions, 
often raising fermentation temperatures above 45  °C 
[125]. However, the optimal growth temperature for most 
AAB is below 34 °C. High temperatures can significantly 
reduce the activity of AAB, thus reducing the efficiency of 
acetic acid synthesis [126, 127]. Therefore, understanding 
the regulatory mechanisms of heat tolerance in thermo-
tolerant AAB is critical for improving product synthesis 
under high-temperature conditions. Current research on 
the heat resistance mechanisms of AAB primarily focuses 
on the following aspects: extracellular membrane system, 
genetic variation and molecular chaperone (Fig. 4).

Extracellular membrane system
EPS also play a pivotal role in the microorganisms to 
resist high temperatures. For instance, the thermotol-
erant A. pasteurianus SKU1100 produces PPS. These 
polysaccharides enable the strain to float on the surface 
of the growth medium under high-temperature condi-
tions, thereby minimizing its exposure to the heat source 
and reducing thermal damage to the strain [23, 24]. The 
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composition of PPS varies among different AAB. The 
PPS of the heat-resistant A. pasteurianus SL13E-3 and 
SL13E-4 contains higher amounts of xylose and galac-
tose compared to the mesophilic strain SL13E-2, which 
enhances the stability of PPS and improves heat resis-
tance [128].

Membrane proteins of thermotolerant strains showed 
enhanced enzymatic stability at high temperatures, 
thereby enhancing acetic acid production. A compara-
tive analysis of ADH thermal stability in thermotolerant 
A. pasteurianus MSU10, SKU1108, and the mesophilic 
strain IFO3191 demonstrated that the ADH of thermo-
tolerant strains had higher optimal temperatures and 
superior thermal stability compared to that of the meso-
philic strain IFO3191. Additionally, under high-tem-
perature conditions, the ADH of thermotolerant strains 
showed greater resistance to ethanol and acetic acid com-
pared to mesophilic strains [129]. Similarly, Perumpuli et 
al. [130] reported that the activities of ADH and ALDH 
in the thermotolerant strains SL13E-2 and SL13E-4 were 

more stable than those in the mesophilic strain. There-
fore, the activity and stability of membrane proteins con-
tributes significantly to the thermotolerance of AAB.

Genome variation
The deletion or mutation of specific genes is strongly cor-
related with heat tolerance in AAB. Adaptive laboratory 
evolution (ALE) experiments involve prolonged culturing 
of cells in stressful conditions to naturally select cells that 
acquire beneficial mutations [131]. ALE not only facili-
tates the generation of tolerant strains but also elucidates 
the genetic mechanisms underlying tolerance [132]. After 
a gradual domestication process at temperatures of 40 to 
42 °C for 72 days, the heat-tolerant A. pasteurianus IFO 
3283-01-42 C was developed. When compared with the 
original strain’s genome, this heat-tolerant strain exhib-
ited a deletion of approximately 92 kb of DNA, alongside 
three single-nucleotide mutations located in the rpoA 
gene, the glycolytic genes, and a putative gene [133]. 
Similarly, in the heat-tolerant strain NM-6 derived from 

Fig. 4 Overview of thermotolerant mechanisms of AAB. The thermotolerance mechanism of AAB is related to heat shock proteins, trehalose and poly-
saccharide layer on the cell surface. Additionally, during a prolonged evolutionary process, the genome of AAB has undergone numerous changes to 
withstand high-temperature stress, including gene mutations (such as MarR, APT1698, etc.), gene insertions (such as xdhA), and large-scale deletions of 
genes (such as tRNA genes)
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the domestication of A. pasteurianus IFO 3283-32, 11 
mutations, a single large 64-kb deletion and a single plas-
mid loss were observed. Comparative phenotypic analy-
sis showed that deletion of ribosomal RNA and tRNA 
genes, along with a mutation in DNA polymerase, criti-
cally contributed to thermotolerance. The loss or muta-
tion of these genes resulted in reduced DNA replication 
and protein translation capabilities, but it also resulted in 
energy saving, potentially enhancing survival under high-
temperature conditions [134]. In the heat-tolerant Glu-
conobacter frateurii, a frameshift mutation caused by the 
insertion of a G base in the sequence coding for a drug 
efflux transporter was identified. Further domestication 
and UV induction of the second-generation heat-tolerant 
strains displayed the same genetic mutation. Introducing 
the mutated base into the drug efflux transporter genes 
of the original strain improved its heat tolerance, indicat-
ing that mutation in this transporter gene plays a crucial 
role in enhancing heat tolerance [135]. Genome sequenc-
ing of heat-tolerant strains TI and TH3 derived from A. 
pasteurianus SKU 1108 revealed mutations in the genes 
encoding the amino acid transporter (APT1698) and 
the transcription factor MarR, including single nucleo-
tide mutations or deletions, frameshifts, and transposon 
insertions. Deletion and mutation introduction experi-
ments in the original strain SKU 1108 demonstrated 
that mutations in the marR and APT1698 genes could 
enhance the original strain’s heat tolerance and acetic 
acid production at 40 °C [136].

These research findings suggest that drug efflux trans-
porters, ribosomal RNAs, tRNAs, DNA polymerase, 
amino acid transporter and the transcription factor MarR 
may be associated with the thermotolerance of AAB. The 
partial gene deletions or mutations in the heat-tolerant 
AAB, resulting from domestication, play a crucial role in 
enhancing the high-temperature resistance. This has sig-
nificant implications for elucidating the mechanisms of 
thermotolerance in AAB.

Molecular chaperone
The molecular chaperones identified to date that are 
associated with the thermotolerance of AAB predomi-
nantly belong to the heat shock protein family. These 
include DnaK, DnaJ, GrpE, GroES, and GroEL, which not 
only enhance the strain’s heat tolerance but also improve 
its resistance to acetic acid [137]. In A. pasteurianus 
NBRC 3283, overexpression of groES/L and grpE-dnaK-
dnaJ genes exhibited significantly enhanced growth 
activity at 42  °C. Conversely, clpB knockout strains lost 
the ability to grow at high temperature. The expression of 
groEL, dnaKJ, grpE, and clpB were regulated by the sigma 
factor for RNA polymerase RpoH, whose deletion led to 
heat sensitivity [138]. These findings indicated the critical 

role of molecular chaperones in enhancing the heat resis-
tance of AAB.

Other factors
Genes related to stress response, cell division, cell wall 
and membrane biosynthesis, transport systems, and 
genome stability influence AAB’s high temperature tol-
erance [139–141]. Notably, the heat sensitivity of A. 
pasteurianus IFO 3191 is associated with mutations in 
genes related to stress response and cell wall and mem-
brane biosynthesis, in contrast to heat-tolerant strains 
[139]. Furthermore, random insertion of a transposon 
(Tn10) into DNA of A. tropicalis SKU 1100 identified 
24 genes that not only confer heat tolerance but also 
enhance acetic acid resistance [18]. Overexpression of 
the gene encoding acyl-CoA dehydrogenase (ACDH) in 
the Komagataeibacter medellinensis NBRC 3288 not only 
improved heat tolerance but also increased acid produc-
tion, suggesting a potential role for ACDH in the thermal 
resistance of AAB [142]. Additionally, A. pasteurianus 
SKU 1108, which exhibits superior heat resistance, pos-
sesses an extra gene encoding xanthine dehydrogenase 
(xdhA) and three specific genomic regions, suggest-
ing a potential link between xdhA and these regions to 
heat resistance [141]. In our study, the thermotolerant A. 
pasteurianus TCBRC 103 was isolated from solid-state 
fermentation substrates (vinegar Pei), exhibiting robust 
growth at 42  °C. In contrast, A. pasteurianus Huni-
ang 1.01, a strain commonly used in industrial vinegar 
fermentation in China, was unable to grow at this tem-
perature. Under heat stress, A. pasteurianus TCBRC 
103 showed lower levels of intracellular reactive oxygen 
species (ROS) compared to A. pasteurianus Huniang 
1.01 (unpublished results). ROS can damage various cel-
lular components, leading to lipid peroxidation, protein 
oxidation, and genetic damage through DNA modifica-
tion, ultimately resulting in cell damage or death [143]. 
Genetic engineering of antioxidant defense system-
related genes has been shown to significantly enhance 
strain resistance to environmental stresses [144, 145]. 
Transcriptomic analysis revealed that under heat stress, 
genes associated with antioxidant defense, such as super-
oxide dismutases, glutathione peroxidases, and thiore-
doxin reductases, were significantly upregulated in A. 
pasteurianus TCBRC 103, suggesting that the strain can 
mitigate heat-induced oxidative damage by enhancing its 
antioxidant system (unpublished results). The application 
of genetic engineering techniques to elevate the expres-
sion of antioxidant genes offers potential for improving 
the heat tolerance of AAB.
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Conclusions and future prospects
AAB have evolved protective mechanisms to withstand 
various stress conditions during vinegar fermentation 
progresses. In the early stage of acetic acid fermentation, 
AAB first encounter the fermentation substrate ethanol. 
Some AAB with stronger ethanol tolerance increase the 
activity of membrane-bound and intracellular enzymes 
to resist ethanol stress. They adjust their cell membrane 
structure through changes in fatty acid saturation, and 
modifications in the heads of phospholipids. Addition-
ally, elevated levels of amino acids and sugar metabolites 
contribute to the ethanol tolerance of AAB.

As the fermentation progresses, the acetic acid content 
in the fermentation broth gradually increases, prompting 
AAB to resist acetic acid stress. Acetic acid first contacts 
the cell wall, where the lipopolysaccharide component 
acts as the initial barrier to prevent its entry into the cell. 
Once it passes through the cell wall, the cell membrane 

initiates a series of stress responses, including alterations 
in membrane components, enhancement of PQQ-ADH/
ALDH enzyme activity, and activation of acetic acid 
transport systems (PMF-efflux pump and ATP-binding 
cassette transporter). The entry of acetic acid into the 
cell enhances the expression of acetic acid peroxidation 
related enzymes (e.g., AarC, CS), leading to the rapid 
consumption and decomposition of intracellular acetic 
acid. Additionally, molecular chaperone-mediated stress 
mechanisms, such as GroES and GroEL, enhance the 
resistance of AAB to the acetic acid stress. Furthermore, 
quorum sensing systems and toxin-antitoxin system pro-
vide new insights into the acid resistance mechanisms of 
AAB.

The high temperatures during fermentation persist 
throughout almost the entire fermentation stage. The 
thermotolerance mechanism of AAB is strongly associ-
ated with heat shock proteins and genetic variations in 

Fig. 5 Strategies for increasing stress tolerance in AAB. (1) Multi-omics technology combined with genetic engineering provides more opportunities 
to rationally manipulate microorganism with desired properties. (2) Reverse engineering is a powerful tool for identifying genes and genetic pathways 
involved in stress tolerance. By screening a genomic/CRISPR library for stress tolerance traits, researchers can discover new genes that confer resistance 
to various stressors. These genes can then be further studied and potentially used to enhance the stress tolerance of strains through genetic engineering. 
(3) gTME involves modifying the components of the global transcription factors to globally alter gene expression patterns, leading to more extensive 
phenotypic changes. (4) DBTL cycle integrates engineering principles with biological research to accelerate the development of genetically engineered 
organisms with desired traits
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the strains. Additionally, some strains can be triggered by 
high temperatures to produce a thin polysaccharide layer 
composed of galactose and xylose on the cell surface, 
enhancing resistance to the high temperatures.

The elucidation of tolerance mechanisms in AAB 
is challenging due to the inherent complexity of the 
strains and the cross-regulation of multiple genes. ALE 
and artificial mutagenesis methods, such as ultraviolet 
(UV), chemical, and atmospheric and room temperature 
plasma (ARTP) mutagenesis, tend to be time-consuming, 
result in low mutation rates, and rarely lead to beneficial 
mutations. With the advancement of systems biology and 
gene editing technologies, many efficient techniques have 
emerged to enhance strain tolerance. (1) Multi-omics 
analyses are widely used to identify gene targets for 
genetic engineering aimed at improving stress tolerance. 
(2) Reverse engineering techniques, such as plasmid-
based genomic libraries and Clustered Regularly Inter-
spaced Short Palindromic Repeats (CRISPR) libraries, 
are employed to screen for robust mutants and identify 
targets for engineering stress tolerance. (3) Global tran-
scription machinery engineering (gTME) is a directed 
evolution strategy that identifies phenotypes with 
enhanced tolerance properties by creating and screen-
ing mutant libraries of transcription factors. (4) Design-
Build-Test-Learn (DBTL) technology enables precise and 
efficient enhancement of microbial tolerance to a variety 
of stress conditions by systematically designing, build-
ing, testing, and learning from each cycle (Fig. 5). These 
advanced approaches provide a more efficient process 
for developing desired microbial strains [146]. However, 
gene editing tools are significant lack in AAB, and the 
highly efficient CRISPR gene editing tools have not yet 
been successfully applied to AAB. Therefore, the devel-
opment of CRISPR technology is essential to improve the 
applicability and performance of AAB.

Overall, numerous factors influence the stress toler-
ance of AAB. The mechanisms responsible for their resis-
tance to ethanol, acetic acid, and high temperatures are 
complex and require further exploration. These tolerance 
mechanisms are vital for the growth and metabolic pro-
cesses of AAB, playing a key role in their stable produc-
tion of acetic acid and other valuable products.
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