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Abstract 

Background Because the process is cost‑effective, microbial pectinase is used in juice clearing. The isolation, 
immobilization, and characterization of pectinase from Aspergillus nidulans (Eidam) G. Winter (AUMC No. 7147) were 
therefore the focus of the current investigation.

Results Ammonium sulphate (85%), DEAE‑cellulose, and Sephadex G‑200 were used to purify the enzyme. With 
a yield of 30.4%, the final specific activity was 400 units  mg−1 protein and 125‑fold purification. Using SDS‑PAGE 
to validate the purification of the pectinase, a single band showing the homogeneity of the purified pectinase 
with a molecular weight of 50 kD was found. Chitosan and calcium alginate both effectively immobilized pecti‑
nase, with immobilization efficiencies of 85.7 and 69.4%, respectively. At 50, 55, 60, and 65 °C, the thermostability 
of both free and chitosan‑immobilized pectinase was examined. The free and chitosan‑immobilized enzymes had 
half‑lives  (t1/2) of 23.83 and 28.64 min at 65 °C, and their  Kd values were 0.0291 and 0.0242  min−1, respectively. In addi‑
tion, the Z values were 44.6 and 31.54 °C, while the D values were 79.2 and 95.1 min. Compared to the untreated one, 
the orange, mango, and pineapple juices treated with immobilized pure pectinase showed greater clarity. Following 
treatment with pure pectinase, the fruit juice’s 1, 1‑diphenyl‑2‑picrylhydrazyl and 2, 2′‑azino‑bis 3‑ethylbenzothia‑
zoline‑6‑sulfonate scavenging activities increased. Following treatment with pure pectinase, the amounts of total 
phenolics and total flavonoids increased.

Conclusion The procedure is deemed cost‑effective in the food industry because the strong affinity of fungal pec‑
tinase for pectin. The investigated pectinase supported its usage in the food industry by being able to clear orange, 
mango, and pineapple juices.
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Background
Higher plants’ middle lamella and major cell walls con-
tain pectin in a calcium and magnesium pectate combi-
nation [16]. Pectins, pectinic acids, protopectins, and/or 
polygalacturonic acids are the primary components of 
heterogenic pectic contents [3, 26]. Other sugars includ-
ing d-mannose, l-fucose, d-glucuronic acid, d-glucose, 
and d-xylose are reported to be present in the side chains 
of compounds that include pectin [55].

Microbial enzymes are employed in a variety of indus-
trial contexts due to their well-established role as meta-
bolic catalysts. According to Arora et  al. [5], industrial 
enzymes have a very large end-use market with an 
extensive spectrum of industrial and commercial pur-
poses. Microbes have been and continue to be one of the 
most plentiful and advantageous sources of a number of 
enzymes [63].

Numerous microorganisms, including yeast [41], fungi 
[69], bacteria [34], and streptomyces [58], generate pec-
tinase enzymes. Most readily accessible microbial pecti-
nase is derived from fungal sources, primarily Aspergillus 
species [33]. Approximately 25% of industrial enzyme 
sales globally are attributed to the pectinase enzyme [24, 
60].

The increasing demand for pectinase has eliminated 
the need to find microbial strains capable of producing 
new pectinases with improved activity [35]. Based on 
how they function on the substrate, pectinase enzymes 
are categorized as pectinesterase (PE), polygalcturonase 
(PG), and pectin lyase (PL) [72].

Pectinases are commonly utilized in waste-water man-
agement [65], and in the food sector [20]. To produce 
bioethanol from lignocellulosic biomass, pectinase and 
cellulase enzymes have been combined [39]. Because 
polysaccharides including starch, pectin, cellulose, hemi-
celluloses, and bonded lignin are present in fruit juices 
produced via simple extraction, they are turbid, viscous, 
and foggy.

The turbid fruit juice has a low yield and acceptability 
and is difficult to concentrate and pasteurize [44]. Indus-
trial pectinases are used to improve product quality and 
boost fruit juice yield and clarity [34]. Several restrictions 
apply to the industrial application of this soluble form of 
the enzyme: unstable, uncontrolled recovery and reuse, 
limited shelf life, handling challenges, and loss of activ-
ity under extended conditions of operation [80]. Thus, 
immobilization can improve these biocatalysts’ affinity, 
pH stability, functionality stability, and thermostability 
[49].

Because of its special qualities, including its abundance 
of function  groups, accessibility, biodegradability, and 
chemical resistance, chitosan is one of the most often 
utilized support materials for enzyme immobilization 

[81]. The chitosan structure’s amino group content per-
mits crosslinking modification as well. The most com-
mon crosslinking agent that can improve the stiffness, 
thermal endurance, and the ability to absorb of chitosan 
backing is glutaraldehyde [37]. Enzyme covalent immobi-
lization on chitosan is achieved by subjecting it to a glu-
taraldehyde cross-linking solution. The –NH2 groups in 
chitosan and the enzyme react with the dual-functional 
–CHO groups of glutaraldehyde [61].

Industrial enzymes may be derived from the filamen-
tous fungus Aspergillus nidulans, and a variety of indus-
trial enzymes may be produced by this versatile fungal 
cell factory [45].

Therefore, the current study’s original objective was to 
discover and immobilize Aspergillus nidulans pectinase. 
Comparing the stability and kinetics of storage for free 
and immobilized pectinase is the second goal. Thirdly, to 
determine if free and immobilized pectinase may be used 
to clarify orange, mango, and pineapple juices.

Materials and methods
Experimental microorganism
The Assiut University Mubasher Mycological Center 
(AUMMC), Assiut, Egypt, is where Aspergillus nidulans 
(Eidam) G. Winter (AUMC No. 7147) was acquired.

Production of pectinase enzyme
Bhardwaj and Fairhurst [11] state that, the alteration in 
pectin glucose liquid medium was used for pectinase 
synthesis. About 100 mL of sterilized medium (g/L) was 
used in triplicate sets of 250-mL Erlenmeyer flasks hav-
ing the following concentrations: pectin 5.0, glucose 10, 
 KH2PO4 1.0,  MgCl2·6H2O 0.5,  NaNO3 1.0,  CaCl2·2H2O 
0.1,  FeCl3·6H2O 0.02 and  ZnCl2 0.02. After inoculating 
the medium with a suspension of 1 ×  107 spores  mL−1, the 
medium was modified to pH 6.0 and cultured for 7 days 
at 30 °C with 200 rpm of agitation. A crude enzyme was 
made from the supernatant after the fungal mycelium 
had been filtered and separated after seven days using 
centrifugation at 5000×g for 5 min.

Pectinase assay
Miller’s [52] method of assaying the pure pectinase’s 
activity was followed. About 1 mL of 0.5% pectin, 0.5 mL 
of sodium acetate buffer (100 mM, pH 5.0), and 0.5 mL 
of enzyme were included in the test mixture. For 10 min, 
the reaction combination was incubated in a water bath 
at 30°°C. The 3,  5-dinitrosalicylic acid (DNS) reagent 
was added and heated for 15  min after 10  min. Follow-
ing cooling, the absorbance at a wavelength of 575  nm 
was measured spectrophotometrically. Galacturonic 
acid was used to create the standard curve for reducing 
sugar, and it was intended such that one unit of pectinase 
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would be the amount of enzyme required to generate one 
µmole of galacturonic acid per minute under reaction 
circumstances.

Purification of pectinase
The supernatant containing pectinase was gathered after 
centrifugation at 5000  rpm for 25  min and mixed with 
85% solid ammonium sulphate at 4  °C with permanent 
stirring and protein precipitation overnight. The precipi-
tate was suspended in 15 mL of 100 mM Tris–HCl buffer, 
pH 7.5. The resulting pectinase solution was dialyzed ver-
sus the same buffer for 24  h with numerous changes to 
eliminate the salt followed by assaying of pectinase activ-
ity as mentioned above.

The obtained fraction from ammonium sulfate frac-
tionation after dialysis was loaded into DEAE-cellulose 
column (1.5 × 30 cm) as anion exchange chromatography 
which was pre-equilibrated with the same buffer followed 
by gradient elution using 100 mM Tris–HCl buffer con-
taining 1 M NaCl at flow rate of 1 mL/min.

The pooled fractions from DEAE-cellulose column 
with the highest specific activity were added to Sephadex 
G-200 column (1.5 × 30 cm) as gel filtration chromatog-
raphy that was pre-equilibrated with 50  mM Tris–HCl 
buffer, pH 7.5. The same buffer was used for the elution 
procedure, with a flow rate of one milliliter per min-
ute. The collected pectinase fractions were combined at 
4  °C, and using BSA as a reference [13] was followed to 
calculate the protein content. Units of the enzyme per 
milligram of protein were used to express the particular 
activity of pectinase.

Determination of pectinase molecular weight
Using a wide spectrum of protein markers and the tech-
nique of sodium dodecyl sulfate–polyacrylamide gel 
electrophoresis (SDS-PAGE) (Sigma USA), the molecu-
lar weight of pectinase was ascertained using Laemmli’s 
[47] approach. Phosphorylase B (97  kDa), ovalbumin 
(50 kDa), carbonic anhydrase (29 kDa), soybean trypsin 
inhibitor (20 kDa), and lysozyme (14 kDa) were the pro-
tein markers. The brilliant blue dye Coomassie was used 
to see protein bands.

Immobilization of purified pectinase on chitosan beads
Following El-Shora et  al.’s [28] instructions, the cross-
linking was completed. About 99  mL of distilled water, 
three grams of chitosan powder, and 1.5% (v/v) acetic 
acid were added. The mixture was heated to 60–70  °C, 
stirred, and left to stand at the ambient temperature for 
4 h. After filtering, the mixture was dried. The acetic acid 
in the chitosan bead was neutralized by adding drops of 
2% (w/v) NaOH. After again being cleaned with distilled 
water, the bead was dried once more.

For 2 h, 1% (w/v) of the dried chitosan bead was added 
to the glutaraldehyde solution in 100 mM cold phosphate 
buffer (pH 8.0). Using the same buffer, the brownish rein-
forced bead was twice cleaned to get rid of any remain-
ing glutaraldehyde. For 4 h, with careful stirring, chitosan 
beads were combined with two milligrams per milliliter 
of pectinase liquid in 100 mM phosphate buffer (pH 8.0). 
By subtracting the activity measured in the supernatant 
from the total activity supplied to the chitosan beads, the 
enzyme activity of encapsulated pectinase was assessed. 
For the enzyme experiment, around 0.1 g of the immobi-
lized pectinase was used.

Immobilization of purified pectinase on alginate bead
The immobilization technique was first taken from El-
Shora et al. [30]. After being made in 0.1 M Tris–acetate 
buffer (pH 8.0) at 70 °C with constant stirring, the sticky 
solution of sodium alginate (5% w/v) was allowed to cool 
to 4  °C. There was a mixture of 50  mL sodium alginate 
(5% w/v) and pure pectinase. The final blend was poured 
into a separating funnel set over a beaker filled with 
150 mL of 4% (w/v) calcium chloride. Next, the alginate 
bead was arranged by gradually dropping the alginate 
solution (30 drops  min−1) into the calcium chloride solu-
tion using a 200 μL Eppendorf tip. The bead was gently 
stirred and left to solidify for 4  h. After the bead was 
removed from the calcium chloride solution and cleaned 
with the same buffer, the immobilized pectinase activity 
was calculated.

Effect of protein loading on immobilization efficiency
The effect of enzyme loading on immobilized efficiency 
of pectinase was studied by varying the amount of pecti-
nase offered (1–10 mg  g−1 bead) to a fixed amount of chi-
tosan or alginate and the immobilization efficiency was 
calculated.

Reusability of immobilized pectinase
One of the most crucial characteristics of an immobilized 
enzyme is its ability to be reused. For this reason, immo-
bile pectinase on triggered beads was utilized repeatedly. 
Following each reaction, the enzyme-containing beads 
were thoroughly cleaned using a buffer, reassessed, and 
the first activity level was recorded as 100%. A percentage 
of the initial operating activity was used to indicate the 
relative activity.

The immobilization efficiency (%)

= (specific activity of immobilized enzyme

/specific activity of soluble enzyme added)

× 100.
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Storage stability of free and immobilized pectinase 
on chitosan and alginate
The activity was measured over the course of 30  days 
with the native pectinase, alginate-immobilized pecti-
nase, and chitosan-immobilized pectinase kept at room 
temperature (25 °C). Every 5 days, samples of the trapped 
beads (0.1 g) or free pectinase (0.1 mL) were taken out to 
measure the pectinase activity.

Thermostability of free and chitosan‑immobilized 
pectinase
Thermostability of free and chitosan-immobilized pecti-
nase was investigated by pre-incubation of each form of 
pectinase at 50, 55, 60 and 65 °C without substrate. The 
residual pectinase activity was determined after 10, 20, 
30, 40, 50 and 60  min for each tested temperature and 
expressed as % residual activity.

Application of chitosan‑immobilized pectinase in fruit 
juice clarification
Preparation of fruit juice
We bought fresh orange, mango, and pineapple juices 
from Mansoura City local market. To lessen potential 
microbial contamination, deionized water was used to 
wash the fruits. After cutting a horizontal incision with 
a knife that was one centimeter deep, the dense fruit skin 
was carefully peeled to reveal the delicious segments. The 
fruits were then divided into pieces, and each segment’s 
inner skin was scraped and thrown away. The juicy sec-
tions, containing the seeds, were fully free of the white 
membrane that surrounded them. A screw-style extrac-
tor was used to extract the juice, and nylon filtration was 
used to get rid of the pulp.

To maximize the extraction of juice, this procedure 
was carried out three times. For a short while, the freshly 
squeezed water was pasteurized at 90 °C. To make things 
clear, the juice’s pHs were raised to pH 8.0 for chitosan-
pectinase and pH 7.0 for free pectinase. Centrifugation 
was performed for 10 min at 10,000 rpm to ensure that 
all of the juice from every fruit was completely separated.

Treatment of juice with crude, soluble purified 
and chitosan‑immobilized enzymes
Since chitosan-immobilized pectinase expressed the 
highest immobilized efficiency compared to calcium algi-
nate, it was decided to compare the potentiality of crude, 
soluble purified and chitosan-immobilized enzyme in 
clarification of fruits juice from orange, mango and pine-
apple. Two mL from prepared juice of orange, mango 
and pineapple fruits was mixed individually with 5 mL of 
crude, soluble purified and 5 mg of chitosan-immobilized 

pectinase. For 60  min, the process of clarity took place 
out by incubation at ideal conditions. Juice clarity was 
assessed upon incubation by using a spectrophotometer 
to measure the percent transmittance (%T) at 660 nm [6].

Determination of total phenol of fruits juice treated 
with chitosan‑immobilized pectinase
Using the Folin-Ciocalteu technique, the total phenol 
content was determined in the various juices treated with 
chitosan-immobilized pectinase, as stated by Srinivasan 
et  al. [78]. Using samples (2  mL) of each juice, 5  mL of 
0.3% HCl was combined with 100 µL of the mixture, fol-
lowed by 5 mL of 5% aqueous  Na2CO3, and the mixture 
was allowed to sit for 10 min. After mixing the mixture 
with 100 µL of 50% Folin-Ciocalteu’s reagent, it was incu-
bated for 25  min, and the absorbance was measured at 
750  nm. To calculate the total phenol content, a typical 
calibration curve of gallic acid was created and repre-
sented in milligrams of gallic acid equivalents (GAEs) per 
gram of fruit juice.

Determination of total flavonoids of fruits juice treated 
with chitosan‑immobilized pectinase
Using the  AlCl3 technique, the juices’ total flavonoid con-
tent was ascertained [51]. Using a vigorous shaker, sam-
ples (2  mL) of each juice were collected and combined 
with 0.1 mL  AlCl3 (10% w/v), 0.1 mL Na–K tartarate, and 
2.8  mL distilled water. After 25  min, the absorbance at 
415 nm was read. The total flavonoid, which is reported 
as mg of the corresponding quercetin per g of material, 
was calculated using an accepted curve for calibration of 
quercetin that was generated.

DPPH scavenging activity of fruits juice treated 
with chitosan‑immobilized pectinase
The free radical scavenging activity of each prepared 
juice was determined using 1, 1-diphenyl-2-picrylhydra-
zyl. Two milliliters of a 0.2  mM methanolic solution of 
DPPH radicals were combined with two milliliters of the 
prepared aqueous juice from each fruit. After shaking 
the mixture and letting it sit in the dark for 25 min, the 
absorbance at 517 nm was measured [74].

where  Ao and  A1 are the absorbance values in the absence 
and presence of the test sample, respectively.

ABTS scavenging activity of fruits juice treated 
with chitosan‑immobilized pectinase
The aqueous juice of each fruit was tested for its abil-
ity to scavenge 2, 2′-azino-bis (3-ethylbenzothiazoline-
6-sulfonate, or ABTS) in accordance with Re et  al. 
[64]. In order to create the radical cation  (ABTS•+), a 

DPPH scavenging activity (%) = [(Ao − A1)/Ao] × 100,
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specific volume of 7.4 mM ABTS was added to 2.6 mM 
potassium persulphate. The mixture was then left to 
react for 10–12 h at room temperature in the dark. Fol-
lowing a 10-min room temperature incubation period, 
0.5  mL of fruit juice and 3  mL of  ABTS•+ solution 
were combined, and the absorbance at a wavelength 
of 734 nm was measured. The antioxidant activity was 
calculated by using the following equation:

where  Ao and  A1 are the absorbance values in the absence 
and presence of the test sample, respectively.

Statistical analysis
ANOVA was employed in the ONE-WAY  report to 
statistically analyze the selections at P = 0.05. The data 
and conclusions were analyzed and evaluated via SPSS 
software (version 15). In this investigation, every data 
point was collected in triplicate ± standard error.

Results and discussion
The fact that enzymes function best under moderate 
reactions is not advantageous. Enzymes that function 
under a variety of reaction settings are of interest for 
industrial applications. Key characteristics of enzymes, 
such as stability, specific activity, and substrate speci-
ficity, can be enhanced chemically [57].

Purification of pectinase from Aspergillus nidulans
These findings show that the purification procedure was 
carried out effectively to get a significant 125-fold and 
400 U/mg protein specific activity (Table 1). From the lit-
erature, Bacillus subtilis was used to produce pectinase, 
which had an 11.6-fold purity and a particular activity of 
99.6 U/mg [3]. Moreover, a single band with a molecular 
weight of 50 kDa for pure pectinase on SDS-PAGE dem-
onstrated the uniformity of the isolated enzyme (Fig. 1).

According to Khatri et  al. [43], pectinase from Asper-
gillus niger showed the last particular activity of 60  U/

BTS scavenging activity (%) = [(Ao − A1)/Ao] × 100,

mg protein with a purification fold of 84 and a yield of 
16%. Likewise, pectinase from Aspergillus tubingensis 
[42], Fusarium oxysporum [23], Cochliobolus carbonum 
[70], and Penicillium frequentans [7] was shown to have 
a molecular weight of 78, 74, 60, and 63 kDa, respectively.

Immobilization of pectinase from Aspergillus nidulans
Immobilization of pectinase on alginate and chitosan 
was carried out and the results are shown in Table  2. 
The immobilized enzyme on chitosan expressed higher 
immobilization efficiency (85.7%) compared to algi-
nate-immobilized pectinase (69.4%). Immobilization 
of the enzyme on chitosan is supposed to preserve ter-
tiary structure of enzyme from conformational changes 
[1]. Each time an enzyme is immobilized, its stiffness 
increases. This is demonstrated by the increased stabil-
ity when denaturation occurs at temperatures above 
the optimum [50]. Chitosan has the advantages of 

Table 1 Purification of pectinase from Aspergillus nidulans 

Purification step Total protein (mg) Total activity (U) Specific activity  (Umg−1 
protein)

Yield (%) Fold of 
purification

Crude extract 122 395 3.2 100 1.0

85%  (NH4)2  SO4 54.0 280 5.0 70.9 1.6

DEAE‑cellulose 1.3 160 123.1 40.5 38.5

Sephadex G‑200 0.3 120 400.0 30.4 125

97 kDa

66 kDa

50 kDa

29 kDa
20 kDa

14 kDa 
kDa

MarkerPE

Fig. 1 SDS‑PAGE of purified pectinase from A. nidulans. PE pure 
enzyme
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biodegradation, non-antigenicity, good biocompatibil-
ity, low cost, non-toxicity and abundant resources. So, 
chitosan is encouraging organic compound for enzyme 
immobilization [66]. Alginate is a kind of polysaccha-
ride usually taken from marine algae and alginate struc-
ture comprises l-guluronic acid (G) and d-mannuronic 
acid (M). There are β (1–4) glycosidic bonds between 
d-mannuronic acid molecules and α (1–4) glycosidic 
bond between l-guluronic acid molecules. The molecular 
structure of alginate may differ depending on the source 
of organism [79].

The immobilized enzyme offers enhanced resistance 
against alteration in pH or temperature. In this instance, 
the enzyme stays in its position the whole reaction, facili-
tating an easy separation from the result. As a result, 
immobilization is a useful method for enzyme-catalyzed 
reactions in industry [73].

Effect of protein loading on immobilization efficiency 
of pectinase
As the protein load was increased, the amount of immo-
bilized pectinase increased (Fig. 2). Lower little values of 
immobilization efficiency are related to too little amounts 
of enzyme for the quantity of the support used. How-
ever, the carrier reached the protein saturation point at 
a protein amount of 8  mg/g where the immobilization 
efficiency was 69 and 85%, respectively for alginate and 

chitosan, respectively. So, at that point, the amount of 
immobilized protein starts to decline and adding a higher 
amount of pectinase did not increase the amount of the 
bound enzyme. The decrease in immobilization efficacy 
with greater protein loading can be explained by the 
possibility that excessive protein loading will induce the 
enzyme to clump together on the support [32, 84].

Reusability of immobilized pectinase on alginate 
and chitosan beads
One of the main advantages of immobilized enzymes is 
their simple process of extraction and reusability. One 
crucial characteristic for assessing the importance of 
an enzyme that has been immobilized is its reusability 
across seven consecutive cycles [29].

It was investigated if the enzymes pectinase and chi-
tosan immobilized in alginate might be reused. The find-
ings, which are displayed in Fig.  3, reveal that after the 
seventh cycle, the immobilized pectinase maintained 
20.3 and 38.8% on alginate and chitosan, respectively.

It is normal for immobilized pectinase to lose activity 
after repeated usage [77], and may be due to the hydro-
philic characteristics of alginate, weak binding via non-
covalent bonds, inhibition of pectinase by increasing 
quinonoid products [53], protein damage, protein deac-
tivation [4] or leakage of the enzyme from support [25]. 

Table 2 Immobilization efficiency of pectinase from Aspergillus nidulans by entrapment and cross‑linking methods

Immobilized method Loaded activity (U  mg−1 protein) Immobilized activity (U  mg−1 protein) Immobilization 
efficiency (%)

Cross‑linking 41.0 ± 0.9 35.2 ± 0.9 85.7 ± 1.5

Entrapment 41.0 ± 0.9 25.2 ± 0.9 69.4 ± 1.1
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Immobilized pectinase with good reusability can cut 
down on the quantity of enzyme utilized in industrial 
applications, which lowers production costs.

Storage stability of free and immobilized pectinase 
at room temperature
Over the course of 30 days at 25 °C, the storage stability 
of both free and immobilized pectinase was assessed. 
The residual activity was represented as the original 
immobilized enzyme’s relative activity. As the stor-
age duration increases, pectinase activity continuously 
decreases, according to the data in Fig. 4.

Compared to the free enzyme (5%), the immobilized 
pectinase exhibited greater activity after 30 days, either 
on chitosan (39.8%) or alginate (17.3%). Because immo-
bilization prevents autolysis, the immobilized pectinase 
likely displayed greater stability. One possible explana-
tion for the durability of the immobilized pectinase is 
that the bead provides an environment that is condu-
cive to the enzyme’s growth [27].

These findings show that immobilizing pectinase 
reduces the likelihood of its denaturation [85], and are 
consistent with earlier research regarding additional 
immobilized enzymes [54]. Therefore, it would seem 
that free pectinase is not robust in storage and that it 
gradually loses or reduces in activity over time.

Thermostability of free and chitosan‑immobilized 
pectinase
Enhancing the thermal stability of pectinase to make it 
suitable for commercial application was one of the pri-
mary goals of the current investigation. For both the 
free and immobilized enzyme, pectinase performed 
best at temperatures between 40 and 45  °C. Therefore, 
the thermostability of the free and immobilized pecti-
nase was investigated at 50, 55, 60 and 65  °C and the 
calculated values of  t1/2,  Kd and D at each tested tem-
perature are listed in Table 3.

The thermostability findings showed that when the 
incubation duration was increased at the different 
investigated temperatures over the ideal one, the activ-
ity of free (Fig. 5a), and the immobilized (Fig. 5b) pec-
tinase decreased. On the other hand, compared to the 
free form, the immobilized pectinase showed greater 
thermostability.

Pectinase activity from Penicillium italicum [2] and 
A. fumigates [59] decreased similarly. Pectinase may 
become inactive at high temperatures above the opti-
mal temperature because of peptide chain hydrolysis, 
aggregation, inaccurate confirmation, or amino acid 
degradation [21]. Pectinase may become inactivated at 
high temperatures due to build up at hydrophobic sites 
that become visible during decomposition [82].

It’s still unclear exactly how heat inactivates an 
enzyme protein, and the incomplete expanding of the 
enzyme structure is the initial step in the heat inac-
tivation process. Under typical circumstances, the 
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Table 3 The values of half life  (t1/2),  Kd and D of free and immobilized pectinase

Temp (°C) Equation R2 (t1/2) (min) Kd  (min−1) D (min)

Free pectinase

 50 y = −0.9649x + 100 0.9884 52.8 0.0131 175.4

 55 y = −1.3362x + 100 0.996 37.42 0.0185 124.3

 60 y = −1.6286x + 100 0.9968 30.70 0.0226 102.0

 65 y = −2.0982x + 100 0.9902 23.83 0.0291 79.2

Immobilized pectinase

 50 y = −0.573x + 100 0.9798 87.26 0.0079 289.9

 55 y = −1.0047x + 100 0.9907 49.77 0.0139 165.3

 60 y = −1.3601x + 100 0.9967 36.76 0.0189 122.1

 65 y = −1.746x + 100 0.9804 28.64 0.0242 95.1
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equilibrium between various monovalent ionic forces, 
such as hydrogen and hydrophobic contact, preserves 
the catalytically productive structure of the enzyme 
[71]. The natural three-dimensional arrangement of the 
enzyme is the only way that multiple amino acid resi-
dues are typically assembled to form the sites of activity 
of the enzyme. The enzyme becomes inactive as a result 
of this unfolding, which causes the active core to disas-
semble [18].

Serra [71] states that a variety of modifications take 
place during thermal inactivation, including non-cova-
lent alterations that allow the thermally unfolded enzyme 
molecules to shift and covalent changes such the hydro-
lytic scission of disulfide.

Plotting the residual pectinase activity versus time 
yielded a slope that was represented as half-life  (t1/2). 
The duration required for an enzyme to degrade its sub-
strate and lose half of its activity is known as its half-life 

 (t1/2) [9]. The time needed to decrease 50% of the start-
ing enzyme activity at a specific temperature is another 
way to define the half-life  (t1/2) [56]. The free pectinase 
(Fig. 5a and Table 3) had a half-life  (t1/2) of 23.83 min at 
65  °C, whereas the immobilized pectinase (Fig.  5b and 
Table 3) had a half-life  (t1/2) of 28.64 min.

According to Lopes et al. [48], the half-life  (t1/2) was 
utilized to compute the heat inactivation rate constant 
 (Kd). The enzyme immobilized in chitosan had a  Kd 
value of 0.0242  min−1 while the free pectinase had a  Kd 
value of 0.0291.

According to Cavalcante Braga et  al. [14], deacti-
vation is the process by which a protein’s secondary, 
tertiary, or quaternary structure changes without any 
covalent connections being broken. The values given for 
the two parameters D and Z are typically used to indi-
cate the deactivation of the enzyme [17]. The amount of 
time the enzyme has to be pre-incubated at a specific 
temperature in order to retain 10% residual activity is 
indicated by the D, or decimal reduction value (in min-
utes) [14].

The time required for a 90% reduction in the begin-
ning activity is another name for the D-value (decimal 
reduction time), and it was computed in accordance 
with Singh and Wadhwa [75]. The D values at 65 °C were 
95.1  min for the chitosan-immobilized pectinase (Fig.  4 
and Table  3) and 79.2 for the free pectinase (Fig.  4 and 
Table 3). Higher temperatures increased the inactivation 
rate, but they also decreased the half-life  (t1/2) and D val-
ues, suggesting a quicker rate of deactivation at higher 
temperatures. Numerous variables, such as pH and the 
buffer’s structure during thermal inactivation, may be to 
blame for these discrepancies [56].
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The Z-value expresses how the D-value depends on 
temperature, and log D-values vs. temperature was 
used to calculate the Z-value. Z values for free and chi-
tosan-immobilized pectinase were 44.6 and 31.54  °C, 
respectively (Fig.  6 and Table  4). According to Ortega 
et  al. [56], the Z-value shows what number of degrees 
of temperature is needed to cause a tenfold change in 
decimal reduction time.

The minimal energy needed to initiate the enzyme’s 
deactivation process is known as the kinetic energy of 
deactivation [10]. The linear regression of In(kd) vs. recip-
rocal temperature (1/T) yields the deactivation energy 
 (Ed) [56].

Figure 7 and Table 5 show a slight rise in  Ed following 
the immobilization treatment. It is important to note that 
industrial enzyme applications strongly require high Ed 
values due to their elevated thermostability [31].

Clarification of juice by crude, soluble purified 
and chitosan‑immobilized purified pectinase
The clarification of the various tested fruit juices by crude, 
soluble purified and chitosan-immobilized purified pecti-
nase was investigated (Fig. 8). The chitosan-immobilized 
purified pectinase exhibited high clarification (97.8, 75.7 
and 84.5%) expressed as juice clarification (%) than the 
crude enzyme (82.4, 61.4 and 70.6%), soluble purified 
(90, 65.3 and 75.5%) and the control samples (66.7, 55.6 
and 64.8%) for orange, mango and pineapple juices. Juice 
clarity is achieved by the microbial pectinase’s removal of 
methyl groups from the pectin backbone. Subsequently, 
the pectin’s negatively charged areas combine with  Ca2+ 
to generate  Ca2+ pectate gels, which help to clarify juice 
[46]. Relative with other microorganisms, the pectinase 
derived from A. nidulans demonstrated efficient clarity, 
suggesting that it might be a viable option for industrial 
juice clearing. The degree of clarity was enhanced by the 
fungal pectinase derived from A. niger [68], A. awamori 
[22], and P. oxalium [83].

Total phenolics and total flavonoids of fruits juice treated 
with chitosan‑immobilized pectinase
According to reports, phenolics have drawn attention 
because of their potential for therapeutic use, particularly 
in the areas of anti-inflammatory, anti-cancer, hypolipi-
demic, and hypoglycemic fields [15]. Also, fruits are rich 
in nutrients and contain a variety of phenolics. The phe-
nolic compounds are described as molecules comprising 
at least one benzene ring to which one or more hydroxyl 
groups are connected.

Table 4 The values of Z for the free and immobilized pectinase

Enzyme form Equation R2 Z (oC)

Free y = −0.0224x + 9.4811 0.9879 44.6

Immobilized y = −0.0317x + 12.651 0.9618 31.54
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Fig. 7 Determination of  Ed for free and chitosan‑immobilized 
pectinase

Table 5 The values of Ed for the free and chitosan‑immobilized 
pectinase

Enzyme form Equation R2 Ed (kJ/mol)

Free y = −5.6488x + 13.184 0.9898 46.964

Immobilized y = −7.9789x + 19.949 0.9666 66.337
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An important fraction of the phenolic compounds is 
connected with a variety of flavor properties, especially 
astringency. Phenolic compounds found in the plants-
based foods are divvied into two major groups: flavonoids 
and phenolic acids [12]. Since chitosan-immobilized pec-
tinase exhibited higher clarification of the tested fruits 
it was decided to determine the total phenols and total 
flavonoids in the various juices treated with this form of 
pectinase.

The results in Fig.  9a show that mango juice had the 
greatest total phenolic concentration, whereas pineapple 
juice had the least phenolic content. These results were 
similar to those of previous studies on pectinase-treated 
papaya juice [76].

Moreover, apricot juice’s polyphenol content rose after 
pectinase treatment [8]. Enzymatic hydrolysis may have 
contributed to the rise in total phenolic content by pro-
moting the activity of cellulases, pectinases, and pectine 
sterases while also aiding in the inactivation of lipoxyge-
nase, peroxidase, and polyphenol oxidase [38].

Total flavonoids, one of the antioxidant chemicals, are 
said to be abundant in fruits [19]. Flavonoids are the most 
familiar and most significant group of phenolic com-
pounds in plants. The crucial chemical structure of fla-
vonoids is a skeleton of diphenylpropane  (C6C3C6) [29].

Figure  9b showed the total flavonoid content of the 
various treated and untreated fruit juices using chitosan-
immobilized pectinase. A significant increase in the total 
flavonoid content after pectinase treatment was asso-
ciated with increased tissue breakdown and flavonoid 
release from the peel cell wall. These results are similar 
to those of a previous study that effectively preserved the 
juice’s total flavonoid content by treating papaya juice 
with pectinase [76].

Antioxidant activity of fruits juice treated 
with chitosan‑immobilized pectinase
The fruits under investigation are rich in total phenols, 
which may reflect the antioxidant activity which was 
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tested by DPPH (Fig.  10a) and ABTS (Fig.  10b). Fruit 
juice’s antioxidant activity increased following treatment 
with chitosan-immobilized pectinase. When compared to 
the similar untreated juice with pectinase, the fruit juice 
treated with pure pectinase exhibited a much better ability 
for radical scavenging. The process of scavenging DPPH is 
dependent on the antioxidants in fruits’ capacity to donate 
hydrogen, which results in the creation of non-radical 
DPPH-H. However, ABTS is implicated in an electron 
transfer route that transforms  ABTS+ into ABTS [40].

According to Bashir et  al. [8], a rise in antioxidants 
(phenolics and flavonoids) may be the cause of this 
increase in scavenging ability. Additionally, it was shown 
that pectinase encouraged the breakdown of the cell wall, 
releasing flavonoids and polyphenols that are confined 
within the cells [68].

While the electron-donating capacity of phenolics 
appears to be associated with extended electric delocali-
zation throughout the entire molecule [67], the hydro-
gen-donating capacity of phenolics to scavenge free 
radical can be defined by the dissociation energy of the 
bond of OH bond [62]. Hansen and Laroze [36] found 
similar results with raspberry and apricot juice. There-
fore, phenolics and flavonoids are responsible for the 
fruit juice’s antioxidant potential, and they may work in 
concert to stop free radicals from damaging biological 
macromolecules.

Conclusion
The catalytically proficient pectinase for pectin hydroly-
sis was purified and immobilized from Aspergillus nidu-
lans. Thus, the results indicate the possibility to use 
Aspergillus nidulans for the production of pectinase. 
The homogeneity of the isolated enzyme was shown by 
a single band on SDS-PAGE for pure pectinase with a 
molecular weight of 50 kDa. The purified pectinase was 
immobilized by entrapment in alginate and cross-linking 
on chitosan. The possibility of reusing the chitosan and 
pectinase enzymes that were immobilized in alginate was 
examined. After the seventh cycle, the immobilized pec-
tinase retained 20.3 and 38.8% on alginate and chitosan, 
respectively. After 30  days, the immobilized pectinase 
showed higher activity on chitosan (39.8%) or alginate 
(17.3%) than the free enzyme (5%). The immobilized pec-
tinase probably showed more stability because immo-
bilization stops autolysis. The fact that the bead creates 
an environment that supports the growth of the enzyme 
could be one reason for the immobilized pectinase’s 
endurance. Chitosan-immobilized pectinase displayed 
a potential role in clarification of orange, mango and 
pineapple juices and could be used in food industry to 
increase juice quality. The chitosan-immobilized purified 

pectinase exhibited high clarification (97.8, 75.7 and 
84.5%) expressed as juice clarification (%) than the crude 
enzyme (82.4, 61.4 and 70.6%), soluble purified (90, 65.3 
and 75.5%) and the control samples (66.7, 55.6 and 64.8%) 
for orange, mango and pineapple juices. Increased tissue 
breakdown and flavonoid release from the peel cell wall 
were linked to a notable rise in the overall flavonoid con-
centration following pectinase treatment. After chitosan-
immobilized pectinase treatment, fruit juice’s antioxidant 
activity improved. The fruit juice treated with pure pec-
tinase had a much higher capacity for radical scavenging 
in comparison to the comparable untreated juice with 
pectinase. The findings support the pectinase immobili-
zation’s economic and industrial benefits, especially with 
regard to reusability, which increases the likelihood that 
it will be used in a variety of industrial applications.
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