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Abstract
Oleaginous yeasts are considered promising sources for lipid production due to their ability to accumulate high 
levels of lipids under appropriate growth conditions. The current study aimed to isolate and identify oleaginous 
yeasts having superior ability to accumulate high quantities of lipids; and enhancing lipid production using 
response surface methodology and repeated-batch fermentation. Results revealed that, twenty marine oleaginous 
yeasts were isolated, and the most potent lipid producer isolate was Candida parapsilosis Y19 according to 
qualitative screening test using Nile-red dye. Orange peels was used as substrate where C. parapsilosis Y19 
produced 1.14 g/l lipids at 23.0% in batch fermentation. To enhance the lipid production, statistical optimization 
using Taguchi design through Response surface methodology was carried out. Total lipids were increased to 
2.46 g/l and lipid content increased to 30.7% under optimal conditions of: orange peel 75 g/l, peptone 7 g/l, yeast 
extract 5 g/l, inoculum size 2% (v/v), pH 5 and incubation period 6 d. Furthermore, repeated-batch fermentation 
of C. parapsilosis Y19 enhanced lipid production where total lipids increased at 4.19 folds (4.78 g/l) compared to 
batch culture (before optimization). Also, the lipid content was increased at 1.7 folds (39.1%) compared to batch 
culture (before optimization). Fatty acid profile of the produced lipid using repeated-batch fermentation includes 
unsaturated fatty acids (USFAs) at 74.8% and saturated fatty acids (SFAs) at 25.1%. Additionally, in repeated-batch 
fermentation, the major fatty acid was oleic acid at 45.0%; followed by linoleic acid at 26.0%. In conclusion, C. 
parapsilosis Y19 is considered a promising strain for lipid production. Also, both statistical optimizations using RSM 
and repeated-batch fermentation are efficient methods for lipid production from C. parapsilosis Y19.
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Introduction
The primary sources of oils and fats in the world are 
derived from fish, animals, plants (especially vegetable 
oil), and microorganisms [1]. Microorganisms that clas-
sified as oleaginous microorganisms are those that pos-
sess the capacity to generate and store 20–80% of their 
entire biomass as intracellular lipids [2]. Using microbial 
lipids, commonly known as single-cell oils, is one method 
for improving oil output. These oils can serve as a feasi-
ble substitute feedstock for biodiesel production and as 
an alternative path to a bio-based economy [3]. Oleagi-
nous microorganisms, encompassing microalgae, bacte-
ria, fungi, and yeast, have the capacity to generate lipids 
in their cellular compartment exceeding 20% (w/w) of 
the total lipid content, as determined by cell dry weight 
[4]. Compared to plant and fish oil production, microbial 
oil production offers a number of benefits, such as quick 
development, high oil content, and high oil composition 
quality [5, 6]. Most lipids produced by oleaginous micro-
organisms have an unbranched carbon chain length 
of four to twenty-eight. The type of hydrocarbonated 
chain determines whether the fatty acids are saturated 
or unsaturated, and the quantity of double bonds deter-
mines whether they are monounsaturated or polyunsatu-
rated (MUFA and PUFA) [4].

Oleaginous yeasts represent a distinct assemblage of 
microorganisms characterised by their exceptional capac-
ity to a mass substantial amounts of intracellular lipids 
or oils. This property makes them highly attractive for 
industrial-scale production of lipids, which have a diverse 
range of applications in the biofuels, oleochemicals, and 
animal feed industries [7]. Under optimal growth condi-
tions, oleaginous yeasts have the potential to accumulate 
up to 70% of their total dried cell weight in lipids. This 
is significantly higher than the typical lipid content of 
5–20% found in regular, non-oleaginous yeast species. 
This exceptional lipid-producing ability is attributed to 
the specialized metabolic pathways present in oleaginous 
yeasts [8]. The key to the success of oleaginous yeasts in 
lipid production lies in their ability to efficiently convert 
various carbon sources, such as glucose, xylose, glyc-
erol, and even waste streams, into lipids. This is achieved 
through a series of metabolic processes that channel the 
carbon flux towards the synthesis and accumulation of 
triacylglycerols, the primary storage lipids in these organ-
isms [9, 10]. Oleaginous yeasts are highly advantageous 
over filamentous fungus and algae because of their capac-
ity to grow quickly on a wide range of substrates, their 
simplicity of cultivation, and their great responsiveness 
to process scaling-up [11]. The kind and quantity of lipid 
generated are significantly impacted by the fungus spe-
cies, growth conditions, and nutritional requirements [1]. 
Therefore, improving these conditions is a crucial first 
step since it leads to increased lipid production at a cost 

that is affordable for continued industrialization [12]. The 
fatty acid profile of single cell oils varies depending on 
the type of microbe, which makes them ideal for a wide 
range of industrial applications [13]. For example, human 
consumption and a few worthwhile industrial uses, such 
as the production of biodiesel, paints and coatings, deter-
gents, cleaning supplies, and cosmetics [14].

Agricultural wastes can be used as low-cost substrates 
for oleaginous fungi for lipid production [15–17]. In 
accordance with the Food and Agriculture Organization 
of the United Nations (FAO, 2023), Brazil continues to 
hold the position of being the foremost global producer 
of oranges, accounting for around 35% of the world’s 
overall production. This production was predicted to be 
over 50 million metric tons in the year 2022. The orange, 
which is the major citrus fruit, is among the top five key 
fruit commodities that dominate the global fruit industry. 
Approximately 40–60% of oranges designated for juice 
production are ultimately disposed of as garbage, encom-
passing the peel, segment membrane, and seed [18]. 
Citrus peel is the main component among these wastes, 
making up about 44% of the weight of the fruit mass [19]. 
Citrus waste is used in a variety of processes, includ-
ing the synthesis of fiber, pectin, flavonoids, and animal 
feed [20]. However, a sizable portion of this waste is still 
disposed of annually [21]. This results in issues with the 
environment and economy, including increased trans-
portation costs, a shortage of disposal sites, and an accu-
mulation of material with a high organic content [22].

Consequently, it is critical to transform these wastes 
into products with added value by either utilizing extrac-
tion and purification procedures to recover bioactive 
components or utilizing microbial fermentations to use 
these wastes as a substrate for the synthesis of green 
chemicals [23]. Thus, it would be ideal to find more 
sustainable and efficient ways to use orange peel waste.
Numerous papers discuss the use of orange peel as a sub-
strate for the manufacture of SCO.

The utilization of orange peel as a substrate for the 
production of lipids by oleaginous yeasts is a promis-
ing approach that can contribute to the development of 
more sustainable and circular bioeconomy models [24]. 
Orange peel is an abundant agricultural waste product 
generated in large quantities by the citrus processing 
industry, making it an attractive and low-cost feedstock 
for microbial lipid production [25]. The composition of 
orange peel consists predominantly of cellulose, hemi-
cellulose, pectin, and simple sugars, including glucose 
and fructose. These carbohydrate compounds can func-
tion as viable carbon sources for the proliferation and 
lipid buildup of oleaginous yeasts. However, the intricate 
structure and composition of orange peel necessitate pre-
treatment and hydrolysis procedures in order to facilitate 
the accessibility of sugars for microbial utilization [26]. 
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There is not enough knowledge on marine yeasts and 
their lipid contents as dietary supplements when it comes 
to lipid production. The overall lipid content and the 
composition of cellular fatty acids in a particular yeast 
strain can be greatly impacted by adjusting growing cir-
cumstances, such as temperature, pH, and other miner-
als in addition to carbon input [27]. Thus, the objective 
of this study was to isolate and identify oleaginous yeasts 
capable of accumulating substantial amounts of lipids. 
Additionally, it aimed to utilize orange peel as a growth 
substrate for these yeasts and to optimize lipid produc-
tion through Taguchi design. This substrate has not been 
widely explored in the previous literature, especially for 
the oleaginous yeasts. Moreover, to enhance the lipid 
production using repeated-batch fermentation.

Materials and Methods
Sampling and isolation of yeasts
Samples of seawater were collected from Abu Qir Bay, 
located in the Mediterranean Sea near Alexandria, Egypt. 
The collected specimens were placed in a refrigerator at 
4  °C and transferred to the laboratory using sterile pro-
cedures. Isolation of yeast on Yeast extract, Peptone, 
Dextrose (YPD) medium (1% yeast extract, 2% peptone, 
2% dextrose) was carried out according to method used 
by Yu et al. [28] with minor modifications. YPD medium 
supplemented with 0.01% (w/v) ampicillin (Sigma-
Aldrich, St. Louis, MO, USA) and 0.01% (w/v) strepto-
mycin (Sigma-Aldrich) to prevent bacterial growth was 
prepared and sterilized. Seawater samples were trans-
ferred to surface of YPD plates, then incubated at 25 oC 
for 7 days. During this period, individual yeast colonies 
were picked and transferred to fresh YPD to isolate pure 
cultures. Yeast strains were suspended in 30% glycerol 
(v/v) and stored at − 80 °C.

Screening for lipid production by yeast isolates
All yeast isolates were screened qualitatively for lipid 
accumulation using a Nile-red staining assay [29, 30]. 
The yeast biomass was incubated with 0.5 ml of 0.1 mM 
phosphate buffer saline (PBS) pH 7.4 and 0.05  ml of 
Nile-red solution in the absence of light. After a dura-
tion of 30 min, a thin layer was formed on a pristine glass 
slide and left to dry in the air. Fluorescence microscopy 
(Olympus BX 40) was utilized for the examinations.

Identification of the most promising lipid-producing 
isolate
Morphological identification
The yeast’s morphological properties were examined and 
recorded. The morphological characteristics include both 
macroscopic characteristics of the colonies, such as col-
ony color and appearance, as well as microscopic exami-
nation [31, 32]. The light microscope was used to observe 

the microscopic features. YPD colonies were selected and 
streaked onto CHROM agar® plate to detect the species 
of Candida. The plates were then incubated at 37 °C for 
48 h.

Molecular identification
The preparation of yeast cells involves the resuspen-
sion of 50–100 mg in isotonic buffer. The following step 
involves the addition of 750 µl of BashingBead™ Buffer to 
the mixture in a ZR BashingBead™ Lysis Tube. For a mini-
mum of five minutes, the tube is bead beater-secured and 
processed at maximal speed. The vial is, subsequently, 
centrifuged at 10,000 xg for 1  min. The supernatant is 
centrifuged at 8,000 xg for 1 min after being transferred 
to a Zymo-Spin™ III-F Filter. The filtrate is supplemented 
with Genomic Lysis Buffer, and 800 µl of the mixture is 
transferred to a Zymo-Spin™ IICR Column. The process 
is repeated, and the column is filled with 200 µl of DNA 
Pre-Wash Buffer and 500 µl of g-DNA Wash Buffer. The 
column is then centrifuged at 10,000 xg for 1  min after 
each addition. The study used 28S rRNA primers for 
PCR, with a reaction volume of 50 µL. The primers were 
annealed at 50  °C for one minute, denaturated at 95  °C 
for one minute, and elongated at 72 °C for two minutes. 
The final extension stage was carried out for 10  min at 
72  °C. A negative control was sterile deionized water. A 
red safe dyed agarose gel was made using 1X TBE buf-
fer. The bands produced were observed under UV light. 
PCR products were stored at 20  °C before use [33, 34]. 
The ABI 3730xl sequencer was used to sequence the PCR 
product.

Orange peels used
Orange peel waste used in this study was collected from 
Nasser Agricultural Secondary School in Damanhur, 
Behera Governorate, Egypt. The percentages of carbon, 
hydrogen and nitrogen was determined for the orange 
peel waste using elemental analyzer (Flash 2000 thermo 
scientific).

Boiling orange peels is a straightforward and cost-
effective method to prepare them for utilization as a 
carbon source. Boiling orange peels offers a simple and 
economical method for preparing them as a carbon 
source. The orange peels undergo a washing and drying 
process at a temperature of 50  °C to remove contami-
nants and enhance the ability of solvents to interact with 
the peels. The peels are pulverized into a fine powder to 
increase the surface area, which enhances the extraction 
process during boiling. The powder is simmered in water 
for a duration of 15 to 30 min to extract the components 
that are soluble in water. Once the extract has cooled, it 
is separated from the peels using a cheesecloth filter [35].
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Dry weight determination, lipid extraction, and lipid 
quantification
After the incubation period, the mycelia from the culture 
broth were collected in triplicates using a simple filtra-
tion process with Whatman No.1 filter paper. The dry 
biomass weight was measured using gravimetric analysis 
and reported in grams per liter (g/l) as described by Devi 
et al. [36]. Lipid extraction was performed following the 
method described by Bligh, Dyer [37]. In this method, 
50 ml of cultured cells were subjected to centrifugation at 
5000 xg for 5 min. The resulting pellets were then washed 
twice with 50 ml of distilled water. Subsequently, the pel-
lets were added to 10  ml of 4  M HCl and incubated at 
60  °C for two hours to break down the cell wall of the 
yeast strains. The acid-hydrolyzed solution mentioned 
above was continuously agitated at room temperature 
using 20  ml of solvents (a mixture of chloroform and 
methanol in a ratio of 2:1, volume to volume) for 3  h. 
Subsequently, the solution underwent centrifugation at a 
force of 2000 times the acceleration due to gravity for a 
duration of 5 min at room temperature to segregate the 
organic lower phases from the aqueous upper phase.

The lipids included in the organic lower phase were 
separated by filteration using filter paper and subse-
quently dried in an oven at a temperature of 60 °C until 
a consistent weight and dry biomass were obtained. 
Methanol was employed to destabilize the phospho-
lipid layer, facilitating the dissolution of lipid droplets 
and subsequent recovery of the lipids by the non-polar 
solvent, chloroform. The weight of the dehydrated lipid 
was determined using the gravimetric technique. The 
total lipid yield, represented as a percentage of the total 
weight, was determined using the following equation:

 

Total lipid extraction

yield (%) = weight of lipid extracted (g)
weight of yeast biomass

× 100

Optimization of lipid production using a statistical design
The experimental data obtained were subjected to anal-
ysis using Minitab 18 Statistical Software. A statisti-
cal optimization approach was employed to choose six 
criteria for media analysis. A total of 25 experiments 
were done in accordance with the Minitab 18 design. 
All tests were performed in triplicate, and the resulting 

experimental data were reported as the averages of three 
replicates. The use of the Taguchi design was imple-
mented in order to optimize the factors that impact lipid 
synthesis, encompassing the utilization of orange peel as 
a carbon source, nitrogen supply, inoculum size, incu-
bation length, and pH adjustments. Table  1 presents a 
comprehensive overview of various factors influencing 
lipid production. These factors encompass differences in 
orange peel concentrations (50, 75, 100, 125, and 150 g/l), 
inoculum sizes (2, 4, 6, 8, and 10% v/v), initial pH values 
(5, 6, 7, 8, and 9), incubation period (2, 4, 6, 8, and 10 
days), peptone concentrations (1, 3, 5, 7, and 9 g/l), and 
yeast extract concentrations (1, 2, 3, 4, and 5 g/l).

Repeated batch fermentation
Repeated batch fermentations of C. parapsilosis Y19 for 
lipid production was carried out according to method 
used by Alrefaey et al. [38]. A 500 mL flask with a work-
ing capacity of 100 mL was utilized, employing optimum 
medium components and conditions in accordance with 
the Taguchi design scheme. The fermentations were per-
formed utilizing a concentration of 75 g/l for orange peel, 
5 g/l for yeast extract, 7 g/l for peptone, a temperature of 
30 °C, an inoculum size of 2% (v/v), and an initial pH of 
5.0. Following each run, the medium underwent centrif-
ugation at 5000 rpm for 10 min. The cells derived from 
each batch  (run) were used for tinoculating the subse-
quent batch (run).

GC-MS analysis
The obtained lipids were treated with methanolysis, as 
described by Amaretti et al. [39], with the objective of 
transforming the fatty acids into fatty acid methyl esters 
(FAMEs). The resultant FAMEs were further assessed 
utilizing a Gas Chromatography 1310-ISQ mass spec-
trometer manufactured by Thermo Scientific, located 
in Austin, TX, USA. The spectral data was obtained 
within the mass-to-charge ratio (m/z) range of 40 to 
1000, employing the full scan mode. An adjustment was 
made to the temperature of the ion source to 200 °C. The 
identification of the components was achieved by com-
paring their retention lengths and mass spectra with 
datasets from the WILEY 09 and NIST 11 mass spectral 
databases.

Results and Discussion
Isolation and screening of oleaginous yeasts
Twenty yeast isolates Y1-Y20 were obtained from sea-
water marine sample, Abu Qir, Alexandria, Egypt. Nile 
Red is a widely used fluorescent dye for the detection 
and visualization of lipid bodies (lipid droplets) in cells, 
many reported articles used of Nile-red fluorescent dye 
for detection of lipid accumulation [29, 40, 41]. In the 
current study, qualitative screening of all yeast isolates 

Table 1 Different factors and their levels for lipid production
Factor Level 1 Level 2 Level 3 Level 4 Level 5
Orange Peel (g/l) 50 75 100 125 150
Incubation period (days) 2 4 6 8 10
Initial pH value 4 5 6 7 8
Yeast extract (g/l) 1 2 3 4 5
Peptone (g/l) 1 3 5 7 9
Inoculum size (%, v/v) 2 4 6 8 10
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for lipid accumulation was carried out according to 
detection of lipid bodies using fluorescence microscope. 
Results revealed that, isolate Y19 is the highest for lipid 
accumulation, where Fig.  1 shows presence of frequent 
lipid bodies that indicates high lipid accumulation by 
this isolate. Thus, isolate Y19 was selected for the further 
experiments. Kraisintu et al. [42] reported that, Rhodo-
sporidium toruloides DMKU3-TK16 was the highest for 
lipid accumulation among other yeast according to Nile-
red dye method. Vinarta et al. [43] used Nile-red fluores-
cence method for lipid accumulation of yeasts isolated 
from Antarctica where observed lipid bodies in most 
yeast isolates under fluorescence microscope.

Identification of yeast isolate Y19
The yeast isolate Y19 exhibited both macroscopic and 
microscopic characteristics that confirmed its high 
potency. Y19 displayed a yellowish-white hue on YPD, a 
faint to glossy appearance, and an oval to spherical form 
with bipolar budding, as depicted in Fig. 2A&C. Also, the 
colonies appeared white to creamy in color on CHROM 
agar®, this confirms the isolate Y19 is resemble to Can-
dida parapsilosis (Fig. 2B).

In order to validate the morphological identification, 
the present study conducted a molecular identification 
of the yeast isolate Y19 by analysing the 28S rRNA gene 
sequence. According to BLAST analysis, the selected 
yeast isolate Y19 was similar to Candida parapsilosis 

isolate MCZ19 (MT001255.1) with 99.4%. Then, Candida 
parapsilosis isolate Y19 was deposited in Gene-bank with 
accession number PP938871.1 (Fig.  2D). Many studies 
reported Candida parapsilosis has ability to accumulate 
lipids [44–46]. Nguyen and Nosanchuk [45] reported 
that, C. parapsilosis has some enzymes such as fatty acid 
desaturase (OLE1) and fatty acid synthase (FAS2) which 
enable the microorganism to accumulate lipids.

Substrates for lipid production from C. parapsilosis Y19
Common oleaginous species produce high quantities 
of lipids include Y. lipolytica, R. glutinis, L. starkeyi, and 
C. curvatus [47–51]. Previous literatures reported that 
Candida species are oleaginous yeasts having the ability 
to produce lipids more than 20% of their cell dry weight 
[52–55]. In this study, carbon, hydrogen and nitrogen 
were determined for orange peel waste, where results 
illustrated that the percentages were 46.5, 11.0 and 2.5%, 
respectively. In the current study, C. parapsilosis Y19 
was grown on glucose 60 g/l and pretreated orange peel 
100  g/l as an alternative cheap carbon source for lipid 
production as shown in Table  2. Results revealed that, 
lipid content of C. parapsilosis isolate Y19 grown on 
glucose was 25.7% and total lipids was 1.84  g/l indicat-
ing that C. parapsilosis isolate Y19 is oleaginous yeast. 
On the other hand, C. parapsilosis isolate Y19 grown on 
pretreated orange peel produced lipids 1.14 g/l with lipid 
content of 23.0%. Oleaginous yeasts are a group of yeast 
species that have the ability to accumulate more than 
20% of the yeast’s dry cell weight [56]. Thus, C. parap-
silosis isolate Y19 is considered oleaginous where could 
accumulate lipids more than 20% of cell dry weight in the 
case of glucose and orange peel. Orange peel, an abun-
dant agricultural waste product, has been explored as a 
potential low-cost substrate for the cultivation of oleagi-
nous fungi. These fungi, such as R. toruloides NRRL 1091 
and C. laurentii UCD 68–201 have the ability to convert 
the sugars and other nutrients present in orange peel into 
valuable lipids that can be used for biofuels, oleochemi-
cals, and other applications [57, 58].

The metabolism of lipid production in yeasts involves 
several key biochemical pathways that facilitate the 
conversion of carbon sources into fatty acids and tri-
glycerides. Yeasts primarily utilize fatty acid synthesis 
pathways, where acetyl-CoA serves as a central metabo-
lite. During growth on substrates such as orange peel, 
C. parapsilosis can efficiently convert sugars into acetyl-
CoA through glycolysis and the citric acid cycle [59]. The 
accumulated acetyl-CoA is then directed towards fatty 
acid synthesis, which occurs in the cytoplasm via the 
fatty acid synthase complex. Additionally, the regulation 
of lipid production is influenced by environmental fac-
tors, including nutrient availability and the presence of 
specific carbon sources [59–61].

Fig. 1 Lipid bodies produced by yeast isolate Y19 under fluorescence mi-
croscopy using Nile-red dye
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Statistical optimization of lipids production by Candida 
parapsilosis using Taguchi design
Oleaginous yeasts can retain and accumulate cellular 
lipids if cultivation nutrients run out, provided that the 
carbon source remains available. As a result, the carbon 
is taken up by the yeasts and is assimilated into the cells 
as lipid droplets [56]. The Taguchi design approach is a 
powerful tool for optimizing lipid production in vari-
ous systems [62]. By applying this statistical method, 
researchers can systematically identify the critical param-
eters that influence lipid yield and determine the optimal 
combination of these factors [63]. This approach typically 
involves conducting a series of experiments based on an 
orthogonal array, which allows for the efficient evaluation 

of multiple variables simultaneously [64]. The Taguchi 
method enables the identification of the most signifi-
cant factors affecting lipid production, such as nutrient 
concentrations, pH, temperature, and cultivation time, 
and the determination of their optimal levels, leading to 
enhanced lipid yields [65, 66].

A L25 orthogonal array was designed for optimizing 
various growth factors for lipid production by C. parap-
silosis isolate Y19 as shown in Table 1. Six factors; orange 
peel, peptone, yeast extract, inoculum size, pH and time 
were included in the Taguchi design to detect the best 
level for each factor in one experiment. Previous stud-
ies reported that, the incubation temperature at 30 °C is 
the optimum for lipid production from yeasts [67, 68]. 
The growth temperature of oleaginous microorganisms 
affected the fatty composition and degree of saturation of 
the accumulated TAGs, the lipid concentration and fatty 
acid profile [69]. Fermentation at high temperatures pro-
duces more saturated than unsaturated fatty acids, while 
incubation at low temperatures generally favored the 

Table 2 Lipid production by C. parapsilosis Y19 strain on glucose 
and orange peel
Carbon source Biomass (g/l) Total Lipid (g/l) Lipid content %
Glucose 7.16 1.84 25.7%
Orange peel 4.95 1.14 23.03%

Fig. 2 Routine identification (Surface growth of isolate Y19 on YPD (A), chrom agar (B) and isolate Y19 under light microscope 800X (C)) and phylogenetic 
tree of Candida parapsilosis isolate Y19 (D)
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production of unsaturated fatty acids [70, 71]. Glucose 
as a simple and expensive carbon source was replaced 
by low value orange peel waste to reduce the production 
costs. Table 3; Fig. 3 illustrates that run no. 9 was the best 
for lipid production, and this run supplemented with an 
orange peel concentration of 75  g/l at initial pH value 

of 5.0, an incubation period of 6 days, inoculum size 
2% (v/v), yeast extract 5 g/l, and peptone 7 g/l with fixed 
factor incubation temperature 30˚C which produced 
lipid 2.46 g/l, dry biomass 8 g/l, and lipid content 30.7%.

The Taguchi design can quantify the percentage of 
impact that each factor has on the lipid manufacturing 

Table 3 Taguchi design of the selected factors for lipid production by C. parapsilosis Y19 strain
Run no. Orange Peel 

(g/l)
Peptone 
(g/l)

Yeast extract 
(g/l)

Inoculum size 
(%, v/v)

Initial pH incubation 
period (days)

Biomass 
Conc.
(g/l)

Total lipids
(g/l)

Lipid 
con-
tent 
%

1 50 1 1 2 4 2 3.60 0.50 13.89
2 50 3 2 4 5 4 4.00 1.44 36.00
3 50 5 3 6 6 6 4.80 1.00 20.83
4 50 7 4 8 7 8 8.80 0.98 11.14
5 50 9 5 10 8 10 12.00 1.98 16.50
6 75 1 2 6 7 10 5.20 1.60 30.77
7 75 3 3 8 8 2 7.20 1.00 13.89
8 75 5 4 10 4 4 4.80 1.02 21.25
9 75 7 5 2 5 6 8.00 2.46 30.75
10 75 9 1 4 6 8 7.20 2.02 28.06
11 100 1 3 10 5 8 9.60 0.98 10.21
12 100 3 4 2 6 10 10.00 1.44 14.40
13 100 5 5 4 7 2 6.80 0.98 14.41
14 100 7 1 6 8 4 5.20 1.00 19.23
15 100 9 2 8 4 6 4.80 1.22 25.42
16 125 1 4 4 8 6 6.00 1.46 24.33
17 125 3 5 6 4 8 14.00 1.50 10.71
18 125 5 1 8 5 10 10.40 1.48 14.23
19 125 7 2 10 6 2 6.40 1.32 20.63
20 125 9 3 2 7 4 8.40 2.00 23.81
21 150 1 5 8 6 4 8.00 0.96 12.00
22 150 3 1 10 7 6 8.40 1.30 15.48
23 150 5 2 2 8 8 12.00 2.28 19.00
24 150 7 3 4 4 10 5.60 1.50 26.79
25 150 9 4 6 5 2 4.00 1.74 43.50

Fig. 3 Effect of orange peel, peptone, yeast extract, inoculum size, pH and incubation time on lipid production by Candida parapsilosis Y19 using Taguchi 
design
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process, allowing for the evaluation of their separate 
effects. The impact percentage for each factor was com-
puted in relation to the lipid production value in this 
experiment. Table 1 presents the impact of all six factors 
that were studied. It shows that peptone has the great-
est influence on lipid formation, with an effectiveness of 
22.4%. Also, the effectiveness percentage for lipid pro-
duction by Inoculum size, orange peel, incubation time, 
pH, and yeast extract were 19.7, 16.1, 15.9, 15.3 and 
10.2%, respectively. Furthermore, the main effect plots 
of factors on the production shown in Fig.  4 confirms 
results in Table  4 where peptone is the highest factor 
which affect lipid production by C. parapsilosis Y19 fol-
lowed by inoculum size. Also, yeast extract is the lowest 
factor affect lipid production.

The interactions between various levels of selected ele-
ments are crucial for determining the optimal level for 
each factor. The interaction between various levels of 
orange peel concentration and other parameters, reveal-
ing that an orange peel concentration of 75  g/l resulted 
in the highest lipid production (Fig.  5). In addition, the 

levels of peptone were combined with various levels 
of other components. It was shown that a yeast extract 
concentration of 7 g/l yielded the highest amount of lipid 
production. Additionally, the levels of yeast extract were 
examined in conjunction with various levels of other 
components. It was found that yeast extract concentra-
tion of 5 g/l yielded the highest lipid production, indicat-
ing that this was the optimal concentration. Furthermore, 
the size of the inoculum had a significant interaction with 
all levels of the other four parameters. It was shown that 
a 2%  (v/v) inoculum size was the optimal for lipid pro-
duction. When considered separately, both the levels of 
pH and incubation time showed interactions with various 
levels of other parameters. Specifically, a pH level of 5.0 
and an incubation duration of 6 days were found to be 
the most favorable conditions for lipid production.

Thangavelu et al. [52] used sago processing waste-
water as a substrate for growth of Candida tropicalis 
ASY2 for lipid production, where optimized conditions 
were 15.3  g/l of starch content, 0.5  g/l of yeast extract. 
Yong-Hong et al. [72] reported that, oleaginous yeast 

Table 4 Response table for effects of tested factors on lipid production by C. parapsilosis Y19 strain
Level Orange Peels

(g/l)
Peptone
(g/l)

Yeast extract
(g/l)

Inoculum Size
(%)

pH Time
(days)

1 1.18 1.1 1.26 1.736 1.148 1.108
2 1.62 1.336 1.572 1.48 1.62 1.284
3 1.124 1.352 1.296 1.368 1.348 1.488
4 1.552 1.452 1.328 1.128 1.372 1.552
5 1.556 1.792 1.576 1.32 1.544 1.6
Delta 0.496 0.692 0.316 0.608 0.472 0.492
Rank 3 1 6 2 5 4
Effectiveness % 16.124 22.496 10.273 19.766 15.344 15.997

Fig. 4 Main effects of orange peel, peptone, yeast extract, inoculum size, pH and incubation time on lipid production by C. parapsilosis Y19 strain
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Rhodosporidium toruloides have ability to accumulate 
high lipid content with these optimal conditions: glucose 
70 g/l, yeast powder 0.75 g/l, pH 6.0, inoculum 10% for 5 
days at 30oC.

Enhancement the lipid production by repeated batch 
fermentation
Repeated batch fermentation is a fermentation process 
where the same fermentation vessel is used for multiple 

successive batches, with the addition of fresh substrate 
and inoculum between each batch [73]. Results indi-
cated that repeated batch fermentation is a promising 
strategy for the production of lipids from C. parapsilo-
sis that was conduced successfully for 7 runs. The maxi-
mum dried biomass, total lipids, and lipid content were 
12.2 g/l, 4.78 g/l, and 39.1%, respectively obtained in the 
fourth run  (Fig.  6). In their study, Dashti, Abdeshahian 
[74] highlighted the significance of both harvesting time 

Fig. 6 Lipid production from C. parapsilosis Y19 using repeated batch fermentation at different incubation times

 

Fig. 5 Interactions between different levels of orange peel, peptone, yeast extract, inoculum size, pH and incubation time for lipid production by Candida 
parapsilosis Y19 strain
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and harvesting volume in determining the efficiency of 
repeated batch culture. Sriphuttha et al. [75] employed 
repeated-batch fermentation to produce lipids from Rho-
dotorula paludigena using crude glycerol as a substrate. 
The results of their study indicated that the biomass and 
lipid content were 38.2 g/l and 38.2%, respectively, after 
batch no. 4. Wang et al. [76] used repeated-batch fermen-
tation to produce lipids from the oleaginous yeast Tricho-
sporon cutaneum CX1 strain, which had a lipid content of 
approximately 30%.

Comparison of different strategies used for lipid 
production from C. parapsilosis Y19
The enhancement of lipid production from oleaginous 
yeasts is important for the development of sustainable 
alternatives to fossil-based fuels and chemicals [77]. This 
can be achieved by employing various strategies, such 
as fermentation strategies and optimization of cultiva-
tion conditions. In the current study, different strategies 
were used; batch without optimization, batch with sta-
tistical optimization using RSM and repeated batch fer-
mentation as shown in Table 5. The results of the batch 
fermentation of C. parapsilosis Y19 demonstrated that 

the dried biomass, total lipids, and lipid content were 
4.95 g/l, 1.14 g/l, and 23.0%, respectively. Moreover, sta-
tistical optimization of cultural conditions of C. parap-
silosis Y19 with batch fermentation increased the lipid 
quantity more than two folds (2.15 times; 2.46  g/l) and 
lipid content to 1.33 fold (30.7%) compared to batch cul-
ture. Furthermore, the repeated batch fermentation of C. 
parapsilosis Y19 was the best for lipid production where 
lipid quantity increased 4.19 folds (4.78 g/l) compared to 
batch culture. Also, the lipid content was increased by1.7 
fold (39.1%) compared to batch culture.

In comparison with various oleaginous yeast strains, 
Candida parapsilosis Y19 demonstrated notable lipid 
production and productivity under repeated batch 
fermentation in shake flasks using orange peel as the 
feedstock. Specifically, this strain achieved a biomass 
concentration of 12.2  g/l, with a lipid yield of 4.78  g/l, 
corresponding to a lipid content of 39.1% and a lipid pro-
ductivity of 0.02 g/L/h. These values were compared with 
other yeast species cultivated under different modes and 
conditions. Table  6 show a comparison table including 
lipid productivity and other performance metrics (g/L/h) 
by various oleaginous yeasts.

For instance, S. pararoseus KM281507 cultivated 
with crude glycerol yielded a biomass of 10.6  g/l and a 
lipid content of 30.7% in a 3-L bioreactor during batch 
culture, reaching a productivity of 0.02  g/L/h [78]. In 
shake flask batch culture, R. toruloides ATCC 10,788, 
using crude glycerol as the feedstock, achieved a sub-
stantially higher lipid yield of 11.2  g/l and lipid content 
of 53.2%, with a productivity of 0.06  g/L/h [79]. Mean-
while, Y. lipolytica cultivated in a two-stage cultivation 
using dissolved oxygen shift in a 5-L bioreactor using 
crude glycerol, reported a lipid yield of 13.6 g/l and lipid 

Table 5 Lipid production from C. parapsilosisY19 using different 
strategies
Strategy Dry biomass 

g/l
Lipid g/l Lipid con-

tent %
Batch fermentation 4.98 ± 0.125c 1.14 ± 0.035c 23.03 ± 0.115c

Batch fermentation 
using RSM

8.00 ± 0.086b 2.46 ± 0.043b 30.75 ± 0.229b

Repeated batch 
fermentation

12.20 ± 0.087a 4.78 ± 0.053a 39.18 ± 0.176a

Letters a, b & c mean significance power where P-value was less than 0.05. R-sq, 
R-sq(adj), R-sq(pred) were 99.94%, 99.92% & 99.87% for lipid g/l respectively

Table 6 A comparison table including lipid productivity and other performance metrics by various oleaginous yeasts
Yeast strain Feedstock Culture mode Cultivation mode Biomass 

Conc. 
(g/l)

Lipid 
yield 
(g/l)

Lipid 
Content 
(%)

Lipid Pro-
ductivity 
(g/L/h)

Ref

Rhodotorula
taiwanensis
AM2352

Corncob
hydrolysate

5-L bioreactor Batch culture 33.9 16.9 50.1 0.14 [83]

Rhodotorula glutinis Molasses shake flask Batch 10.3 8.08 45.0 0.03 [84]
R. toruloides Sugarcane 

molasses
1 L-bioreactor Fed-batch 22.0 13.4 61.0 0.25 [85]

S. pararoseus KM281507 Crude glycerol 3-L bioreactor Batch culture 10.6 3.26 30.7 0.02 [78]
R. toruloides ATCC 10,788 Crude glycerol Shake flasks Batch culture 21.1 11.2 53.2 0.06 [79]
Y. lipolytica Crude glycerol 5-L bioreactor Batch culture with 

two-stage cultiva-
tion using dissolved 
oxygen shift

25.8 13.6 52.7 0.20 [80]

C. curvatus Raw Glycerol shake flasks Batch culture 4.50 1.25 27.7 0.01 [81]
Candida viswanathii Raw glycerol 7-L bioreactor Fed-batch culture 17.0 5.60 32.9 0.03 [82]
Candida parapsilosis Y19 Orange peel Shake flasks Repeated batch 12.2 4.78 39.1 0.02 This 

work
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productivity of 0.20  g/L/h, with a 52.7% lipid content 
[80]. Furthermore, C. curvatus, under batch culture in 
shake flasks, using raw glycerol, yielded 4.5  g/l biomass 
with 27.7% lipid content and a productivity of 0.01 g/L/h 
[81]. Finally, Candida viswanathii, in fed-batch culture 
using a 7-L bioreactor with raw glycerol, recorded a lipid 
yield of 5.6 g/l, lipid content of 32.9%, and productivity of 
0.03 g/L/h [82]. In a broader comparison with other ole-
aginous yeast strains, Rhodotorula taiwanensis AM2352, 
cultivated in a 5-L bioreactor with corncob hydrolysate 
as the feedstock, achieved a biomass concentration of 
33.9 g/l, lipid yield of 16.9 g/l, lipid content of 50.1%, and 
lipid productivity of 0.14 g/L/h [83]. Rhodotorula glutinis, 
in shake flask batch culture using molasses as the feed-
stock, yielded a biomass of 10.3  g/l with 45% lipid con-
tent and a productivity of 0.03  g/L/h [84]. Similarly, R. 
toruloides, cultivated in a 1 L-bioreactor under fed-batch 
conditions with sugarcane molasses, showed a biomass of 
22.0 g/l, lipid yield of 13.4 g/l, and lipid content of 61%, 
achieving a lipid productivity of 0.25 g/L/h [85].

Fatty acid composition of the lipid produced from C. 
parapsilosis Y19
The fatty acid profile of fungal lipids is important in vari-
ous biotechnological and medical applications. Fungi 
are known to produce a diverse array of lipids, including 
triacylglycerols, phospholipids, and sterol esters, which 
exhibit unique fatty acid compositions [86]. Additionally, 
the fatty acid profile of fungal lipids can influence their 

physical and chemical properties, impacting their suit-
ability for use in biofuel production, food and feed addi-
tives, and the development of novel pharmaceutical and 
cosmetic formulations [87]. Understanding and exploit-
ing the diverse fatty acid profiles of fungal lipids is, there-
fore, a crucial aspect of leveraging the biotechnological 
potential of these microbial resources [88]. In the current 
study, the most promising oleaginous C. parapsilosis Y19, 
which produced the highest quantity of lipids in the case 
of batch fermentation using RSM and repeated batch 
fermentation was analyzed for fatty acid profiles using 
GC-MS as shown in Table 7. Results revealed that, fatty 
acid profile of lipid produced from C. parapsilosis Y19 
using batch fermentation with RSM showed the satu-
rated fatty acids (SFAs) at 24.4% while unsaturated fatty 
acids (USFAs) were 75.5%. Likewise, fatty acid profile 
when using repeated-batch fermentation exhibited SFAs 
25.1% and USFAs 74.8%. Moreover, total poly unsatu-
rated fatty acids (PUFAs) of the produced lipid in the 
case of batch with RSM and repeated batch were 46.1 and 
26.0%, respectively. Also, total MUFAs in the two strat-
egies were 29.4 and 48.7%, respectively. Furthermore, in 
the batch with RSM, the dominant fatty acid among all 
fatty acids was linoleic acid with 46.1% followed by oleic 
acid 28.6%. Additionally, in repeated-batch fermentation, 
the major fatty acid was oleic acid with 45.0% followed by 
linoleic acid 26.0%.

Plants are a typical source of linoleic acid (LA) which is 
especially beneficial when present in seed oils. The only 
important omega-6 fatty acid that needs to be consumed 
every day through diet is linoleic acid [89]. Elongase and 
desaturase enzymes can be used to convert linoleic acid 
into many other omega-6 fatty acids. As a result, linoleic 
acid acts as a precursor for the synthesis of other n-6 acyl 
species and important fatty acids such as arachidonic 
acid [90]. Thangavelu et al. [52] reported that, Fatty acid 
methyl esters (FAME) profile of lipid produced from C. 
tropicalis has oleic acid as a major fatty acid with 41.3%, 
but it contains linoleic acid with very low quantity 1.70%. 
Katre et al. [91] used cooking oil waste as substrate for 
lipid production from oleaginous yeast Y. lipolytica, 
where fatty acid profile showed oleic and linoleic acids 
with 25.5 and 30.6%, respectively. Horincar et al. [92] 
reported that, lipids from Y. lipolytica contain oleic and 
linoleic acids at 30 and 20%, respectively.

Conclusion
This study demonstrates the potential of Candida parap-
silosis Y19 as a promising oleaginous yeast for lipid pro-
duction. The strain’s ability to efficiently utilize orange 
peel, a cost-effective and readily available substrate, 
highlights its adaptability and potential for sustainable 
biofuel production. Optimization through response sur-
face methodology (RSM) and the implementation of 

Table 7 Fatty acid profiles of C. parapsilosis Y19 of lipids 
produced at batch with RSM and repeated-batch fermentations
Fatty acid Type Fatty acid (%) of lipids pro-

duced by:
Batch fermenta-
tion with RSM

Repeated 
batch fer-
mentation

Myristic acid (C14) SFA -- 0.30
Palmitoleic acid (C16) MUFA 0.29 0.65
Palmitic acid (C16) SFA 13.36 14.38
Cis-10 heptadecanoic 
acid (C17)

MUFA 0.56 2.62

Margaric acid (C17) SFA 0.59 2.49
Linoleic acid (C18) PUFA 46.10 26.03
Oleic acid (C18) MUFA 28.61 45.04
Stearic acid (C18) SFA 9.39 6.44
Arachidic acid (C20) SFA 0.44 0.47
13-Docosenoic acid (C22) MUFA -- 0.47
Behenic acid (C22) SFA 0.29 --
Lignoceric acid (C24) SFA 0.37 0.89
Cerotic acid (C26) SFA -- 0.22
SFAs 24.44 25.19
USFAs 75.56 74.81
MUFAs 29.46 48.78
PUFAs 46.1 26.03
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repeated-batch fermentation significantly enhanced lipid 
yield, reaching 4.78 g/l and a lipid content of 39.1%. The 
repeated-batch fermentation strategy proved particu-
larly effective, significantly increasing lipid production 
compared to batch culture. Furthermore, the favorable 
fatty acid profile of the produced lipids, rich in unsatu-
rated fatty acids like oleic and linoleic acid, suggests their 
potential for diverse applications, including pharmaceu-
ticals, biofuel production, and the synthesis of valuable 
oleochemicals. These findings emphasize the versatil-
ity and desirability of C. parapsilosis Y19 as a source for 
sustainable lipid production. This study demonstrates the 
potential of using waste-derived carbon sources, specifi-
cally orange peel, for sustainable lipid production, which 
supports both biofuel development and waste valoriza-
tion. By substituting traditional carbon sources, orange 
peel reduces costs and aligns with environmental goals, 
offering a practical model for industrial microbiology. 
Future works should be focused on scaling and economi-
cally optimizing these processes, with potential appli-
cations including biodiesel production and the use of 
omega-3-rich linolenic acid in food and pharmaceuti-
cals, highlighting oleaginous yeasts’ value in sustainable 
biotechnology.
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