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We discuss in this paper arithmetic properties of the
function A(n) = ΣpaUnap. Asymptotic estimates of A(n)
reveal the connection between A(n) and large prime factors
of n. The distribution modulo 2 of A(n) turns out to be an
interesting study and congruences involving A(n) are con-
sidered. Moreover the very intimate connection between
A(n) and the partition of integers into primes provides a
natural motivation for its study.

0. Introduction* Let a positive integer n be expressed as a
product of distinct primes in the canonical fashion n — ΠΓ=i Pf' Define
a function A(n) = Σ3U aiPi

( i ) The function A(n) is not injective. In fact for a fixed
integer m, the number of solutions in n to A(n) = m, is the number
of partitions of m into primes.

(ii) A(n) fluctuates in size appreciably. It is easily seen that
A(n) = n when n is a prime, while A(n) — O(log n) when n is a power
of a small prime. Actually the "average order" of A(n) turns out
(as a corollary to Theorem 1.1) to be π2n/Q log n. The term average
order is defined below.

(iii) The function A(n) is additive and one can expect it to take
odd and even values with equal frequency.

The term "average order" calls for some explanation. We follow
the usage in Hardy and Wright [6]. If f(n) is a function defined
on the positive integers we consider

Usually F can be expressed in terms of well behaved functions like
polynomials or exponentials and the like. That is we seek an asymp-
totic estimate for F in terms of these functions. Then we seek a
similar well behaved function g so that

F(x) = Σ fin) ~ Σ g(n) .
n^x nS.x

The function g may be thought of as the average order of /. For
instance if φ is the Euler function then

F(x) - Σ?(n) = ̂ ζ + O(x\ogx) ~ Σ ^T-

so the average order of φ(n) is 6w/7Γ2.
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276 K. ALLADI AND P. ERDϋS

It is surprising that the function A(n) with such nice arithmetic
properties has not been studied in detail. Besides the work of one
of us (KA; [1]) some of the other references are [4], [7], [8], [9] and
[10]. Of course the contents of this paper are different.

l Average order estimates of A(ri). Here and in what follows
the letter p (with or without subscript) shall always denote a prime.

So let n = ΠΓ=i J>f* and let Ω(n) = ΣΓ=i ai> ωM = r It i s a w e U
known result of Hardy and Ramanujan [6] that both Ω(n) and ω(n)
have average order log logn, which tells us that generally the
majority or prime factors occur only once. Applying this idea to
A(n) one expects it to have the same average order as A*(n) —
Σt=iP< I n this sum it is natural to believe that the largest prime
factor of niP^n) say) dominates the others so that A(n) and P^n)
have the same average order. In fact this can be deduced as a
corollary to Theorem 1.1 (where we prove much more) and the average
order of A(n) is π2n/6\ogn.

Let us assume without loss of generality that pλ < p2 < < pr.
TVIPΠ Ipt P (w\ — Ύί P(w\ — P (w IP (vtX\' P (w} — P (w IP (w\P (w\\ ptr»

and in general

Λ for k ^ Ω(n)

ιO for k > Ω(n) .

Thus Pk(n) is the fcth largest prime factor of n.

THEOREM 1.1. For all integers m ^ 1 we have

Σ P (w\ ~ V i A(ΎI\ — P (w\ — . . . — P (ΎI\\ r
(log x)m

where km > 0 is a constant depending only on m, and is a rational
multiple of ζ(l + 1/m) where ζ is the Riemann Zeta function.

LEMMA 1.2. If s > 1 and x a large real number then

Σ A = i + o( I ) .
P^X p8 (s — ΐjx'^Q.og x) \ ̂ "'(log xy I

Proof. The proof of Lemma 1.2 is given by a simple direct

method of using Stieltjes integrals, integration by parts and the

prime number theorem in the form

I 1 <τpl sy 1 _ I n I /v» \ ——
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for all 3^2. We have

Σ JL

_ + o( I

for δ ^ 2 because of (1.1). Now

f°°fr(y)-K(

(1.3)

c8 x log* a;

So (1.3) and (1.2) give

(1.4) Σ — = — ^ — +

vtέx ps jx ys log y

But then

dy _ 1 ,
+ o([

(s — ϊ)x" * log x \hyεlog2y

(s — l)x$ x log x \ xs ι log2 x

Clearly (1.5) and (1.4) prove Lemma (1.2)
The above lemma establishes the following result which will be

used often in the proof of Theorem 1.1.

LEMMA 1.3. Let m be a positive integer and s > 1, r ^ 1 be
given real numbers. Then for x and z sufficiently large real numbers
with #1+(1/m) < z < xZm we have

+ nι loglogjE
z/2ps logr (z/p) (s — V)xs~ι log x logr (z/x)

Proof. We break up the range of summation as

y
χiogBχ ps log7* (z/p) χioS

Bχ<pSz/2 ps \ogr

= σx + σ2 respectively

where B for the moment is a constant not specified. Now in σίf

log (z/p) = log (z/x) + O(log log x) so that
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1 _L n( l Q g l Q g x

log r (z/p) log r («/a?) V log
og log x \
α; logr (z/x))

because log (z/x) and log x are of the same order of magnitude. Now
the above estimate, together with Lemma 1.2 gives

σ = 1 + o(__Jog}ogx__\ ̂
(s — l ) ^ " 1 log x logr (z/x) V xs~ι log2 x logr (z/x) / "

To estimate σ2 again apply Lemma 1.2 to get

-i log a?. log(- l ) V

Comparing σx and σ2 we note that by a suitable choice of B Lemma
1.3 is true.

The crucial point in Lemma 1.3 is that by choice of z, log (z/x)
and log x are of the same order of magnitude.

An argument similar to Lemma 1.2 yields the following:

LEMMA 1.4. If s, r :> 0, then

+ o(
(log p)r (S + l)(log x)r+1 \logr+2x

We omit the proof of Lemma 1.4, since it is similar to Lemma
1.2. Here we have to consider

)g r p J2-lθg r p Ja- lθg r y

and compute just as we did in Lemma 1.2.
We now move on to the proof of Theorem 1.1. The proof involves

complicated estimates in several places and we shall elaborate in detail
the more important ones.

Proof of Theorem 1.1. We are first going to estimate ^n^xPm(n).
Let an integer n be written as n — kp1 pm, px<L p2<k ^ P
P,(k) <; pί9 and let

k = P*(n) = n

m.

P,(n) Pm(n)

We keep k — PZ(n) fixed and ask for those n <; x for which Pl(n) = k.
We sum Pm(n) over these n and finally sum over k. Actually only
small values of k will contribute to the principal term and large
values will be treated separately.

So let k be small. The word "small" will be explained below.
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Note that each pi can range from Px(k) up to the minimum of p< + 1

and x/kpm pi+1. So we shall break up the range of pi+1, and
discuss several cases, and in each of them we shall be able to decide
without ambiguity which of pi+1 and x/kpm pi+1 is smaller, thereby
determining the range of pt.

Case 1. Let p m <; Φx/k. Here the range of pi is between Px{k)
and pi+1 for i = 1, 2, , m — 1.

Case 2. Now let \/'xJk< p m ^ a?/fc. We have now several choices.

First we make pm_x <£ m~^x/kpm. Then the p* range from Px(k) to
p i + 1 for i = 1, 2, , m — 2.

3. Here \fx/k < p m ^ x/k and m ^x/kpm < pm_ r ^ 2>m. Here

we make pw_ 2 ^
 m~^^lkpmpm_ι so that p* ^ j>i+1 for i = 1, 2, , m — 3.

General case. We have Λ/#/A; < p Λ ^ a?/fc, m ^x/kpm < pm_1 ^

~x < pm_2 ^ p ^ , . ι+^x/kpm p< + 2 < p< + 1 ^ p ΐ + 2 with

n p,+ 1 so that p^ ^ p€, p,_2 ^ p^!, , p2 ^ p3 and
Pi ^ p a .

• etc.

So we have a total of m cases to consider. We sum these over
k ^ x% ε = l/m(m + 1) and one can check that the contribution of
Pi(fc) to each summation is negligible and so we omit writing it. We
elaborate this below.

(S _2

Σ
k<xε

Σ

Σ

Σ
k<xε pm

_Σ sχ/k

Σ ^ ̂

Σ Pi

Pm —

m v

Σ

Σ s

Σ
Pm<Ί>m~1-

• Σ

, \

Pm Pm~2--

Σ

Σ

Pi

PmPm

Σ

- 1 Pi

Pi
2

Σ

General term.

(S<) Σ .. _ Σ v v
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. Σ

Σ Σ Σ Σ Pi

Last term.

Σ y v y
k<x£ 71^

y y v
2Lι 2Lι Pi

We shall first obtain upper bound estimates for each (S^. Our
process will indicate how the terms grow and establishing the upper
bound first makes explanation later simpler when we take up asymp-
totic estimates and need upper bound estimates for errors.

We know from Lemma 1.4 that Σ P l ^ 2 p1 = O(pl/log p2). Now
another application of Lemma 1.4 gives

Thus taking the first i summations in (S^) gives a term

)
+ 1 ) I

(1.6) 01
^ (fcp pi+1)

1+a/ί)L(i, i, xlkpm pi+1

where L{i, j, x) = (log V x )j

We have to sum the term above over the variable pi+ι in the range
+^ pi+2 < pi+ί ^ pί+2. This is certainly less than if it is

summed in the interval * ̂ x/pm pi+2 < P*+i
We are going to apply Lemma 1.3 with z = x/kpm pi+2 and x

in lemma replaced by * ̂ x/kpm pi+2 which we will denote for the
moment by X. We can also assume z > X log5 X, where δ > 0 is a
suitably chosen large positive constant so that Lemma 1.3 is applicable.
For if z < X log8 X then we infer that

kpm pi+2 kpm pi

= O(log°' x)

so that the sum of Pn(n) for n ^ x over n satisfying the above
inequality is O(x log5' x) which is certainly of lower order of magnitude
compared certaini1i
3 Tr
0.000 0.000 0.000 rg0.000 rg
79.080 110.640 Td
0.0i
-0.112 -0.0353 10.300 Tf
0 Tsd
0.000 Tw
107.873 Tz
/F12Tw
/F13 5.607 Tf
-2ebw
/70 Tc
( log) Tj
/F12 5.150 Tf
5.Xsi68j
0.000 Tc
(e) Tj
ET270 Tw
/F13 10.300 Tf
0 Ts
( X.) Tj
6.942 Twy

 0 Tc
(e)886 10.300 Tf
0 Tsd
itud
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i+\,'*/kpm...pi+i<pi+1£Pi+2 (i + 1 ) ! (kpm pi+1)
1+Wi)L(i, ΐ , x/kpm pi+1)

(i + 1)! (ftp, p>+ 2)1 + ( 1 / < + 1 >L(i + 1, i + 1, a/fcpm • • pί+2)

, 0 / a 1 + ( 1 / < + 1 ) - loglogs \

^ (kpm p ί + 2 ) 1 + ( 1 / * + 1 ) L(i + 1, i + 2, a # p m ... p < + a )/

(i + 1)1 (kpm pi+,y+W)p\U2li)L(i + 1, i + 1, x/kpm .

Equation (1.12) needs some explanation. The first two terms on the
right are obtained by considering ΣJA<PJ AS regards Σ ΰ < ί ) . we dis-
tinguish two cases. The first is when B>Alogδ A (δsufficiently large,
say >w2). Now by Lemma 1.3 this sum is small compared to the
former and there is no harm in writing it in the form of the third
term on the right in (1.12). If A < B < A log5 A, then the log term
does not change appreciably and again Lemma 1.3 gives the third
term on the right of (1.12) as the leading term with the error being
absorbed in the O-term in (1.12). Note that the O-term in (1.12)
again has an extra factor of log in the denominator which as mentined
before is pulled through to give an error term O(x1+1/m log log x/logm+1x).
So what we are essentially saying is that we can forget the error
terms totally since (1.12) is the type of estimate we will meet
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(1.12). What we are summing in (1.13) is the term in (1.11). In
the process of going from (1.11) to (1.12) note that what has happened
is that i has been replaced by i + 1 for the variables and there is
an extra factor of i. So making the first j \ summations we get a
term which is

1)! (kpm pi+h+ίy
+^^L(i + j l f i + j l f x/kpm pj+h+ί)

We have to sum the term in (1.14) over the variable pί+j1+1 in the
summation indicated by the arrow above. Now by Lemma 1.3 we
get a term of the type of the third term in (1.12) with A replaced
by i + j \ . So we have

α 1 5 )

(ί + 1)! (kPm . p < + / l + l

x L(i + j \ + 1, i + j \ + 1, x/kpm pi+h+2) I

The only thing we have to observe in (1.15) is that the exponent
of pi+J1+2 is 1 + (2/i + JΊ), and the exponent of x has not changed
from (1.14) to (1.15). This affects the nature of the constant to
appear in the numerator of (1.16) below. What we get after the
next summation is

[i)(i + 1) (i + j\)x1+{1/i+^

(1 16) I (A i 1 \ ! (fan . . . γ, λi+d/ϊ + i !)/^ \i+(3/i+ii)

\ x L(i + ix + 2, i + Λ + 2, a?/fcpm pi+hΛ

Now (1.16) is the term in (1.15) with subscripts changed by 1 and
change of constants. So going to the end of j \ + iγ summations we
get

1)!

x L(i + i x + ix, i + ii + i w α;/fepm pt+h+il+1)t

Now when we sum (1.17) we are doing it in the range A < p < oo,
where A is a left limit. If we show that this summation leads to
a term similar to the one with which we started in (1.13) we are
done. It is indeed remarkable that this happens. For again by
Lemma 1.3 if we observe that

+ Ji (i + ii)(i + ii + ii + 1) ί + j \
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we find that the exponent of x which had remained constant for
these \ summations changes suitably to give a term

α i 8 x (constant)

\ x L(i + j1 + i, + 1, i + j , + i, + 1, x/kpm p<+,1+<1+2)

Now the term in (1.18) is just the term in (1.13) with i replaced by
i + j \ + iι + 1. So after iγ + j \ + 1 steps we are back in the same
situation. So everytime we choose a left bound in a summation, we
are back to the situation with which we started. But in the last
summation involuing pm, we have to choose the left bound. So
ultimately we get

where cQ is rational. Summing this over k < x'f using a method
similar to σx and σ2 in Lemma 1.3, gives

coζ(l
(log α;)w

Of course this is just one of the subcases of (SJ. Considering all
the subcases of (SJ we get c* rational and

cfζίl + λ)χ^
\ ml

(log α;)m

Since the summations involve positive quantities we infer ef > 0. So
summing over all the i from 1 up to m, gives a positive rational
cm so that the contribution from (Sλ) up to (Sm) is

(log x)m

So this is the contribution for k < x% ε > 0. If k > xε then

(1.20) Σ Pm(n) =

So (1.20) and (1.19) yield

(Λ OΛ\ ^mCl 1 i
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as shown by our investigation of error terms. Our theorem will be
proved if we show that

Σ {A(n) - P,{n) - PM Pm(n)} = o( Σ P.(
n£x \n^x

Observe that {A(n) - Pt(n) - P,(w) - - Pm(n)} = A(P*(n)) = A(k)
and A(k) :£ Ω(k)PM = Ω(k)Pm+ι(n) ^ nmm+l)Ώ(n). So

Σ {A(n) - P^n) - P2(n) Pm(n)} ̂  Σ n^^Ω(n)
n^x n^x

ιnm+1) Σ Ω(n))
nil /

m + 1 ) log log x)

because of (1.21). The proof of Theorem 1.1 is complete.

COROLLARY. The average order of A(n) is π2n/6 log n.

Proof. Set m — 1 in Theorem 1.1. Then there is only one case
to consider, namely (Sm) = {S^. So

%^x w^a; 12 log #

which gives the corollary.
It is clear that A(n) ̂  A*(n) ^ Pt(n) so that A*( ι̂) also has

average order π2n/6 log n.

THEOREM 1.5. The average order of A(n) — A*(n) is log log n.
To be more precise

Σ {A(n) - A*{n)} = x log log x + O(x) .
n£x

Proof. It is not difficult to see that

Σ {A(n) - A*(n)} = Σ PlΦ2] + Σ
2 ^

For if we write A(n) — A*(?i) = ΣiPa\\Λa — ̂ )v> then j> is counted
[x/p2] more times, giving the first term. If (a — l)p = 2p we count
only [x/p3] more times and so on. Now

= Σ -

= a; log log a? + O(x)
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and

So

which proves Theorem 1.5.

THEOREM 1.6. We have

Σ ίA*('n\ — P (w\ — P (n\ — . . . — P (r)"\\ ~ V P (w\
(log X)m

Proof. The theorem follows by combining Theorems 1.1 and 1.5.

THEOREM 1.7. For any fixed integer M, the set of solutions to
A(n) — A*(n) = M has a natural density > 0. (Note: A sequence
{an}n=i has a natural density δ(A) if lim^oo n/an = δ(A).)

Proof. Let us define an integer n to be powerful if n ~ Πί=i P?S
α̂  Ξ> 2, i = 1, 2, , r. - The set Sn of integers of the form n n',
(nf nr) = 1 and nr squaref ree has natural density

1_\
p2/

Consider a partition of M into primes as M — Σ*=i APi ^ n y integer
n with A(n) - A*(n) = M is of the form ΠΓ=i3>^<+1) Πj=i.?if where
(jj are primes different from pt. Consider a particular partition π3-
of M, as M = ΣΓ-i βiPί a n ( i the powerful integer mά = Πί=i P^ i + ι ϊ.
This partition generates a set of solutions which is the set of numbers
of the form m^m', (mj9 m

r) — 1, m' square free. This set denoted
by Smj has natural density d(Smj). Now the complete set of solutions
is given by

where p(M) is the number of partitions of M into primes. Thus
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U
p(M)

Σ
as Sm. (Ί Smj = 0 if i Φ j . In fact because of (1.23) and (1.24) the
density is a rational multiple of l/ζ(2) = 6/π\

2. Congruences involving A(n). We now recall some results in
[1]. For any integer m, the number of solutions to A(n) — m is the
number of partitions of m into primes. Note that A(n) = n if and
only if n is a prime or n = 4, so that it would be of interest to
study the congruence

(2.1) n = 0(mod A(n)) .

Gall a solution to (2.1) non-trivial if n Φ A(n) and let the nontrivial
solutions be called "special numbers". It is worth noting that if m
is fixed then the number of solutions to

(2.2) n Ξ 0(mod A(n)) , A(n) = m

is the number of partitions of m — A(m) into primes. So the number
of solutions to (2.2) is much less than the number of solutions to
A(n) = m, generally, and so one expects that special numbers are
rather rare. Let {ln} denote the sequence of special numbers. The
following can be proved (see [1]).

(1) The sequence {ln} is infinite.
(2) limn^A(ln)/ln = 0
(3) For any pair of integers a and 6, the number of solutions

to ln = α(mod b) is infinite.
(4) If π(x, 2) represents the number of twin primes ^x and

π(x, 2) — cx/log2 x then lim^oo ljln+1 = 1.
Denote by Sf{x) the number of ln <; x. We obtain bounds for

THEOREM 2.1. There exists a contant c>0 so that for all x^ e

= Q(
 x

\ e V 1 ° s χ l olog log x

Proof. As before P^n) denotes the largest prime factor of n.
By a result of deBruijn (see [2], page 54, equation 1.6), if ψ(xf y)
is the number of solutions <; x to P^n) < y then

(2.3) ψ(x, y) < CyX log 2

 ye—iog«-iogiog«+c2«

where y = ^1/w. Now if we set ^ = τ/log α /log log a?, then y is seen to
be e v ' i o g* l o δ l ΰ g a\ Also
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( } C l S l o g s log log S
py-i* v l o g x log log x — c$u

(2.4)

\el/2Viog»logloga; /

So we will restrict our attention to Pλ{n) > e

Vlosxloslosx for the number
of n not satisfying this is given by (2.4). We also assume that if
τ(n) is the number of divisors of n then

(2.5) τ ( n ) < e1/2VlO8XloslO8X .

For the number of integers not satisfying (2.5) is easily seen to be

(2.6)
\gl/2Vlogίcloglog«

because Σ τ(n) — O(x log x). So we confine ourselves to n <^ x satis-
fying (2.5) and Px{n) > e

VlO8Xloslosx. Let these numbers be denoted by
the sequence {wj. Denote by t the following

(2.7) _ 2 ί _ = t _ A(n<) = P ^ ) + il(ί) .

Pifa*)

Clearly as w< ̂  x we have

(2.8) ί < ajg-^ogsiogiog* #

Let ί for the moment be fixed. We have two possibilities arising
out of (2.7).

Case 1. A(t) = 0(mod P^nJ).
Since ί is fixed and we are seeking solutions to (2.7) it is clear

that the P^nJ are distinct and divide A(t). Also as we require
special numbers, t Φ 1 and so A(t) Φ 0. Thus the number of solutions
to Case 1 is at most O(log x), since t ̂  x.

Case 2. A(t)

Since we are interested in special numbers we require

(2.9) Ut = 0(mod A{nx)) = o(mod P^n,) + A(t)) .

But Case 2 implies that (A(t), Px(n^) — 1 which means (2.9) gives

(2.10) -JOji— = t = 0(mod P&i) + A(t)) .

Again A(t) + Piί^J are distinct when t is fixed, so that by our choice
of nif by (2.5) the number of solutions to (2.10) is less than
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Λl/2 vΊoga logloga;c>

Thus for fixed ί, the number of solutions to (2.7) in special numbers
is at most

X + g^^logβlogloga? __ Q/gl/2 Vloga; loglogz\

But by (2.8) we have an upper bound on the number of choices of
t. Thus the {ln} among the nt do not exceed

(2.11) Ύ x

vloga loglog E

But the number of integers not included among the {nt} is by (2.6)
and (2.4)

(2.12)

So (2.12) and (2.11) prove the theorem with any c < 1/2.
Now for a lower bound,

THEOREM 2.2. There exists a constant c' > 0 so that

vlogαloglogα

Proof. Let a? be a large real number and define z and k as
follows:

^ glogzlogloga^

(l )c ' Vi
\θgX

(log #)c* ' ' log log a?

where c4 > 0 is a constant to be determined soon. Consider the

number of A -tuples of primes <^z which clearly is \ ζ\ This can

be easily seen to be greater than

(π(z) - kf ^ (π(z) - kf ^ ( jww γ _ l
1 4 ) k! e* loβ* V (log α ) C 4 + V l o g α; log log x) eklogk

for sufficiently large x. Now let the product of these primes define
a sequence {%}, all <; zk which is seen to be

(2.15) zk = x

Vlogxlogloga;



290 K. ALL ADI AND P. ERDOS

Let us put c5 = c4 + 1 + ε, ε > 0 arbitrary. So we have at least
£e-c5viog*iogiog* distinct numbers < zk given in (2.15). Consider the
product of the first r-primes Vi' -Vr such that it is just greater
than zk2. We shall produce a number L so that

A(uspx ••• pr L) = p, - pr

so that uj-p1 - pr L is a special number. Clearly we need

(2.16) A(L) = Pl •.. pr - (P l + p2 + • - + pr)

By our choice of nj9 A(UJ) 5* zk and so the quantity in (2.16) is of
order zk2. If it is odd, use Vinogradov's theorem, and partition it into
three primes, and take their product to get L. Otherwise subtract
L and partition the rest into three primes and L is the product of
these primes. In any case L — O((zk2f) and so p2 - pr-L — O((zk2)5).
Now we want uj-p1 « pr-L ^ x. So choose c4 > 5 so that by (2.15)
the product uj-pί •• pr L ^ x. Now the number of repetitions
among urpι ••• pr-L is at most (zk2)4. So they are at least

(zk2Y

special numbers <^x, by our choice of c4 and «. So Theorem 2.2
holds with any c" > 10 + ε.

REMARK. The problem discussed in this section can be worded
differently. "How often can a sum of primes (not necessarily distinct)
divide their product?" That is we want ]Γ, a^Pi to divide Π Pi* where
each Pi has at repetitions. This is precisely of the problem of special
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for A(2'P'pί-p2 pr) = 2p.
One can show that for sufficiently large composite numbers n,

there exists m with m = 0(mod A(m)), A(m) = n and m/n square free
and prime to n. This follows from Vinogradov's theorem, and here
we partition n — A(n) into primes. It might be of interest to de-
termine (besides the primes), all the other n for which this is not
true.

3* Distribution modulo 2* First we shall show that A(n) is
uniformly distributed modulo 2, and the error is of the order of
the sum of the Mobius function M(x). Here we shall concentrate
on the function a(ri) = ( — l)Mn\ which is easily seen to obey a(m n) =
a(m)-a(n)Vm, n. Thus for any complex number s, with R e s > l ,
we have

= π (i - ^(P) V1 = 2S + 1

TV p / 2s - 1
(s l) y (i ^
V ' ' - i ns TV p / 2s - 1 ζ(s) *

Now as s^> 1+, the right side of (3.1) tends to zero, and so it is
natural to expect

(3.2) ^
n

We prove (3.2) in Theorem 3.2. But first we show that A(n) is uni-
formly distributed modulo 2. This is expressed in

THEOREM 3.1. There exists a constant c6> 0 so that

Proof. Consider the sum a(n) = Σdi» a(d) If ^ = 2α°
where Pi are odd, then

a(n) = (a0 + 1) Π (1 + α(p<) + α(pί) + + α(pf0)

<" + 1 > H ( V
We infer from (3.3) that if any one of the at is odd, then a{n) = 0.
Thus a(n) is non-zero only over integers of the form 2α° m2 where
m is odd. Also a(n) ^ 0. Clearly

(3.4) Σ a(n) ^ Σ

and
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/o c\ ^ a in) ^
(3.5) 2 J — ^ = c7 <

Now if μ is the Mδbius function then

Σ «(»)= Σ Σ
d\n

= Σ aid) Σ M<0 + Σ,_μ(d)_ Σ

= Σ a(W^

by using (3.4). I t is known from the investigation of the error term
in the prime number theorem (see [3]) that there is a constant c8 > 0
so that

(3.7) M(x) - Oixe-*'10*910*10*9)

so that one inferes from (3.6), (3.7), and (3.5) that Theorem 3.1 is true.
Finally we prove

THEOREM 3.2. Σ»=i Φ ) / » = 0.

Proof. As we have already remarked, a(n) is nonzero only at
values n — 2α° m2, where m is odd, and a{ri) here is a0 + 1. Thus

n>x n

 αo=om >v^y^ 2α° m 2

(3.8) m odd

so that if we set

we infer from (3.8) that

(3.9) χ(x) = 0{x^) .

Also χ is of bounded variation on finite intervals. It follows that

^ Σ α ( ώ ) = ^ ^
 o  it

mJ 10.300 Tf
0 Ts
( .) Tf60j
/.00Te
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Now by (3.5), (3.10) is rewritten as

xΣZίβ^cxΣ.^ - Σ rt«)- Σ
d^x Qj m^x Tϊl ™^x Ύϊl n>x/m

(3.11)

We can deduce Theorem 3.2 from (3.11), if we appeal to Axer's
Theorem 267 in [5] stated below.

AXER'S THEOREM. If {bn} is a sequence of real numbers with

and | δ . |

and x a function of bounded variation on finite intervals with
χ(x) = O(xa) for some 0 < a < 1, then

If we apply Axer's Theorem with bn — μ(n), and observe that
χ{x) = O(xa) with a = 1/2 in (3.9) then because

(3.12) Σ ^ ^ = 0
«=i n

we infer from (3.11) that Theorem 3.2 is true. For a proof of (3.12)
see [5].

By slight variation of the proofs of the above theorems one can
show that for some fixed integer N

and

_ 0

»=i n

REMARK. We would like to conclude by mentioning a few inter-
esting problems connected with A(n).

Let f(n) be the smallest integer m so that A(m) = n. Consider
a partition of n into primes, n — Vi + ft + where ^ is the largest
prime sSn, ft =£ w — 1, ft the largest prime ^t ι — ft, p2 ^ ^ —. ft -* 1>
and so on, and denote by F(n) = ft ft . It appears at first sight
that f(n) = F(n) but this need not be so. In fact this does not
happen quite often. For instance /(6) = 8, F(6) = 9. It would be of
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interest to consider the relative sizes of f(n) and F(n).
In this context we mention the following curious problem. Replace

the primes above by squares. That is

G(n) = min Π aϊ, g(n) = Π δi Σ α? = n

where b\ is the largest square ^n, and so on. It might be true
that both G(n) and g(n) are both <c-n2 where c is a constant. In
G(n) above, we require that not more than three of the at = 1, for
3 = 1 + 1 + 1 is the only decomposition of 3.

For more results on A(n), see a forthcoming paper of Erdos and
Pomerance where it is proved that the set of solutions to A(n) =
A(n + 1) is of density zero. One could also consider equations involv-
ing A(n) of similar type but these problems are in general difficult.
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