Pacific Journal of Mathematics

ON AN ADDITIVE ARITHMETIC FUNCTION

KRISHNASWAMI ALLADI AND PAUL ERDŐS

Vol. 71, No. 2

December 1977

PACIFIC JOURNAL OF MATHEMATICS

Vol. 71, No. 2, 1977

ON AN ADDITIVE ARITHMETIC FUNCTION

K. Alladi and P. Erdös

We discuss in this paper arithmetic properties of the function $A(n) = \sum_{x \in \alpha \cup \ldots \alpha} p$. Asymptotic estimates of A(n)

reveal the connection between A(n) and large prime factors

of n. The distribution modulo 2 of A(n) turns out to be an

interesting study and congruences involving A(n) are considered. Moreover the very intimate connection between

A(n) and the partition of integers into primes provides a natural motivation for its study.

0. Introduction. Let a positive integer *n* be expressed as a product of distinct primes in the canonical fashion $n = \prod_{i=1}^{r} p_{i}^{\alpha_{i}}$. Define

a function $A(n) = \sum_{i=1}^{r} \alpha_i p_i$.

(i) The function A(n) is not injective. In fact for a fixed integer m, the number of solutions in n to A(n) = m, is the number

of partitions of m into primes.

(ii) A(n) fluctuates in size appreciably. It is easily seen that

A(n) = n when n is a prime, while $A(n) = O(\log n)$ when n is a power of a small prime. Actually the "average order" of A(n) turns out_

]	<u>t is surprisin</u>	<u>g that the f</u>	unction A(n) with such	<u>nice arithme</u>	tic
	erties has not				Besides the	
[10].	Of course t				rent.	100 To A
	P					
<u> </u>						

for all $\delta > 2$	2. We have
	$1 \int_{\infty}^{\infty} d\pi(a) \int_{\infty}^{\infty} da \qquad \int_{\infty}^{\infty} d\pi(a) = la(a)$
	<u>_</u>
, 23 <u>,</u>	
(1.2)	$= \int_{-\infty}^{\infty} \frac{dy}{dy} + O(-\frac{1}{dy})$
).
	$+ \int_{-\infty}^{\infty} \frac{1}{(\pi(u))} - \frac{1}{(u)} \int_{-\infty}^{\infty} \frac{1}{(u)} du$
	,
	······································
a	

	278		K. ALLADI	AND P. ERI	ÖS			
		1	1		$\log \log x$			
						•		
	,		•					
		r						
	h	··)]]-		1			NT	
· _	because log (z/	<u>x) and 10</u>	<u>g x are or</u>	the same (order of ma	gnitud <u>e,</u>		
<u>.</u>								
	,							
	•							
	•							
	*							
	*							
	* 							
	• 							
	* 							
	·							
	×							
	×							
			<u>می باغد</u>					
			<u>می باغد</u>					

Note that each p_i can range from $P_i(k)$ up to the minimum of p_{i+1}

and $x/kp_m \cdots p_{i+1}$. So we shall break up the range of p_{i+1} , and discuss several cases, and in each of them we shall be able to decide

without ambiguity which of p_{i+1} and $x/kp_{m} \cdots p_{i+1}$ is smaller, thereby

determining the range of p_i .

and p_{i+1} for $i = 1, 2, \dots, m-1$.

Case 2. Now let $\sqrt[m]{x/k} < p_{-} \le x/k$. We have now several choices.


2	80	<u>K. ALLADI AND P.</u>	ERDÖS		
<u> </u>					
		£			
с. —					
			P7, 33-1.		
		<u> </u>			
			*		
	$p_i \leq \sqrt[n]{2}$	$\overline{p_i/kp_m\cdots p_{i+1}}$ $p_{i-1} \leq p_i$	$p_2 \leq p_3$ $p_1 \leq p_2$		
•	••				
•	_				
	Last term.				
	$\sum_{\underline{\sum}}$	<u> </u>	ΣΣ	• • •	
	u				
· ·					
		- 			
·					
•					
			<u> </u>		
,					
		j			

ON	AN	ADDITIV	Æ.	ARIT	HMETI	CF	TUNCTION

	281
ON AN ADDITIVE ARITHMETIC FUNCTION	
·	
ł	
/ ₁	
Note that the form in (1.7) is just the form in (1.0) with increase	
Note that the term in (1.7) is just the term in (1.8) with <i>i</i> replaced by the term in (1.8) with <i>i</i> replaced b	placed
Note that the term in (1.7) is just the term in (1.8) with i replay $i + 1$. Thus making the first m summations of (S.) gives	placed
	placed
	placed
by $i + 1$. Thus making the first <i>m</i> summations of (S.) gives	placed
by $i + 1$. Thus making the first <i>m</i> summations of (S.) gives	placed
by $i + 1$. Thus making the first <i>m</i> summations of (S.) gives	placed
by $i + 1$. Thus making the first <i>m</i> summations of (S.) gives	placed
by $i + 1$. Thus making the first <i>m</i> summations of (S.) gives	placed
by $i + 1$. Thus making the first <i>m</i> summations of (S.) gives	placed
by $i + 1$. Thus making the first <i>m</i> summations of (S.) gives	placed
by $i + 1$. Thus making the first <i>m</i> summations of (S.) gives	placed
by $i + 1$. Thus making the first <i>m</i> summations of (S.) gives	placed
by $i + 1$. Thus making the first <i>m</i> summations of (S.) gives	placed
by $i + 1$. Thus making the first <i>m</i> summations of (S.) gives	placed
by $i + 1$. Thus making the first <i>m</i> summations of (S.) gives	placed
by $i + 1$. Thus making the first <i>m</i> summations of (S.) gives	placed
by $i + 1$. Thus making the first <i>m</i> summations of (S.) gives	placed
by $i + 1$. Thus making the first <i>m</i> summations of (S.) gives	placed
by $i + 1$. Thus making the first <i>m</i> summations of (S.) gives	placed
by $i + 1$. Thus making the first <i>m</i> summations of (S.) gives	placed
by $i + 1$. Thus making the first m summations of (S.) gives (1.8) $O(\underline{x^{1+(1/m)}})$	
by $i + 1$. Thus making the first <i>m</i> summations of (S.) gives	e that

the error terms can be estimated just as we got upper bound estimates

K. ALLADI AND P. ERDÖS

(1.12). What we are summing in (1.13) is the term in (1.11). In

the process of going from (1.11) to (1.12) note that what has happened

is that i has been replaced by i + 1 for the variables and there is an extra factor of i. So making the first j_1 summations we get a term which is

 $\underbrace{(1 \ 14)}_{i(i+1)} \underbrace{i(i+1) \cdots (i+j_1-1) x^{1+(1/i+j_1)}}_{i(i+1)}$

ΎΫ́Γ

we	find that the	exponent of x	which had	remained constant	for
		<u> </u>			
(1_19		(constar	$x^{1+1/(i+j_1+i_1+i_1+i_1+i_1+i_1+i_1+i_1+i_1+i_1+i$	-1)	
- 					

~~~	
905	
200	

	as <u>shown</u>	by our inv	vestigation of	error terms.	<u>Our theorem_will</u>	be
	1					
τ —	- <u>(-</u>					
				A Angele		
4	_					
	<u> </u>		45			
,						
<u></u>	i▲ + 10		j^ "			
		A				

and
$\sum p \frac{x}{x} = x \sum \frac{1}{x} = O(\sum p).$
So
$\sum_{i\geq 3}\sum p\frac{x}{p^i}=O(x)$
which proves Theorem 1.5.
THEOREM 1.6. We have
$\sum \left[ \Delta^{*}(\alpha) - D(\alpha) - D(\alpha) \right] = D(\alpha) = D(\alpha) = k_{m} x^{1+1/m}$
Proof. The theorem follows by combining Theorems 1.1 and 1.5.
Proof. The theorem follows by combining Theorems 1.1 and 1.5. THEOREM 1.7. For any fixed integer M. the set of solutions to
THEOREM 1.7. For any fixed integer M. the set of solutions to
THEOREM 1.7. For any fixed integer M. the set of solutions to

 $\delta \Big(\bigcup_{j=1}^{p(M)} S_{m_j}\Big) = \sum_{j=1}^{p(M)} \delta(S_{m_j})$ (1.24)as  $S_{-} \cap S_{-} = \emptyset$  if  $i \neq j$ . In fact because of (1.23) and (1.24) the density is a rational multiple of  $1/\zeta(2) = 6/\pi^2$ . Congruences involving A(n). We now recall some results in 2. [1]. For any integer m, the number of solutions to A(n) = m is the number of partitions of m into primes, Note that A(n) = n if and

	288	K. ALLADI AND P. ERDÖS	
1	- Y	$\frac{1}{2}(x,y) < \frac{c_1 x \log x \log \log x}{c_1 x \log \log x}$	
7			
77.			
	(2.4)	= o(x)	
	of $n$ not satis	strict our attention to $P_1(n) > e^{\sqrt{\log x \log \log x}}$ for the number of ying this is given by (2.4). We also assume that if <u>umber of divisors of <i>n</i> then</u>	
	(2.5)	$\pi(m) < c1/2\sqrt{\log z \log \log z}$	
_			
	For the numb	er of integers not satisfving (2.5) is easily seen to be	
	For <u>the</u> numb	er of integers not satisfving (2.5) is easily seen to be	
	For <u>the</u> numb	per of integers not satisfying (2.5) is easily seen to be $O\left(\frac{x \log x}{x}\right)$	
		• • • • • • • • • • • • • • • • • • •	
		• • • • • • • • • • • • • • • • • • •	
		• • • • • • • • • • • • • • • • • • •	
	(2.6)	• • • • • • • • • • • • • • • • • • •	
	(2.6)	$O(-x \log x)$	
	(2.6)	$O(-x \log x)$	
	(2.6) because $\sum \tau(n)$	$O(-x \log x)$	

ON AN ADDITIVE ARITHMETIC FUNCTION	ON AN	ADDITIVE	ARITHMETIC	FUNCTION
------------------------------------	-------	----------	------------	----------

Thus for	fixed t. the number of solutions to (2.7) in special numbers
is at mos	t
	$\log x + e^{1/2\sqrt{\log x \log \log x}} = O(e^{1/2\sqrt{\log x \log \log x}})$ .
	2.8) we have an upper bound on the number of choices of the $\{l_n\}$ among the $n$ do not exceed
· · · · · · · · · · · · · · · · · · ·	
(2.11)	$\underline{O(-x)}_{e^{1/2\sqrt{\log x \log \log x}}} = O(-x)$
	<i>`</i>
ĩ	
But the r	number of integers not included among the $\{n_i\}$ is by (2.6)
and (2.4)	
(2.12)	$O\!\!\left(rac{x\log x}{e^{1/2\sqrt{\log x\log\log x}}} ight)$ .
So (2.12)	$Oigg(rac{x\log x}{e^{1/2\sqrt{\log x\log\log x}}}igg)$ . and (2.11) prove the theorem with any $c<1/2$ . for a lower bound.
So (2.12)	and (2.11) prove the theorem with any $c < 1/2$ .
So (2.12)	and (2.11) prove the theorem with any $c < 1/2$ .

		·		
		-		
<b>T</b> 1				
Lat na nut and		-hitmann Va m	have at laget	
<u></u>				
	£			
Δ				

for  $A(2 \cdot p \cdot p_1 \cdot p_2 \cdot \dots \cdot p_r) = 2p$ . One can show that for sufficiently large composite numbers n. there exists m with  $m \equiv 0 \pmod{A(m)}$ . A(m) = n and m/n square free and prime to n. This follows from Vinogradov's theorem. and here we partition n - A(n) into primes. It might be of interest to de-

true.

3. Distribution modulo 2. First we shall show that A(n) is <u>uniformly_distributed_modulo 2</u>. and the error is of the order of the sum of the Möbius function M(x). Here we shall concentrate on the function  $\alpha(n) = (-1)^{4(n)}$  which is easily seen to obey  $\alpha(m, n) =$ 

	292	K. ALLADI AND P. ERDÖS	
		<u>~</u>	
		n=1 <b>n</b> =1	
	Norm		
	NOW	if $\mu$ is the Möbius function then	
1			
,			
			<u>i)</u>

Now by (3.5), (3.10) is rewritten as

 $x \sum \frac{\alpha(d)}{\pi (d)} = \frac{\alpha(d)}{\pi (d)} \sum \frac{\mu(m)}{m} - \sum \mu(m) \frac{x}{m} \sum \frac{\alpha(n)}{m}$  $\Gamma$ ٤___ We can deduce Theorem 3.2 from (3.11). if we appeal to Axer's Theorem 267 in [5] stated below.

interest to consider the relative sizes of f(n) and F(n).

In this context we mention the following curious problem. Replace

 $G(n) = \min \prod a_i^2; g(n) = \prod b_i^2 \sum a_i^2 = n$ 

where  $b_{i}^{2}$  is the largest square  $\leq n$ , and so on. It might be true

that both G(n) and g(n) are both  $\langle c \cdot n^2 \rangle$  where c is a constant. In G(n) above, we require that not more than three of the  $a_c = 1$ . for

3 = 1 + 1 + 1 is the only decomposition of 3.

For more results on A(n), see a forthcoming paper of Erdös and

Pomerance where it is proved that the set of solutions to A(n) =

A(n + 1) is of density zero. One could also consider equations involv-

PACIFIC JOURNAL OF MATHEMATICS

Department of Mathematics University of Southern California
N
Stanford University

## Pacific Journal of Mathematics

Vol. 71, No. 2 December, 1977

Krishnaswami Alladi and Paul Erdős, <i>On an additive arithmetic</i>	275
<i>function</i>	213
lens space	295
Lawrence James Brenton, On the Riemann-Roch equation for singular	
complex surfaces	299
James Glenn Brookshear, Projective ideals in rings of continuous	
functions	313
Lawrence Gerald Brown, Stable isomorphism of hereditary subalgebras of	
C*-algebras	335
Lawrence Gerald Brown, Philip Palmer Green and Marc Aristide Rieffel,	
Stable isomorphism and strong Morita equivalence of $C^*$ -algebras	349
N. Burgoyne, Robert L. Griess, Jr. and Richard Lyons, <i>Maximal subgroups</i>	
and automorphisms of Chevalley groups	365
Yuen-Kwok Chan, <i>Constructive foundations of potential theory</i>	405
Peter Fletcher and William Lindgren, <i>On</i> $w\Delta$ -spaces, $w\sigma$ -spaces and	
$\Sigma^{\sharp}$ -spaces	419
Louis M. Friedler and Dix Hayes Pettey, <i>Inverse limits and mappings of</i>	100
minimal topological spaces	429
Robert E. Hartwig and Jiang Luh, A note on the group structure of unit	449
regular ring elements	449
I. Martin (Irving) Isaacs, <i>Real representations of groups with a single involution</i>	463
Nicolas P. Jewell, <i>The existence of discontinuous module derivations</i>	465
Antonio M. Lopez, <i>The maximal right quotient semigroup of a strong</i>	405
semilattice of semigroups	477
Dennis McGavran, $T^n$ -actions on simply connected $(n + 2)$ -manifolds	487
Charles Anthony Micchelli and Allan Pinkus, <i>Total positivity and the exact</i>	407
$n$ -width of certain sets in $L^1$	499
Barada K. Ray and Billy E. Rhoades, <i>Fixed point-theorems for mappings</i>	
with a contractive iterate	517
Fred Richman and Elbert A. Walker, <i>Ext in pre-Abelian categories</i>	521
Raymond Craig Roan, Weak* generators of $H^{\infty}$ and $l^1$	537
Saburou Saitoh, <i>The exact Bergman kernel and the kernels of Szegö type</i>	545
Kung-Wei Yang, Operators invertible modulo the weakly compact	
operators	559