Uniforme verdeling (discreet)

discreet

In de kansrekening en de statistiek is de discrete uniforme kansverdeling, ook homogene verdeling genoemd, een discrete kansverdeling op een eindig aantal uitkomsten die alle even waarschijnlijk zijn.

Een stochastische variabele die mogelijke waarden, , kan aannemen die alle even waarschijnlijk zijn, heeft een discrete uniforme kansverdeling. De kans op elke uitkomst , is . De kansfunctie van is dus:

voor

Een eenvoudig voorbeeld van een discrete uniforme kansverdeling is de uitkomst van een worp met een eerlijke dobbelsteen. De mogelijke uitkomsten zijn 1, 2, 3, 4, 5 en 6 ogen, en de kans op elk van deze mogelijke uitkomsten is 1/6.

Verwachting en variantie

bewerken

De verwachtingswaarde van de uniforme verdeling op de   verschillende uitkomsten   is juist het rekenkundig gemiddelde van deze uitkomsten. Als de stochastische variabele   uniform verdeeld is op  , is:

 

Voor de variantie geldt:

 

dus juist de populatievariantie van de uitkomsten.

Aselecte trekkingen

bewerken

Trekt men aselect meerdere keren uit de populatie  , dan is elk van de trekkingen   homogeen verdeeld op de populatie. Bij trekken met terugleggen zijn de steekproefelementen onderling onafhankelijk. Trekt men zonder terugleggen, dan zijn de steekproefelementen negatief gecorreleerd. Er geldt:

 
 ,

zodat de covariantie gelijk is aan

 

De correlatiecoëfficiënt is dus:

 

Steekproefgemiddelde

bewerken

Voor het steekproefgemiddelde   van de aselecte trekkingen   geldt:

 

De variantie bij trekken met terugleggen is:

 

Bij trekken zonder terugleggen is:

 
 

Bij trekken zonder terugleggen is de variantie dus gelijk aan de variantie bij trekken met terugleggen vermenigvuldigd met het kwadraat van de eindigepopulatiecorrectiefactor.

Zie ook

bewerken
  NODES