Attributt–verdi-system

kunnskapsrepresentasjon bestående av en tabell med kolonner for "attributter" og rader for "objekter", slik at hver celle angir verdien ("tilstanden") til en bestemt attributt til et bestemt objekt

Et attributt–verdi-system er et grunnleggende rammeverk for kunnskapsrepresentasjon som består av en tabell med:

Hver tabellcelle betegner derfor verdien (også kjent som "tilstanden") til en bestemt attributt til et bestemt objekt.

Eksempel på attributt–verdisystem

rediger

Nedenfor er et eksempel på attributt–verdisystem. Den representerer 10 objekter (rader) og 5 funksjoner/attributter (kolonner). I dette eksemplet inneholder tabellen bare heltallverdier. Generelt kan et attributt–verdisystem inneholde alle slags data, inkludert numerisk, tekst eller annet. Et attributt–verdisystem skilles fra en enkel "funksjonsliste"-representasjon ved at hver funksjon i et attributt–verdisystem kan ha en rekke verdier (for eksempel kan P1 nedenfor ha et domene på {0,1,2}) i stedet for bare å være til stede eller fraværende Barsalou & Hale 1993.

Eksempel på attributt–verdisystem (objekter og attributter)
Objekt P1 P2 P3 P4 P5
O1 1 2 0 1 1
O2 1 2 0 1 1
O3 2 0 0 1 0
O4 0 0 1 2 1
O5 2 1 0 2 1
O6 0 0 1 2 2
O7 2 0 0 1 0
O8 0 1 2 2 1
O9 2 1 0 2 2
O10 2 0 0 1 0

Synonymer

rediger

Attributt-verdisystemer går igjen mye i litteraturen, og har blitt diskutert under mange forskjellige navn:

  • Flat data
  • Spreadsheet
  • Information system (Pawlak 1981)
  • Knowledge representation system (Wong & Ziarko 1986)
  • Attribute–value system (Ziarko & Shan 1996)
  • Classification system (Ziarko 1998)
  • Information table (Yao & Yao 2002)

Se også

rediger

Referanser

rediger
  • Barsalou, Lawrence W.; Hale, Christopher R. (1993). «Components of conceptual representation: From feature lists to recursive frames». I Iven Van Mechelen. Categories and Concepts: Theoretical Views and Inductive Data Analysis. London: Academic Press. s. 97–144. ISBN 9780127141756. 
  • Pawlak, Zdzisław (1991). Rough sets: Theoretical Aspects of Reasoning about Data. Dordrecht: Kluwer. 
  • Ziarko, Wojciech; Shan, Ning (1996). «A method for computing all maximally general rules in attribute–value systems». Computational Intelligence. 12 (2): 223–234. doi:10.1111/j.1467-8640.1996.tb00260.x. 
  • Pawlak, Zdzisław; Shan, Ning (1981). «Information systems: Theoretical foundations». Information Systems. 6 (3): 205–218. doi:10.1016/0306-4379(81)90023-5. 
  • Wong, S. K. M.; Ziarko, Wojciech; Ye, R. Li (1986). «Comparison of rough-set and statistical methods in inductive learning». International Journal of Man-Machine Studies. 24: 53–72. doi:10.1016/S0020-7373(86)80033-5. 
  • J. T., Yao (2002). Induction of classification rules by granular computing. London, UK: Springer-Verlag. 
  • Watanabe, Satosi (1985). Pattern Recognition: Human and Mechanical. New York: John Wiley & Sons. 
  • Ziarko, Wojciech (1998). Polkowski, Lech, red. Rough sets as a methodology for data mining. Heidelberg: Physica-Verlag. 
  NODES
INTERN 1