Tall er aritmetikkens grunnbegrep og et tall er en abstrakt matematisk enhet som beskriver en størrelse, måling eller opptelling. I det italiensk-arabiske tallsystemet har vi tallsymbolene 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, og ett eller flere av disse symbolene brukes til å representere tall. Et tall kan være flersifret, og da kaller vi tallsymbolene for siffer i tallet.

Ulike typer tall

rediger
Fil:Set of fake numbers (diagram).svg
Mengden av alle relle tall inneholder alle irrasjonale og rasjonale tall, der siste igjen inneholder alle hele tall, som inneholder alle naturlige tall

Tallene kan klassifiseres i ulike mengder, og i matematikken bruker vi bestemte symboler for å symbolisere disse mengdene.

Naturlige tall

rediger
Se hovedartikkel: Naturlige tall

De naturlige tallene er de mest kjente, og det er disse tallene barn blir kjent med når de lærer å telle. Naturlige tall er positive, hele tall, altså 1, 2, 3, 4, 5, ...

I vårt titallsystem (som blir brukt over nesten hele verden) blir tallene representert ved ti ulike tallsymboler, fra 0 til 9. Tall som er større enn 9 blir representert ved to eller flere tallsymboler som utgjør sifrene i tallet. Symbolet for mengden av naturlige tall er  

Hele tall

rediger
Se hovedartikkel: Hele tall

De negative tallene er de tallene som er mindre enn null. De representeres ved å indikere det motsatte positive tallet med et minus-tegn foran. For eksempel kan et positivt tall representere saldoen i en bankkonto, mens et negativt tall kan representere uttak. Når vi kombinerer de negative heltallene med de naturlige tallene og null, får vi mengden av hele tall, symbolisert ved  

Rasjonale tall

rediger
Se hovedartikkel: Rasjonale tall. Se også: Irrasjonale tall.

De rasjonale tallene er de som kan uttrykkes som en brøk med en teller (som er et heltall) og en nevner som er forskjellig fra null. Brøken   er den størrelsen du får når et helt tall   blir delt i   like store deler. To ulike brøker kan representere det samme tallet, for eksempel representerer 1/2 og 2/4 det samme tallet. Brøkene kan være negative, positive eller null. Symbolet for de rasjonale tallene er  

Reelle tall

rediger
Se hovedartikkel: Reelle tall. Se også: Imaginære tall.

De reelle tallene er alle de tallene som kan representeres ved punkter på en linje, det vil si alle naturlige tall, alle heltall, alle rasjonale tall og også de irrasjonale tallene, det vil si de tallene som ikke kan uttrykkes som en brøk. Et eksempel på et slikt irrasjonalt tall er  , som hører med til de reelle tallene, men kan ikke skrives som et brøk eller som et desimaltall med et endelig antall siffer.

Symbolet for de reelle tallene er  .

Komplekse tall

rediger
Se hovedartikkel: Komplekse tall

De reelle tallene kan utvides med de komplekse tallene  . Historisk sett oppsto disse tallene ut fra spørsmålet om det er mulig å trekke ut kvadratroten av et negativt tall. Ut fra undersøkelser av denne problemstillingen ble det oppdaget et nytt tall  , representert ved symbolet i. De komplekse tallene består av alle tallene på formen  i, hvor   og   er reelle tall. Dersom   er null, kaller vi  i for et imaginært tall. Dersom   er null, får vi et reelt tall. Komplekse tall korresponderer med koordinatene til punkter i det komplekse planet. I det komplekse planet måles de reelle tallene langs førsteaksen (x-aksen) og de imaginære tallene langs andreaksen (y-aksen) i et koordinatsystem.

Tallenes historie

rediger

Gjennom arkeologiske utgravninger datert 30 000 år f.Kr. har det blitt funnet ulvebein med 55 streker systematisk risset inn. Dette er noen av de eldste forløperne til tallsystem. Det er uvisst hva dette ulvebeinet ble brukt til, men det er sannsynlig at det har blitt brukt til å holde oversikt over ett eller annet (for eksempel en dyreflokk, tidssykluser i en kalender eller lignende).

Babylonerne hadde det eldste plassverdisystemet vi kjenner til, med 60 som grunntall. Det eldste titallsystemet vi kjenner tilhørte de gamle egypterne, men dette var et additivt tallsystem.

Aspekter ved tallbegrepet

rediger

I forbindelse med barns læring av tallbegrepet skiller vi ofte mellom noen hovedaspekter:

  • Kardinaltall
  • Ordinaltall
  • Tall som identitet

For at barn skal få en full forståelse for tall og telling, må det få erfaring med alle de ulike måtene tallene kan opptre på og lære å skille mellom dem.

Kardinaltall

rediger

Kardinaltall kaller vi det når tallordet forteller noe om hvor mange. Dette kan vi også kalle for mengdetall eller antall. Her skiller vi ofte mellom to hovedtyper:

Hovedtype A: Tallordet angir antallet objekter, for eksempel 5 klosser.
Hovedtype B: Tallordet angir antallet måleenheter, for eksempel 4 meter.

Når barn utvikler kardinaltallsbegrepet, ser vi ofte eksempler på at noe av det første de lærer er å skille mellom en-to-mange. Små barn kan ofte skille mellom små mengder, mens større mengder blir bare betegnet som mange. Dersom barnet har et fullt utviklet kardinaltallsbegrep, innebærer det at de:

  • kan telle
  • kan svare på spørsmålet om hvor mange ved å oppgi det siste ordet i tellingen
  • har antallskonservering (dvs. at antallet er uavhengig av hvordan en teller, hva slags objekter som telles, osv.)

Ordinaltall

rediger

Ordinaltall er tallord som forteller om hvor et objekt er plassert i en serie eller rekkefølge. Dette kaller vi for ordenstall eller rekkefølgetall. Et eksempel på dette er datoer, som beskriver en rekkefølge og ikke et antall.

Dersom et barn har ordinal forståelse, kan det sortere ulike gjenstander etter størrelse eller andre egenskaper.

Tall som identitet

rediger

Tall som identitet bruker vi når tallordet brukes som identifikasjon, for eksempel når en buss har nummer 60, eller et hus har nummer 39. Da er ikke tallordet knyttet til antall eller rekkefølge, og det blir mer som en merkelapp.

Algebra

rediger

Algebra generaliserer tall ved at bokstaver eller andre symboler representerer tall. Dette brukes for å beskrive mønster og sammenhenger. Algebra brukes også i fagene geometri og funksjoner.

Store tall

rediger

For forklaring på hvorfor store tall kan ha motstridende navn på andre språk, se den korte og den lange skalaen for store tall.

Ordene er sammensatt av et latinsk prefiks og en endelse fra million. Det latinske tallet i prefikset svarer til eksponenten som må benyttes dersom tallet skrives som potens med million som grunntall.

Eksempelvis er tri = tre og trillion er lik  

tilsvarende kvadr = 4 og kvadrillion er lik  , kvint = 5 og kvintillion er lik   etc. Betegnelsene fortsetter således i det uendelige.

I praksis benyttes meget sjelden betegnelser på større tall enn milliard. Dette har både sammenheng med fare for sammenblanding med de amerikansk-engelske formene og at ordene er generelt lite kjente. I vitenskapelig sammenheng foretrekker man å benytte enten SI-prefiks eller eksponensiell notasjon.

Billion og trillion internasjonalt

rediger

Den amerikanske betydningen av billion, trillion, quadrillion og quintillion er henholdsvis 109, 1012, 1015 og 1018 (altså europeisk milliard, billion, billiard og trillion). Brasil og engelskspråklige land benytter i stor grad den amerikanske forståelsen av ordene, spesielt innenfor finansliv og journalistikk. De fleste andre land som bruker disse ordene holder seg til samme forståelse som Norge.

Andre store tall

rediger
  • En googol er  , og har altså 100 nuller.
  • En googolplex er  , og har én googol nuller.
  • Grahams tall er det største tallet som er blitt brukt i et matematisk bevis.

Se også

rediger

Litteratur

rediger
  • Solem, I.H. og Reikerås, E.K.L. (2001). Det matematiske barnet. Bergen: Caspar Forlag. ISBN 82-90898-26-6. 

Eksterne lenker

rediger


  NODES
INTERN 2