Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M0316 N0116 #122 Jan 23 2023 13:13:59
%S 1,1,2,2,4,5,7,9,13,16,22,27,36,44,57,70,89,108,135,163,202,243,297,
%T 355,431,513,617,731,874,1031,1225,1439,1701,1991,2341,2731,3197,3717,
%U 4333,5022,5834,6741,7803,8991,10375,11923,13716,15723,18038,20628,23603
%N Number of partitions of n in which no parts are multiples of 3.
%C Case k=4, i=3 of Gordon Theorem.
%C Expansion of q^(-1/12)*eta(q^3)/eta(q) in powers of q. - _Michael Somos_, Apr 20 2004
%C Euler transform of period 3 sequence [1,1,0,...]. - _Michael Somos_, Apr 20 2004
%C Also the number of partitions with at most 2 parts of size 1 and all differences between parts at distance 3 are greater than 1. Example: a(6)=7 because we have [6],[5,1],[4,2],[4,1,1],[3,3],[3,2,1] and [2,2,2] (for example, [2,2,1,1] does not qualify because the difference between the first and the fourth parts is equal to 1). - _Emeric Deutsch_, Apr 18 2006
%C Also the number of partitions of n where no part appears more than twice. Example: a(6)=7 because we have [6],[5,1],[4,2],[4,1,1],[3,3],[3,2,1] and [2,2,1,1]. - _Emeric Deutsch_, Apr 18 2006
%C Also the number of partitions of n with least part either 1 or 2 and with differences of consecutive parts at most 2. Example: a(6)=7 because we have [4,2], [3,2,1], [3,1,1,1], [2,2,2], [2,2,1,1], [2,1,1,1,1] and [1,1,1,1,1,1]. - _Emeric Deutsch_, Apr 18 2006
%C Equals left border of triangle A174714. - _Gary W. Adamson_, Mar 27 2010
%C Triangle A113685 is equivalent to p(x) = p(x^2) * A000009(x); given A000041(x) = p(x). Triangle A176202 is equivalent to p(x) = p(x^3) * A000726(x). - _Gary W. Adamson_, Apr 11 2010
%C Convolution of A035382 and A035386. - _Vaclav Kotesovec_, Aug 23 2015
%C The number of partitions of n in which no parts are multiples of k equals the number of partitions of n where no part appears more than k-1 times. - _Gregory L. Simay_, Oct 15 2022
%D G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.
%D L. Carlitz, Generating functions and partition problems, pp. 144-169 of A. L. Whiteman, ed., Theory of Numbers, Proc. Sympos. Pure Math., 8 (1965). Amer. Math. Soc., see p. 145.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H T. D. Noe and Vaclav Kotesovec, <a href="/A000726/b000726.txt">Table of n, a(n) for n = 0..5000</a> (terms 0..1000 from T. D. Noe)
%H George E. Andrews, <a href="https://hal.archives-ouvertes.fr/hal-03498190/">Partition Identities for Two-Color Partitions</a>, Hardy-Ramanujan Journal, Hardy-Ramanujan Society, 2021, Special Commemorative volume in honour of Srinivasa Ramanujan, 2021, 44, pp.74-80. hal-03498190. See p. 79.
%H Riccardo Aragona, Roberto Civino, and Norberto Gavioli, <a href="https://arxiv.org/abs/2301.06347">A modular idealizer chain and unrefinability of partitions with repeated parts</a>, arXiv:2301.06347 [math.RA], 2023.
%H N. Chair, <a href="http://arXiv.org/abs/hep-th/0409011">Partition identities from Partial Supersymmetry</a>, arXiv:hep-th/0409011, 2004.
%H Edray Herber Goins and Talitha M. Washington, <a href="https://arxiv.org/abs/0909.5459">On the generalized climbing stairs problem</a>, Ars Combin. 117 (2014), 183-190. MR3243840 (Reviewed), arXiv:0909.5459 [math.CO], 2009.
%H Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 15.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PartitionFunctionb.html">Partition function b_k.</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Glaisher%27s_theorem">Glaisher's Theorem</a>.
%F G.f.: 1/(Product_{k>=1} (1-x^(3*k-1))*(1-x^(3*k-2))) = Product_{k>=1} (1 + x^k + x^(2*k)) (where 1 + x + x^2 is the 3rd cyclotomic polynomial).
%F a(n) = A061197(n, n).
%F Given g.f. A(x) then B(x) = x*A(x^6)^2 satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u,v,w) = +v^2 +v*w^2 -v*u^2 +3*u^2*w^2. - _Michael Somos_, May 28 2006
%F G.f.: P(x^3)/P(x) where P(x) = Product_{k>=1} (1 - x^k). - _Joerg Arndt_, Jun 21 2011
%F a(n) ~ 2*Pi * BesselI(1, sqrt((12*n + 1)/3)*Pi/3) / (3*sqrt(12*n + 1)) ~ exp(2*Pi*sqrt(n)/3) / (6*n^(3/4)) * (1 + (Pi/36 - 9/(16*Pi))/sqrt(n) + (Pi^2/2592 - 135/(512*Pi^2) - 5/64)/n). - _Vaclav Kotesovec_, Aug 23 2015, extended Jan 13 2017
%F a(n) = (1/n)*Sum_{k=1..n} A046913(k)*a(n-k), a(0) = 1. - _Seiichi Manyama_, Mar 21 2017
%F G.f.: exp(Sum_{k>=1} x^k*(1 + x^k)/(k*(1 - x^(3*k)))). - _Ilya Gutkovskiy_, Aug 15 2018
%e There are a(6)=7 partitions of 6 into parts != 0 (mod 3):
%e [ 1] [5,1],
%e [ 2] [4,2],
%e [ 3] [4,1,1],
%e [ 4] [2,2,2],
%e [ 5] [2,2,1,1],
%e [ 6] [2,1,1,1,1], and
%e [ 7] [1,1,1,1,1,1]
%e .
%e From _Joerg Arndt_, Dec 29 2012: (Start)
%e There are a(10)=22 partitions p(1)+p(2)+...+p(m)=10 such that p(k)!=p(k-2) (that is, no part appears more than twice):
%e [ 1] [ 3 3 2 1 1 ]
%e [ 2] [ 3 3 2 2 ]
%e [ 3] [ 4 2 2 1 1 ]
%e [ 4] [ 4 3 2 1 ]
%e [ 5] [ 4 3 3 ]
%e [ 6] [ 4 4 1 1 ]
%e [ 7] [ 4 4 2 ]
%e [ 8] [ 5 2 2 1 ]
%e [ 9] [ 5 3 1 1 ]
%e [10] [ 5 3 2 ]
%e [11] [ 5 4 1 ]
%e [12] [ 5 5 ]
%e [13] [ 6 2 1 1 ]
%e [14] [ 6 2 2 ]
%e [15] [ 6 3 1 ]
%e [16] [ 6 4 ]
%e [17] [ 7 2 1 ]
%e [18] [ 7 3 ]
%e [19] [ 8 1 1 ]
%e [20] [ 8 2 ]
%e [21] [ 9 1 ]
%e [22] [ 10 ]
%e (End)
%p g:=product(1+x^j+x^(2*j),j=1..60): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=0..50); # _Emeric Deutsch_, Apr 18 2006
%p # second Maple program:
%p with(numtheory):
%p a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
%p `if`(irem(d, 3)=0, 0, d), d=divisors(j)), j=1..n)/n)
%p end:
%p seq(a(n), n=0..50); # _Alois P. Heinz_, Nov 17 2017
%t f[0] = 1; f[n_] := Coefficient[Expand@ Product[1 + x^k + x^(2k), {k, n}], x^n]; Table[f@n, {n, 0, 40}] (* _Robert G. Wilson v_, Nov 10 2006 *)
%t QP = QPochhammer; CoefficientList[QP[q^3]/QP[q] + O[q]^60, q] (* _Jean-François Alcover_, Nov 24 2015 *)
%t nmax = 50; CoefficientList[Series[Product[(1 - x^(3*k))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jan 02 2016 *)
%t Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 3], 0, 2] ], {n, 0, 50}] (* _Robert Price_, Jul 28 2020 *)
%t Table[Count[IntegerPartitions[n],_?(NoneTrue[Mod[#,3]==0&])],{n,0,50}] (* _Harvey P. Dale_, Sep 06 2022 *)
%o (PARI) a(n)=if(n<0,0,polcoeff(eta(x^3+x*O(x^n))/eta(x+x*O(x^n)),n))
%o (PARI) lista(nn) = {q='q+O('q^nn); Vec(eta(q^3)/eta(q))} \\ _Altug Alkan_, Mar 20 2018
%o (Haskell)
%o a000726 n = p a001651_list n where
%o p _ 0 = 1
%o p ks'@(k:ks) m | m < k = 0
%o | otherwise = p ks' (m - k) + p ks m
%o -- _Reinhard Zumkeller_, Aug 23 2011
%Y Cf. A000009 (no multiples of 2), A001935 (no of 4), A035959 (no of 5), A219601 (no of 6), A035985, A001651, A003105, A035361, A035360.
%Y Cf. A174714. - _Gary W. Adamson_, Mar 27 2010
%Y Cf. A113685, A176202. - _Gary W. Adamson_, Apr 11 2010
%Y Cf. A046913.
%Y Column k=3 of A286653.
%Y Number of r-regular partitions for r = 2 through 12: A000009, A000726, A001935, A035959, A219601, A035985, A261775, A104502, A261776, A328545, A328546.
%K nonn,easy,nice
%O 0,3
%A _N. J. A. Sloane_
%E More terms from _Olivier Gérard_