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COUNT INGRARRANGEMENTS OF BISHOPS

ROBERT W. ROBINSON

The problem of the bishops ia to determine the number of arrangements of n
bighops on an n *n chasshoard such that no bishop threatans another and every wweou-
pied square is threatened by at lTeaat cne bishop. [Two arrangements are considered
equivalent if they are igomorphic by way of one cf the eight symmetries of the chese-
board. The total member c¢f inequivalent solutiong to the problem of the bishope is
found, as well as the mumbers of scluticns which have .uch of the possible automorphiem
groups. e values up to v =16 are tabulated, and as:mptotis formmulas ave fowd. A
reviaw of analogous results for the problem of the rooks i inclwded, since they are

made use of ir atudying the problem of the hishops.

—

INTRODUCTION

The problem of the rooke is to find the numher of inequivalent arrangements of
n rooks on an n *n chessboard such that no rock artacks another. [Cach such arranpgement
is said to be a seolution to the problem of the rooks. FLverv solution to the problem
of the rocks has the property that every square of the chesrnhoard is dominated hy =ome
rook. If the chessboard is considered to be fixed in place, it is clear that there are
n! nolutiens. However two solutions will be considered equivaient if one can be ob-

tained from the other by one of the eight symmetries of the chessaboard.

The symmetries of the cheashoard are namerd as follows: e is the identity, c
is the rotation by w padians, q and q' are the rotations by *n/? radians, d and d' are
the reflections about the main diagonals, and m and m' are the reflections about the
horizontal and wertical mid-lines., We denote this group of eight symmetries by A.
Fach solution to the problem of the rooks has some subgroup of A as its group of aunto-
morphisms. It is nct hard to see that for n> 1 the possible automorphism groups are
<e», <c», <q>, <d», <d'>, and «d,d'>. Lucas [7] found the number of inequivalent
solutions to the problem of the rooks having each automorphism group. Xraltehik [&,
Chapter 107 rediscovered the problem of the rooks and found the numbers for some of
the automorphism groups. In the next section we state Lucas' results and pive an

asymptotic analysis of the numbers he found.
P

The problem of the bishops is to find the number of inequivalent arrangements
of n bishops on an n *n chesshoard so that no bishop threatens another and so that
topether they dominate the entire boafﬂ. This problem is solved in Section 3, building
on Lucas’' resulta., For n>1 the possible autcmorphism groups for s~lutions to the

problem of the bishops are <e>, <c>, <q>, <m>, <m’'>, and <m,m'>. As bhefore the n mber
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of inequivalent solutions with each automorphism group is found hoth exactly and
asymptotically. The values are tabulated up to n =16,

In the last section we discuss variations on the problem of the bishops, and
the outstanding unsolved problem of the queens.

2. THE PROBLEM OF THE RGOKS

It has long been known that the number of orbits of a finite permutation group
is the average number of fixed points of the permutations. This fact is called Burn-
side's lemma [2, p.191]. Let g, be the number of inequivalent nxn solutions to the
problem of the rooks. If A is regarded as permuting the n! different nxn solutions
among themselves, then &, is just the mumber of arbits of A on this object set. Let
Py G,s R,y and o, be the numbers of nxn sclutions left fixed by e, ¢, q, and d
respectively, Clearly Dp is also the number left fixed by d' and Ry is the number
left fixed by q'. For n>1 there are no solutions left fixed by m or m'. Thus, by

Burnside's lemma

(
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The restriction n>1 is necessary for (1}, and we assume n> 1 implicitly henceforth.
_ Obviously P.=n!. For n=2k or 2k+1 the number of n¥n solutions invariant
wder ¢ is 2k(2k-2)...2 [7, pp.66-67]. Thus we have

= %12%,

2 G, =

! = G
"2k 2k+1
For nxn solutiens invariant under q we have (Lm-2)(4m-6).,.2 when n =Um or um+l, and
none otherwise [7, pp.67-68]., Tt follows that
0 ifn=2 or 3(mod U4},
(2) R = {

(2m)!

—y== 1f n=4m or umil,

Finally, it can be shown [7, p.215] that Dy satisfies the recurrence
(1) D =D.+n

which is valid for n> 0 if we take Dg = 1.

On the basis of equations (1)-(4) the values of o, for 1<n <16 shown in Table

1 were computed. These values are in agreement with those cbtained by Lucas [7, p.222]

for 1<ng12.

Let ap, Yn» e 8y, and 8, be the mumber of inequivalent solutions to the
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problem of the rooks which have <e>, <c>, <>, <d> or <d'>, and «d,d">, respectively

>

Yne Ons -

as automorphism groups. The method of Lucas for finding g, is to find ~,,
and €, and then sum them. There is surprisingly little extra trouble involved in this
approach. One first needs to be able to evaluate the number By, of nxn solutions which

are invariant under both d and 4'. It is found [7, pp.217-218] that

(s) 8 = B, = 2B 5+ (2x-2)B

T2k+1 2k 2k- 2k-u”

which 25 valid “or k>3 on the assumption that 30= 3_2 = 1.
the number of solu-

If a particular solution g has automorphism group G, then
ndence with the left

tions equivalent to g is [A;G], as they azre in a 1-1 correspa
cosets of G in A. Also, any solution equivalent to £ has an automorphism group which
is conjupate to 8. Thus the automorphiem group will be equal to G unless G is <d» or
<d'>, in which case it could be the other of tha two. Now <g> and <d,d'> are maximal

automorphism groups, S0 we conclude at once +hat

1

1
(8) on = 3Rpe
(73 Bnh = 3B,.

Since «<d> or <d'> is properly contained only in <d,d'> (from among +he possible auto-

morphism groups), we have

The proup <£> may be nroperly contained in ecither <a> or <d,d'>, but never both at

once, It follows that

1 i
(a) A -
- 'n T okn

any solution with a nontrivial aidtomorshi group Iz alther invariant under

2 has auvtomorphism groun «d> or «d's, but net hoth., This lesads ta ~he relation

or, in view of (8),

£10n) o =
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Asymptotic values of Ons Bps Yps Spy ap, and On @2 n~+e are shown in Table 2.

The value of o shown follows at once from (3) and (&) using Stirling's

formula. Once
the values for 8, and &, are known, the values of Yns @y and oy follow similarly from

(2), (9) and (10).

0 ifnz2 or 2(mod 4)
1 n/k .
£y = g} . 1 ifnz=0(mod &)
i
nT % if nz1(mod u)-
rﬁ 1 if nz=0{mod 2)
S~ a rr‘_.)“/u_ )
n 2T alfe = )
e ne'/% iF 02 1(med 2)
if nz0(mod 2)
— rmn/? .
Yq “ Qp
1 ifnzllmod 2)
. Eﬁ; n/2
& e,
° 27 el/% ®
! fm n
fzn and an L T(%}

Asymptotic numbers of inequivalent solutions to the problem of the rooks.
TABLE 2

The recurrence relation (4) for D, has received considerable attention in the
literature. Chowla et al. [3, Theorem 8] used elementary methods o show
) n/2
11) o B N S .
(11) i @
Moser and Wyman [8, equation 3.40] computed the next *wo terms in the asymptotic expan-

sion of D,. They also peinted out that (4) is equivalent to the generating function
identity
(123 exﬂ(z/?

i e-18

n (3
an /nf =

0
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Bender [1, p.507] analysed the coefficients of this generating function using a pair
of general theorems which he had derived from more complicated vesults of Hayman [(57].

In this way Bender obtained the equivalent of (11) on the bhasis of (12).

I'rom the recurrence relation (8) for B“n iv is straiphtforward to deduce the

equivalent generating function identirty

= -~
- n 2a+n”
(13) L Ban nt = a :
n=0
Theorems & and 7 of Bendar [1, pp.506-7) can be applied to (13), with the result that
o ?'5 !
(1u) B B ok i r?n)“ ‘
} - =
2n+l 20 e AWK Ve b

The asymptotic value for B, given in Table ? follows from (7) and (14). The value
shown for 6, can then be deduced frem (8) and (111,

- THE PROBLEM OF THE BISHOPS

A solution to the problem of the bishops is an arrangement of n hisheps on the

n*xn chesshboard such that no bishop threatens another and every square is threatened i

by some bishop. Lat Eqs € Qn' Hn" and Sa be the number of nxn solutions left .
invariant by e, ¢, q, m, and hoth m and m', respectively, Then 2, is also the number

left fixed by q', and M, is the number left fixed by m'. For n>1 none will be left
fixed by d or d'. Thus if we let 7, be the total number of inequivalent solutions on

the n #*n chessboard, then by Burnside's lemma
(15) T = %E +

Relatien (15) for it is analogous to relation (1) for o, However for the

problem of the rooks Pn = n! is trivial, whereas for the problem of the bishops RP is

the most troublesome quantity to determine. It will be a convenient conventien t

s ]

colour the squares of the nxn chesshoard alternately hlack and white in such a way
that if n=2k+l then the central square is white when k is even and black when k is
odd. As far as the moves of the biships are cencerned, the black and white arrays
are entirely independent. Within each we distinguish a unique part called thé core,
as follows. For even n=2k, the white zcore consists of the squares common to the
central k+l white diagonals in one direction and the central k -llapenala in the other
direction, the choice of directions determined so that the core Is a ractangular
(k+1) *k array of white squares. The black core for n= 2k is isomorphiec,; but we think
of it as a kx(k+l) arrav. For odd n=2k+l, the core of either array is the unique
maximal square sub-array. With our colouring cenvention, this results in +the white
core being (k41) % (k+1) and the block core being kxk, In Figure 1, one of the twe

isomorphic cores for the 6 x 6 chessboard iz shown, along with the twe coras far the




5 x5 chesshoard.
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Cores of chessboards, for n=5 and 6,

FIGURE 1

For n=2k, any n %n solution to the problem of the bishops must have k on
white and k on black, since the cores are (k+1)xk and k x (k+l) and so require at
least k pieces each to be dominated. Similarly an nxn sclution for n = 2k+l must

have k+1 on white and k on black.

To evaluata Eik' restrict attention te the k bishops to be placed on white.
Thinking of the white core as k+l rows by k columns, it is clear that each of these
columns must contain a bishop in order that the row (or rows) without a bishop be com-
pletely dominatad. TFurther, =ach of the central k-1 rows extends bevond the core,
and consequently needs a bishop for complete deminatien, Within this (k-1) xk array,

then, we must have k-1 bishops. The remaining white bishop must lie in cne of the

rows which are of length k ar less. The number of squares among these rows is
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Ei%;il if ¥ is even,
(15) 2 ) k2t 2
2 -
0€i<k/2 .S_E:Q:L if k is oad .

Once the position of this bishop is fixed, deleting its colurm leaves a (k-1)x (k-1}
array within the white core to be covered by k-1 bishops. This of course can be achieved
in exactly (k~-1)! different ways, as there must be one bishop in esch row and column
of tha array. TFor n=2k the number of ways to dispose k bishops on the black sguares

is equal to the number for white, =mo we have

2
(kt E%EJ if k is even,
(17) Epe ® ee1y2: 2
(k-101 25 if & ds oca

To evaluate E?k+1‘ consider first the k ¥k black core. Tach row and column of
the core extends beyond the core, and so must contain one of the k black bishops in
order to be complately dominated, Thus all k black bishops must be situated in the
black core, which can be accomplished in k! different ways.

Next, consider the (k+l) x {k+l) white core, The outer pair of vaws and
columns do not extend beyond the core, while the others do. We shall classify the
solutions for white according to the mumber of white bishops not positioned in the .
cove, - The number of solutions in which all of the white bishops lie in the core is (k?l)!
Suppose just one white hishop lies outside of the core, Then it is in one of the four
corners of the white array which remain after the core is removed, [Fach of these

corners contains
K
T if k is even,

e l‘fu:i if k is odd

squares in 31l (see (16)). OCnce the position of the outside bishop is fixed, deletion
of its row or column from the core leaves a k x (k+1) arrvay, say, within the core to be
covered by the % bishops to be placed in the core. The central ¥-1 columms must each
contain a bishop, since they all extand beyond the core to squares not covered by the
outside bishop and not contained in rows passing through the core. Thus one hishop
must be placed on one of the 7k squares of the end-columns of this array, leaving

k-1 bishop= for the central k-1 eolumns and the remaining k-1 rows of the core. This
gives (k-1)12k = 2(k!) ways o distribute the % bishops within the core given a fixed

position for the outside bishep.

Fow suppese we have two bishops placed in adiacent corners of the white array
minus the cere. That leaves a k xk sub-array of the core which needs %o be covered
by just k-1 bichops, which iz impossible. Suppose on the other hand that two bishaps

are positioned in the same or opposing cormers of the white array minus the cora,
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Then, say, a (k-1)* (k+1l) sub-array of the core remains *c be covered bv %-1 hishops.
Since the central %-1 columns extend beyond the core, each must contain a bishop.
Mone of these bighaps can lie ourside the core, else there would be two in adjacent
corners. Thus the k-1 pvemaining bishops are restricted to a (%x-1) (k-1) sub-array
of the core. We conclude that two it the maximum number of bishops which can be
placed on white outside the core. Also, once the positions of two outside bishops

in the same or oppesite corners are determined, there will be (k-1)! ways to fill in

the remaining k-1 bishops.

It pemains to see how many ways there are to place two bishops in a particular
pair of opposinp cormers, cay consisting of the white columns which do not intersect
the core. Suppose first that k is even. Then there ars ¥/7 columns in each cormer,
of lengths k-1,k-3,...,1, for a total (see equarien (1f)) of k?/2 cells in all, I1f
a bishop is located at an end square of one of these colume, then it dominates exactly
k of these white corner squares. In general, if a hishop iv located i squares from the
near end of its column, then it dominates k+2i of the wvhite corner squares. There are
2{k-1-2i) squares which are distance i from the near end of their colums. So the
number of ways to place two bishops which do not threatan each other within these
corner squares is

Dol 2(k-1-21)(k/2-x-21) = %%{3k3-9k2+6k-h).

0£i<k/2

There are two pairs of opposing corners, so the total number of nxn solutions to the
problem of the bishops for n=2k+l and k even is

K1 (er1)T +12 - 2+ KT+ 20k-1) Ll 3k -8k Ts8k-))
which simplifies as shown in (18). Similarly, when n=2k+l and k is odd the number
of ways to place two bishops in a pair of opposing corners without threatening each

other is

2_ i
% ) 2(k-1~21}[57r5— k-2i) = 5=E5{3k3-ak+3).
Dgi<k/2 -

In that c~ase the total number of n*n solutions to the problem of the bishops is

2.3
Kt {011+ (k2-1) + 2 0t +2(k-1)1 St (32-8k43))

and so in all we hava

12

-

(3k3+15K2+18k+8) for k even,

]

83

(18) Bl =

M) D) (ak3a1ak2-k-3)  for k odd.
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Now consider solutions to the problem of the bishops which are invariant under
¢. For n even there are no solutions invariant under the rotation by 7 wvadians. This
is because, as we saw in evaluating E, for n even, there will be exactly one white
bishep which lies in a white column of length € k. Then c maps the position of this
bishop to the centrally opposite white square, which is distinct and also lies in a

white column of length £ k, and so must be uncccupied, We conclude that

{19) Cox = O-

Now suppose n = 2k+l, As we saw in the compuration of E?k+

of bishops on black is kX pleces on the kxk core; i,e,, essentially a kxk solution

1 the arrangement

to the problem of the rocks. The action of ¢ on the nxn board induces on the black
core exactly the action of ¢ on the k *xk board, and so there are exactly Gy ways to
arrange the k bishops on black with invariance under ¢, Similarly there are Gk+1
arrangements of the k+1 bishops on the white core invariant under o. Clearly if just
one bishop on white is to be outside the core, then the arrangement is not invariant
under ¢. The number of ways to have two bishops in a pair of opposing cormers of the
white array, in positions which are centrally symmetric and not threatening each other,
is just the number of ways to place one bishop in a particular carner but not on a

main diagonal. When k is even there are % -%-ways to do this, and when k is odd there
ways in which to position the remaining k-1 bishops

are ways. Then there are G,

k-1
within the appropriate (k-1) x (k-1) sub-array of the white core so as to be invariant

under ¢. To summarise, we have

6y (6y 4y +5<k-2)6, ;) if X is even,

¢ k2-1 - =
Gy *=7— 6, 3] i Xk s odd.

B =
2k+1 {G

Using equation (2) for Gk we find
k 21?16 K is even,

if k is odd.

We take up next the consideration of the nxn solutions to the problem of the
bishops which are invariant under the rotation of n/2 radians. It is clear from (19}
that On =0 if n is even, since q2 =c, If n=2k+l, then the action of q on the black
core is exactly the action of g on the k xk chessboard, Thus there will be Rk arrange-
ments of the k bishops on black invariant under g, as they must all lie in the core.
Similarly there are Rk+1 arrangements of the k+l1 bishops on white invariant under q
with all the pieces in the core. Moreover there are no other sclutions for white,
since @ bishop on white outside the core would be mapped by q to a bishop in an adja-

cent corner of the white array, and this we saw earlier was impossible. Thus we have

J
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if n is even,

[
% ﬁ.ﬂ

[
N

;] e
{n+1Y/2 ' (n-1})/2 n is odd.

In view of equation (2) for B_, this amounts to
i

(21} N =

Te compute ?-‘.n, take the case n =2k first. Tf we start with an arbitrary selu-
<ion for the k hisheps on white, the reflection m maps this to the symmetric solution

for the k hishops on hlack and vice versa. Consequently from our evaluation of E, we

2k
at M 2 -r that is
conclude that Mok Coyy that 1
e+ 3

k! —— If k is even,
l?ﬂ) 1
A8 L .

o Ge1)?
(k=111 — if k is odd.

If n = 2k+1, we note that the action of m or the nxn beard induces the act ion of d
on the black k xk core and the white (k+1) x(k+l) core. Thus there are I, arrange-
ments of the hishops on black invariant under m, and nk-rl arrangements of the bishops
on white invarian® under m and using just the core squares. Again, for white there
are no other solutionnz, as a bishop on white cutside the core is mapped by m to a
position in an adiacent corner, which cannot also be occupied in any seolution tc the

problem of the bishops. It follows that

3 2
(23) M?k-‘-l Dka+l‘

with Dl = 1.

The values of t_ for 1<ng<1f displayed in Table 3 were computed on the basis
of equations (15) and (17)-(23) along with the values of Dy shown in Table 1. By way
of illustrating that 143, one representative from each of the eight different A-
equivalence classes of 5x 5 solutions to the problem of the bishens is shown in Figure
2. As with solutions +o the problem of the rooks, it is very little extra troukle to
find the numbers cn,xn.i;n,u“, and wn of inequivalent n xn solutions having <e.>,<c>,<q>,
m» or <m'>, and <m,m's, nespectively, as automorphism groups. Beside each solution
shown in Figurs 2 is its automorphism group, sc it is seen that e, =4, X =L~ 0, and
ug =¥ =2, In Figures 3 and % are illustrated the facts that ¥,=2 and t.):?.

In order to evaluate {, in general we need to find the number S, »f nxn solu-
tions to the problem of the bishops which are invariant under both m and m'. Since

mm' =¢, it follows from (12) that 5,=0 if n is even. If n = 2k+l thern jfust as for

solutions invariant under m alone, the solutions must consist of k bishops in the kxk
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Inequivalent 7 »7 szolutions to the problem of the bishops

which have avtomorphism group <c>,

black core and k+1 bishops in the (k+1) x (k+l) white covre. Mopacver +he action of m
and m" on the n*n hoard induces the action of d and d' on each of these céres, Thus we

hawve

0 if n is even,
f2u) 3= {
n

HkBk+l ifn o= 2k+l,

where B, = 1,




Inequivalent 9x 9 solutions to the problem of the bishops .
which have automorphiam group <q>.

PIGURE 1
Lk . l"1‘1 2 %'nyisn' 1
(28) &1=§%-ﬁ%~é%.

(29) ‘n’%%'é%*é%‘iﬁ'

The reasoning is antirely analogous to that involved in justifying (6)-(10) for the

problem of the rocks. The values of *n'cn‘u Xy and £ for 1 <n €16 shown in Table 3

n
were computed on the basis of equations (17)-(29).

The asymptotic values of Cn"'n"‘n’un €L and T, @ n+e are shown in Table &,

These follow at cnee from Stirling's formula and equations (11), (14), (15), and
(17)-(29).
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i 0 ifn Z 1(mod 8)
cﬂ 1 & - nfu
L 3 : =
TBd  ifn oz limed 8)
! 8 if n is even
‘bn i 4 r ) /7 rnynfi "
eV 2 LF:J if n.is cdd
D 3ifn is even
Xn |
™m fn rnyn/2 i
f ignj; [531 § if n is odd
|
i
| nv=n (n n/2 iF o B
J -\ if n is eoven
e |
1. Yon fvan/2 ..,
= - is odd
[ e {:e 9 =
.’
i 3
" ™ rn be)
€ and % ! I?§'\5;9
|

Asymptotic numbers of inequivalent solutions to the

problem of the hishops,

TABLE &

u, EXTENSTONS AND UNSOLVED PROBLEMS

It iz not hard to see that for n> 1 the maximum number of bishops which can be
arranged on the nxn chesshoard so as not to threaten ane another is 2n-2. Call such
of
It is not hard

an arrangement a sglulion Lo the meximum bishops problem. Any such solution will
course have the property that the bishops deminate the entire boarnd.
to see that the number of n*n solutions to

the maximum bishops problem is 2", Mope-

over, the only possible invariance such a selution can have is under m oram', and there

" { A g n-3 [2o=g,
are just 2 invariant under eacl, Thus there ape exactly 2 $#2° 2 it inequivalent
nxn solutions to the maximal problem gf the bishops for n>1, of which 2' 7% are

2 n=2
invariant under m or m' and 272 —Et 7 have the trivial automorphism group.

A problem which follews on from this is obtained by allowing for solutions with
the n*n chessbeard such that n skg2n-2 (for n>1).
not difficult to see that the number of such solutions will always be positive, but

any number k of bishops on It is

for n <k < 2-2 no other general results on the numbers of solutions are knewn to the

author.
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The problem of the queers is to €ind the number of inequivalent arwangements
of n queens on the n xn chessbhoard such that no queen threatens another. This problem
was posed and discussed by Kraitehik [6, Chapter 107, and more recently by Harary and
Palmer [4, Chapter 13]. It can be varied by allowing fewsr queens while requiring
that they still dominate the entire chessboard, In either variatien the problem of

the queens is an outstanding unsolved praoblem.
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