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An inquiry from M, R. Schroeder has revived interest
in permutations with restricted poéitions specified by
truncated three-ply staircases, studied originally because
of thelr relation to four-line Latin rectangles. Two
truncated stailrcases are studied here: (1) first and last
columns removed, and (11) last two columns removed. Asymptotic
expressions for the two "hit" distributions, and a number of

recurrences and relations for hit polynomlals are derilved.
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1. Introduction

An inquiry from M., R. Schroeder has revived interest
in permutations with restricted positions specified by
truncated three-ply stalrcases; they seem to be 1involved 1n his
work on design of a private communicatlion system. The three-
ply stailrcases appear in problems 21 to 28 of chapter 8
of my book (An Introduction to Combinatorial Analysis, New York,
1958). Nevertheless there 1s something to be done on the
truncations of interest to‘Mr. Schroedef, which are (i) first
and last columns removed, and (i1i) last two columns removed;

for n = 5 the two stalrcases are, in order,

X X X X X
X X X X X X
X X X P A
X X X X X
X X X

The rook polynomials, in the notatlion of the book, are Tn(x)
and sn(x). The corresponding hit polynomials (enumerating
permutations of n elements by the number in forbidden positions)

are taken as An(t) and Bn(t), respectively.



The maln results developed below are, first, the
asymptotlc expressions for the coeffilicients Ank and Bnk of the

hit polynomials, namely

A k -3 2
(1) ?,{ = 3 E! [l -k _g§+3 e a(k_)_ ]+ O(n-3)

B k_-3 -3 ; 5
(2) 2? e e [1 e 3ﬁk % 542E§21):]+ o(n~3)

where, with (k)J = k(k-1)...(k-J+1),
a(k) = 3(k)4 - 20(k)3 + 3O(k)2 + 36k - 81
b(k) = 3(k), - 14(k)3 - 12(k)2 + 126k - 135.

Next, the "mixed" recurrences found are

(3)

A () = (n-2426)A. ;(t) + (1-t)A  ;(t) - (n-1)(1-t)A__,(t)
. (1-t)2A;_2(t) i (1-t)3An_3(t), n> 1 :
(4)
B (t) = (n-2+2¢)B_)(t) + (1-t)B_;(¢) - (n-1)(1-t)B,_,(t)
- (1-8)%B] () + (1-t)3B_o(t) + (-1)*(1-t)", n> 2,

The prime denotes a derilvative, Next, there is an almost pure

recurrence for An(t)’ that is, without derivatives, namely



(5)

A_(t) = (n+l~t)An;1(t) - (1-t)(n-3+4t)A _,(t) - (n-4)(1-t>2An-3(t)

+ (1-t)3(n-d+t)A__, () + (l-t)5An_5(t) + (t-1)"a_

where ag = Al a; = 2, a, = -1, a3 - gy 1 and

a =a, q, +4 n> 4,

n n- n-27

Otherwise stated

fm Bg B o ® Bk By 46n2 L T 6n5

with anm the Kronecker delta, Of course, a, may be
eliminated to produce a genulnely pure recurrence, at the
cost of more terms. The chief interest of (5) is in the
instance t = 0: A = AnKO) is the number of permutations

with no elements in forbidden positions; the recurrence

becomes

(6) Ay = (n+1)A, 1 - (n-3)A,_, - (n=B)A, s + (n-B)A

+ A + (—l)nan.

n-5

I have not found a similar result for Bn(t) but
there 1s a moderately simple expression relating the two
hit polynomials, namely
(7)

B (t) - (1-t)%B__,(t) = A_(t) + (1-t)A__;(t) - (1-t)%A_ ,(t)

nl(



coefficient form for n = 0(1)9.

Finally, 1t should be noticed that the hit poly-
nomials, Cn(t), for the circularized stalrcase are expressible
by

c (t) = A () + (1-t)°

. A, _o(t) - 2(2-¢)B, _;(t).

2. Rook Polynomials

Consider first the rook polynomials Tn(x) for three-
ply staircases with first and last column removed. The

expresslion

2

(9) Tn(x) = Sn(x) - 2xSn_l(x) + x Sn—2(x)

given in problem 22 of chapter 8, with Sn(x) the rook
polynomial for a three-ply stalrcase, 1s found by developling
Sn(x) with respect to the single cells in first and last

columns. The development is sufficiently clear in the case
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n = 3, Uslng the conventlon that brackets on an array

indicate 1its rook polynomial, this is as follows:

[x x X

S3(x) = X X %

B XX '™

B.E

= | x x x + XSE(X)
% % X

T3(x) + xsg(x) + X [: : %]

T3(x) + XSQ(X) + x[SQ(x) - Sl(X)].

Hence To(x) =1, Tl(x) =1+ x, TQ(X) - 1 4 bx +ox°.
It follows from (9) that the generating functions
™(x,y) = ZTn(x)yn, S(x,y) = ZSn(x)yn, both sums starting at

n = 0, are related by
-2
(10) S(x,y) = T(x,Y)(l‘xy)

and by problem 8.23 (problem 23 of chapter 8)

(11) T(x,y) = (1-xy)[1l-y-2xy-xy“+xSy3]™*

(1-xy) "t [1-y-2xy-xy2+x3y317L,

S(x,y)
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Equation (11) implies the recurrence
(12)

3 ' P
Tn(x) - (l+2x)Tn_l(x) - XTn-Q(x) + x Tn_3(x) =6, - x5,

which 1s simpler than the one in problem 8.22. Writing

n
Tn(x) = E:'Tnkxk’
k=0
equation (12) in turn implies
(13)
Tate ™ Tneie * ®hhareed * THo kel T Thegianit B2

For the second truncation (last two columns removed)
the rook polynomials sn(x) have the generating function s(x,y),
which by a result in problem 8.24(a) 1is glven by

(14)
s(xy) = (1-2xy-xy24xdyd) (1-xy) "L (1-y-2xy-xy +xdyS) Tt

or

(14a)

2 2 2 ot
(1-y-2xy-xy°+xy>)s(x,y) = 1 - xy - x°y° - xy=(l-xy)

Equation (14a) implies the recurrence (compare (12))

3

(15) sn(x) - (l+2x)sn_l(x) - xsn_2(x) + X sn_3(x)

2

n-1
nO X0y - X 05 - }

(1-5_.-5

noO nl)x
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The first few values are: so(x) = 1, sl(x) =1+ x,

SQ(X) = 14 Bxass,  1f

n

k

sn(x) = }E SN
k=0

equation (15) implies
(16)

Sn-l,k-l s Sn—2,k—l = sn-3,k-3 = 6n-l,k’ y - TR

+ 2

It 1is convenient to have results also for the

assoclated rook polynomials tn(x) = ann(-x—l), s;(x) = xnsn(-x'l)

Thelr generating functions are given by

(17) AMx,y)t(x,y) =1+ y

2

-1
AMx,y)s*(x,¥) =1 + 3 - y° + xyo(1+y)

(A(x,y) + xy)(1+y) ™

where

Alx,y) =1 + 2y - y3 - Xy + xy2.

2. Asymptotic Expressions

‘Asymptotic expresslions are obtained from expressions
for factorial moments. Consider the first truncation. The

‘kth factorial moment (m), of the distribution with probability

k
-1
generating function An(t)/n! is given by Tnk<£> s An

the usual notation for binomlal coefficients. Then if



e W

{18) ~ o

n\ n-1 n-
nk ak0<k/ T k—l> 0 Ak akj(k-i) ol

(m)k a o + aklk/h + akgk(k-l)/h(n-l) C

which leads to an asymptotic expression through the relation

A C(-1)9(m), .
(19) —7 = pgln) = E: TR
3=0

A, 1s of course the coefficient of ¢%-an & (e}

Equation (13) implies

(20) Baed ™ Ay g o Bl T Mg, g

which with boundary conditions supplied by

g -l i g 9<2> - 9<nil> + 2

S T T3 = 27<§> i 36(“;1>+-1u<“52> SRy
leads to

a0 = s 8o = 3k-3<3<g> + 2k - l>

a . = - 351 (k+l) Bs = - 3“'”(3(?) + <g> + 6k3>.

Using the first three of these in (19) gives (1).
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In the same way, writing

=3 n n-1 n-J
Snk = bk0<k> * bkl(k-l) e ¥ By k-J> * v

it 1s found that the b, , also satisfy equation (20), but

kJ

_ n n-1
8.0 = k| Spp = 9<2> - 12< 1 > + 4

n n—l\ n-2
. 27(3) o 23" > 2t

|
W
b
1
W
(0]
e
W

nl =
so that
 ak _ k=31 .k
Do = 3 Pp = 3 <3<2> ey l>
b im o AR ey

kl

Using these in (19) gives (2).

3. Mixed Recurrences for Hit Polynomials

The hit polynomials An(t) and Bn(t) are given by

k
(21) A (t) = ZTnk(n-k)I(t-l)
B (t) = =5 . (n-k)!(t-1)¥
n nk ‘ g
Hence, by (13), for n > 1,
(22) U = (n-k)zTnk
= (n-1) (U3 e + Voo, k-1) * V1, k-1 = Yn-3,k-3°
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Since

' £ k-1
An(t) = kU t-1) &

ik (

(22) is equivalent to (3). A similar procedure gives (4).

4, Another Recurrence for An(t)

Return to the first of equations (17), the expression
for the generating function of the assocliated rook polynomials

of the first truncation, namely

Ax,y)t(x,y) =1 + .

Then, using the suffix notation for partial derivatives, and

omitting arguments

(23) At + At =0

I
=

At + At
y y

The second of equations (23) is equivalent to

(L+y)aty = (& - (1-y)ag)t

- (1 - 3y2 - 2y3 - X + 2xy + xye)t.

Hence, since A = -y(1l-y), equations (23) may be replaced

by

Il
O

(24) g(y)at, - y(1-y)e(y)t

Il
&

(147)£(y)aty + £(¥)(1 - 39° - 2y> - x(1-2y-y°)lt
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Adding
(25)

s(y)at, + (Ly)2(y)aty + [£(y)(1-3v%-257) - xe(y)(1-2y-y°)

- y(1-y)e(y)lt = o.

Equation (25) will be simpler if

£(y) [1-3y2-2y3-x(1-2y-y%)] - y(1-y)e(y) = h(y)a

= n(y)(1-2y-y>) - xy(1-y)n(y).

Then first, equating coefficients of x
£(y) (1-2y-y2) = y(1-y)n(y)
or 1f f(y) = y(1-y)f,(y)
£, (v)(1-2y-y°) = h(y).
Next
y(1-y)(1-39%-2y°)£, (y) - y(1-¥)ely) = (1-2y-y°)(1+2y-y>)£, (¥)
or
- [l—y<4y2+yu-y5]fl(y) - y(1-y)e(y) = 0

and 1f f,(y) = y(1-y)

£(y) = yo(1-y)®
gly) = - 1 +y + 4y° - yu +y°
h(y) = y(1-y)(1-2y-y°).
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The simpler form of equation (25) 1s

(26)
2, 4.5

- (1-y-by%+y -y2)t, + y°(1+y) (1-y)°

5 y(1-y)(1-2y-y°)t = o,

Equating coefficients of yn, this corresponds to, wilth primes

denoting derivatives,

(27) 0ty m (Ml)E, o = (n-l)t, o + (n-3)%, o

Now equation (21) may be rewritten in compressed form as

(21a) A_(t) = (1-t)%_[E(1-t) " ]o!

with E the shift operator: E‘O! = k!. Also

(28)  A_(t) - (1-t)"t_(0) = (1-t)" 1t [E(1-t) " ]o!,

Using (2la) and (28) in (27), multiplied by (l-t)n-l,

leads to (5) when 1t is noted that
n
tn(O) = (-1) ¥

with fn a Fibonacci number: fo - fl =1, f =1

n n-1 - fn-

2.
In the first place, the numbers a  of equation (5) are

given by

g PP w B

n n n-1 n-2 t fn-4 4 fn-S’

Next the generating function a(x) of numbers a, is given

by



= X3

a(x) = (l+x- Ux4x +x5)f( )

where f(x) = anxn = (l-x-xg)'l; hence

(l-x-xz)a(x) = (l+2x-x2)(l—x—x2) + xS+ x°
or
a(x) =1 + 2x - %2 4 (x3+x5)f(x)

which shows that ag = L; a; = 2y a, = -1, a, = fn—3 + fn—5’ g

A short table may be 1interesting; it is

R s S S - Ko R TSR - NPT - DR e
T W R R e | 2_:1\;1_4232552;32 ‘\/

5. A Relation for A (t) and B,

In problem 8.24(a) it is noted that the generating

function for rook polynomials sn(x) may be written as
-1
s(x,y) = yS(x,y) + (1-xy)7".

Using equation (10), this 1s the same as

(1-xy)%s(x,¥) = yT(x,y) + 1 - xy

or, shifting to the associated polynomials (s*(x,y) = s(-x-l,xy),

t(x,y) = T(x"1,xy))

(1+y)%s*(x,y) = xyt(x,y) + 1 + y.
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But
xy(1-y)t(x,y) = (L42y-y3)t(x,¥) + (1+y).

Hence

(1+y)2(1-y)s*(x,¥) = xy(1-y)t(x,y) + 1 - y°

]

(1+2y-y2)t(x,¥) - y(1+y)

which has a removable factor 1l+y, so that
(1 Erow & e
-yT)s*(x,y) = (M4y-y9)t(x,y) - ¥

or

*

(20) 8. (x) - 8 _o(x) =t (x)+ ¢ o (x) -t (x) =01
Using (21)a and i1ts correspondent
n_% -1.4,
Bn(t) = (1-t) sn[E(l—t) ]o!

in (29) produces (7).

Now, turn to the relations with the clrcularized
stalrcase (the triangle removed by removal of the last two
columns 1s reinserted in the first two columns). The rook
polynomials, in the notation of problem 8.24, are Rn(x) and

..]_)

rn(x) = ann(—x , and the hit polynomial is Cn(t). Then

first, by problem 8,24(b)
(30)

Rn(x) = sn(x) + x°

sn_g(x) + xTn_l(x)

+ 2x[Sn_2(x) - xSn_3(x) + XTn-E(x)]'
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But (problem 8.24(a))

sp(x) - xsp o (x) = 8, (%)= x8, _p(x)

so that
(31)

Rn(x) ='sn(x) + 2xsn_l(x) - x®

sn_g(x) + xTn_l(x)

5 :
+ 2x Tn-Q(X)u' X6,

(the additional term, -xﬁnl, is inserted to sult the conventlon
Rl(x) = 1 + 3x). Equation (31) implies the generating

function relation

2 2)

(32) R(x,y) = (1+2xy-x°y2)s(x,y) + (xy+2x°y°)T(x,y) - xy.

- Combining this with one of the equations above, namely
2
(1-xy)“s(x,y) = yT(x,y) + 1 - xy
leads to
2.2
R(x,y) = 2s(x,y) - [y(1-x) - 2x“y°]T(x,y) - 1
or, shifting to assoclated rook polynomials
2
(33) r(x,y) = 2s*(x,y) - (xy+y-2y°)t(x,y) - 1.

This 1s the same as, using the first of equations (17),

(1-y)r(x,y) = 2(1-y)s*(x,y) - y(1-y)(1-2y)t(x,y) - (1-y)

- (12y-y3)t(x,y) + 1+ y

2(1-y)s*(x,y) - (1+3y-3y°+y>)t(x,y) + 2y.
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Hence,

(34)
(1-y2)r(x,y) = 2(1-y2)s*(x,y) - (1+y)(143y-3y°+y>)t(x,y)

+ 2y(1+y)

= [2(1+y-y°) - (1+y)(1+3y-3y°+y0) 1t(x,y) + 2y°

3

: 2 4 2
\ (1-2y-2y“+2y”-y ) t(x,y) + 2y

(1-y")t(x,¥) - 2y[(1+y-y2)t(x,y) - ¥]

(1-y)t(x,5) - 2y(1-y2)s*(x,¥)

where the relation
2y . 2

(1-y%)s*(x,y) = (1+y-y°)t(x,y) - ¥
has been used twice. Cancelling the common factor l—y2 glves
(34a) r(x,y) = (L+y°)t(x,y) - 2ys*(x,y)
or

*
r (x) =t (x) +t _,(x) - 28 _;(x)

which gives immedlately the equation cited in the introduction,

namely

2

( Cn(t) = An(t) + (1-t) An_2(t) - 2(1-t)Bn_l(t).
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It may be noticed that (34a) and

y = (1+y-y2)t(x,y) - (1-y°s*(x,y))

imply

(35) D(y)t(x,y) = (1-y%)r(x,y) - 2y°

(1+y-y2)r(x,y) - v - ¥

D(y)s*(x,y)
S R R o R,
Finally, the generating function q(x,y) of

polynomials qn(x), where r;(x) = nqn_l(x) the prime

denoting a derivative, 1s given by

Ax,y)a(x,y) =1 -y

with A(x,y) =1 + 2y - y3 - Xy + xye, as in equations (17).

Hence
(36) (1+y)a(x,y) = (1-y)t(x,¥)
or
a(x) + a_y(x) =t (x) - t__;(x),
and, if as 1n problem 8,27,

M (t) = (1-t)%q_[E(2-t)"1lor, E¥O! .=

_then

(37) M () + (1-t)m _,(t) = A () - (1-t)A _,(t).
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Since

)n+l

(n+1)Mn'(t) = C (t) - (1-t r, .1(0)

equation (37) may be rewritten as
nC_, 1 () + (1-t)(n+1)c (t) + (£-1)"*H(ne ,; - (n+1)e,)
= n(n+l)An(t) - (l—t)n(n+l)An_l(t)

with ¢ = (-l)nrn(O). A short table of the numbers 1s as

follows

e e G G Sl R e S
e 1. 8. 5 69713 20 . 81 ©hy 78105 SinaSEEll v

e Bu'n B, g

[ A

OHN RIORDAN




2

Wi~ O = o 2o

ND e G AR GO Y. O

A1%83- A1826

TABLE 1

The Polynomials An(t) and Bn(t)

A (t)

e W L. SR SR i
LR D 1 4 29
gy 2. 20 104
g 2 .10 . 28 2oy
3 6 44 180
5. 16 151
( 8 36
[& (% 13

AOE OO |€

B (t)
1 0.0 1 5 33
Ling ey 491 1eg
i 4 oy 8 38 209
1100 3k 206

Rl o R U
1 40

=

206
775
1288
1407
830
437
76
21

236
849
1400
3353
836
295
12

A (287 Al 811

|oo

1708
6140
10366

10384

7298
3100
1138
152
34

1918
6719
10849
10543
6629
2821
715
125

4

bt T
9 ]Wr"
157027 — 13¢3
55427 — 1€8¢
91206 — (Y85
92896 ~ €86
63140
31278
10048
27Uy
294
55 R
‘JS
17440 — 1897
59873 —(§9%
95516 — 1889 ~
92708 — (970
60284
26870
8372
1604
212
1 TR
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