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An inquiry from M~ R, Schroeder has revived interest 

in permutations with restricted po'si tions specified by 

truncated three-ply staircases, studied originally because 

of their relation to four-line Latin rectangles. Two 

truncated staircases are studied here: (i) first and last 

columns removed, and (ii) last two columns removed. Asymptotic 

expressions for the two "hit 11 distributions, and ' a number of 

recurrences and relations for hit polynomials are derived. 
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1. Introduction 

An inquiry from M. R. Schroeder has revived interest 

in permutations with restricted positions specified by 

truncated three-ply staircases; they seem to be involved in his 

work on design of a private communication system. The three­

ply staircases appear in problems 21 to 28 of chapter 8 

of my book (An Introduction to Combinatorial Analysis, New York, 

1958). Nevertheless there is something to be done on the 

truncations of interest to Mr. Schroeder, which are (i) first 

and last columns removed, and (ii) last two columns removed; 

for n = 5 the two staircases are, in order, 

X X 

X X X 

X X X 

X X X 

X X 

X X X 

X X X 

XX'X 

X X 

X 

The rook polynomials, in the notation of the book, are Tn(x) 

and sn(x). The corresponding hit polynomials (enumerating 

permutations of n elements by the number in forbidden positions) 

are taken as An(t) and Bn(t), respectively. 
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The main results developed below are, first, the 

asymptotic expressions for the coefficients Ank and Bnk of the 

hit polynomials, namely 

Ank = 3ke-3 [l _ k
2

-5k+3 a(k) J ( -3) 
(l) n! k! 3n + 54n(n-l) + 0 n 

(2) 
Bnk 
-, = n. 

where, with (k)j = k(k-l) ... (k-j+l), 

a(k) = 3(k) 4 - 20(k)
3 

+ 30(k) 2 + 36k - 81 

b(k) = 3(k)4 - 14(k)3 - 12(k)2 + 126k - 135. 

Next, the 11 mixed 11 recurrences found are 

(3) 

An(t) 

(4) 

Bn(t) 

. 
, 

= (n-2+2t)An_ 1(t) + (l-t)An_ 1(t) - (n-l)(l-t)An_2(t) 

- (l-t) 2A~_ 2 (t) + (l-t) 3An_ 3 (t), n > 1 
\ 

, 
= (n-2+2t)Bn_ 1(t) + (l-t)Bn_1(t) - (n-l)(l-t)Bn_ 2(t) 

- (l-t) 2B~_ 2 (t) + (l-t)3Bn_
3
(t) + (-l)n(l-t)n-l, n > 2. 

The prime denotes a derivative. Next, there is an almost pure 

recurrence for A (t), that is, without derivatives, namely n 
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(5) 

An(t) = (n+l-t)An_ 1(t) - (l-t)(n-3+4t)An_2(t) - (n-4)(1-t) 2An_3(t) 

+ (l-t)3(n-4+t)An_4(t) + (l-t)5An_
5
(t) + (t-l)nan 

n > 4. 

Otherwise stated 

with 5nm the Kronecker delta. Of course, an may be 

eliminated to produce a genuinely pure recurrence, at the 

cost of more terms. The chief interest of (5) is in the 

instance t = 0: A = A (0) is the number of permutations n n , 

with no elements in forbidden positions; the recurrence 

becomes 

(6) An = (n+l)An-l - (n-3)An_ 2 - (n-4)An_j + (n-4)An_4 

I have not found a similar result for Bn(t) but 

there is a moderately simple expression relating the two 

hit polynomials, namely 

(7) 

Bn(t) - (l-t) 2Bn_2(t) = An(t) + (l-t)An_1 (t) - (l-t) 2An_ 2(t) 
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Itera~ion of (7) and mathematical induction show that 

(8) 

B2n(t) = A2n(t) + (l-t)A2n_ 1(t) + (l-t)3A2n_ 3 (t) + .•. 

+ (l-t)2j-1A2n-2j+l(t) + ... + (l-t)2n-1Al(t) 

B2n+l(t) = A2n+l(t) + (l-t)A2n(t) + (l-t)3A2n-2(t) + .•• 

+ (l-t)2j+lA2n-2j + ... + (l-t)2n-1A2(t). 

Table 1 gives the polynomlals An(t) and Bn(t) in detached 

coefficient form for n = 0(1)9. 

Finally, it should be noticed that the hit poly-

nomials, Cn(t), for the circularized staircase are expressible 

by 

. 
Cn(t) = An(t) + (l-t) 2An_ 2 (t) - 2(1-t)Bn_1 (t). 

2. Rook Polynomials 

Consider first the rook polynomials Tn(x) for three­

ply staircases with first and last column removed·. The 

expression 

(9) 

given in problem 22 of dhapter 8, with S (x) the rook n 

polynomial for a three-ply staircase, is found by developing · 

Sn(x) with respect to the single cells ln first and last 

columns. The development is sufficiently clear in the case 
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n = 3. Using the convention that brackets on an array 

indicate its rook polynomial, this is as follows: 

Hence T0.(x) = 1, T1 (x) = 1 + x, T2 (x) = 1 + 4x + 2x2 • 

It follows from (9) that the generating functions 

T(x,y) = ~T (x)yni S(x,y) = ~S (x)yn, both sums starting at n n · 

n = 0, are related by 

(10) S(x,y) = T(x,y)(l-xy)-2 

and by problem 8.23 (problem 23 of dhapter 8) 
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Equation (11) implies the recurrence 

(12) 

Tn(x) - (1+2x)Tn_ 1(x) - xTn_ 2(x) + x3Tn_ 3 (x) = 5nO - x5nl 

which is simpler than the one in problem 8.22. Writing 

n 

Tn (x) = L Tnkxk, 
k=O 

equation (12) in turn implies 

(13) 

n > 1. 

For the second truncation (last two columns removed) 

the rook polynomials sn(x) have the generating function s(x,y), 

which by a result in problem 8.24(a) is given by 

(14) 

s(x,y) = (l-2xy-xy2+x3y3)(1-xy)- 1 (1-y-2xy-xy2+x3y3)-l 

or 

(14a) 

(l-y-2xy-xy2+x3y3 )s(x,y) = 1 - xy - x2y2 2( ) -1 xy 1-xy . 

Equation (14a) implies the recurrence (compare (12)) 

(15) sn(x) - (1+2x)sn_ 1 (x) - xsn_ 2 (x) + x3sn_ 3 (x) 

2 ( ) n-1 
= 5no - x 5nl - x 5n2 - l- 5no- 5nl x · 
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The first few values are: s 0 (x) = l, s 1(x) = 1 + x, 

s 2 (x) = 1 + 3x + x 2 . If 

n 

s (x) = L snkxk, n . 
k=O 

equation (15) implies 

(16) 

snk = sn-l,k + 2sn-l,k-l + sn-2,k-l - sn-3,k-3 - 6~-l,k' n > 2. 

It is convenient to have results also for the 

( ) n ( -1) *( ) n ( -1) associated rook polynomials tn x = x Tn -x , sn x = x sn -x . 

Their generating functions are given by 

(17) 6(x,y)t(x,y) = 1 + y 

6(x,y)s*(x,y) = 1 + y - y 2 + xy2 (l+y)-1 

= (6(x,y) + xy)(l+y)-l 

where 

6(x,y) = 1 + 2y - y3 - xy + xy2 . 

2. Asymptotic Expressions 

Asymptotic expressions are obtained from expressions 

for factorial moments. Consider the first truncation. The 

kth factorial moment (m)k of the distribution with probability 

generating function An(t)/n! is given by Tnk(~)-
1

, in 

the usual notation for binomial coefficients. Then if 
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(18) 

which leads to an asymptotic expression through the relation 

(19) 
\ ' 

= L 
j=O 

(-l)j(m)k+j 
j! k! 

Ank is of course the coefficient of tk in An(t). 

Equation (13) implies 

(20) 

which with boundary conditions supplied by 

Tnl = 3n - 2 

leads to 

Using the first three of these in (19) gives (1). 
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In the same way, writing 

( 

it is found that the bkj also satisfy equation (20), but 

= l 
( 
\ 

snl = 3n - 3 

so that 

Using these in (19) gives (2). 

3. Mixed Recurrences for Hit Pol;ynomials 

The hit polynomials An(t) and Bn(t) are given by 

( 
(21) An(t) 

k = ~Tnk(n-k)!(t-1) 

Bn(t) = ~snk(n-k)!(t-l)k. 

Hence, by (13), for n > l, 

(22) Unk = (n-k)!Tnk 

= (n-k)(Un-l,k + Un-2,k-l) + 2Un-l,k-l - Un-3,k-3. 



( 

( 

( / 

- 10 -

Since 

(22) is equivalent to (3). A similar procedure gives (4). 

4. Another Recurrence for A (t) 
l n 

Return to the first of equations (17), the expression 

for the generating function of the associated rook polynomials 

of the first truncation, namely 

6(x,y)t(x,y) = 1 + y. 

Then, .using the suffix notation for partial derivative~, and 

omitting arguments 

(23) 

6t + 6 t = 1. y y 

The second of equations (23) is equivalent to 

(l+y)6t = y (6 - (l-y)6 )t y 

(1 2 3 - X + 2xy + xy2 )t. = - - 3y - 2y 

Hence, since 6 = -y(l-y), equations (23) may be replaced 
X 

by 

(24) 

(l+y)f(y)6t + f(y)[l y 

g(y)6tx - y(l-y)g(y)t = 0 

. 2 
x( l-2y-y )]t = 0. 
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Adding 

(25) 

g(y)6t + (l+y)f(y)6t + [f(y)(l-3y2-2y3) - xf(y)(l-2y-y2 ) 
X y 

- y(l-y)g(y)]t = o. 

Equation (25) will be simpler if 

= h(y)(l-2y-y3) - xy(l-y)h(y). 

Then first, equating coefficients of x 

f(y)(l-2y-y2 ) = y(l-y)h(y) 

or if f(y) = y(l-y)f1 (y) 

f~(y)(l-2y-y2 ) = h(y). 

Next 

or 

2 4 5 - [l-y~4y +y -y ]fl(y) - y(l-y)g(y) = 0 

.and if f 1 (y) = y(l-y) 

f(y) = y2(1-y)2 

g(y) = - l + y + 4y2 - y4 + y5 . 

h(y) = y(l-y)(l-2y-y2 ). 
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The simpler form of equation (25) is 

(26) 

- (l-y-4y2+y4-y5)t + y2 (l+y)(l-y) 2t + y(l-y)(l-2y-y2 )t = o. 
X y 

n Equating coefficients of y , this corresponds to, with primes 

denoting derivatives, 

(27) n t n _1 - ( n + 1 ) t n _ 2 - ( n-4 ) t n _ 3 + ( n-3 ) t n-4,, 

, , , , 
= t - t - 4t + t 4 n n-1 n-2 n-

, 
= t 5. n-

Now equation (21) may be rewritten in compressed form as 

(2la) 

with E the shift operator: EkO! = k!. Also 

(28) 

Using (2la) and (28) in (27), multiplied by (1-t)n-l, 

leads to (5) when it is noted that 

with fn a Fibonacci number: f 0 = f 1 = 1, fn P fn-l + fn_ 2 . 

In .the first place, the numbers a~ of equation (5) are 

given by 

an = f + f 1 - 4f 2 + f 4 + f 5 . n n- n- n- n-

Next the generating function a(x) of numbers an is given 

by 
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or 

which shows that a0 = lJ a 1 = 2J a2 = -lJ an = fn_ 3 + fn_ 5J n > 2. 
' 

A short table may be interesting; it is 

n 0 1 2 3 4 5 6 7 8 9 10 

an 1 2 -1 1 1 3 4 7 11 18 29 

J \, "++-

:t::=CA-1 -I ~ 

5. A Relation for A (t) and Bn(t) n 

In problem 8.24(a) it is noted that the generating 

function for rook polynomials s (x) may be written as 
n 

s(xJy) = yS(xJy) + (1-xy)- 1 . 

Using equation (lO)J this is the .same as 

(l-xy) 2s(xJy) = yT(xJy) + 1 - xy 

orJ shifting to the associated polynomials (s*(xJy) = s(-x-1Jxy)J 

t(xJy) = T(x- 1 Jxy)) 

(l+y) 2s*(xJy) = xyt(xJy) + 1 + y. 
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But 

xy(l-y)t(x,y) = (1+2y-y3)t(x,y) + (l+y). 

Hence 

(l+y) 2 (1-y)s*(x,y) = xy(l-y)t(x,y) + 1 - y2 

- (1+2y-y3)t(x,y) - y(l+y) 

'I 

which has a removable factor l+y, so that 

(1-y~)s*(x,y) = (l+y-y2 )t(x,y) - y 

or 

(29) 

Using (2l)a and its correspondent 

in (29) produces (7). 

Now, turn to the relations with the circularized 

staircase (the triangle removed by removal of the last two 

columns is reinserted in the first two columns). The rook 

polynomials, in the 

r ' ( x) = xnR ( - x -l ) , 
n n 

notation of problem 8,24, are Rn(x) and 

.and the hit polynomial is Cn(t). Then 

first, by problem 8.24(b) 

(30) 

Rn(x) = sn(x) + x 2sn_ 2 (x) + xTn_ 1 (x) 
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But (probO..em 8.24(a)) 

so that 

(31) 

Rn(x) = ·sn(x) + 2xsn_1 (x) - x2sn_ 2 (x) + xTn_1 (x) 

(the additional term, -x5nl' is inserted to suit the convention 

R1 (x) = 1 + 3x). Equation (31) implies the generating 

function relation 

Combining this with one of the equations above, namely 

(l-xy) 2s(x,y) = yT(x,y) + 1 - xy 

leads to 

R(x,y) = 2s(x,y) - [y(l-x) - 2x2y2 ]T(x,y) - 1 

or, shifting to associated rook polynomials 

(33) r(x,y) = 2s*(x,y) - (xy+y-2y2 )t(x,y) - 1. 

This is the same as, using the first of equations (17), 

(1-y)r(x,y) = 2(1-y)s*(x,y) - y(l-y)(l-2y)t(x,y) - (1-y) 

- (1+2y-y3)t(x,y) + 1 + y 

= 2(1-y)s*(x,y) - (1+3y-3y2+y3 )t(x,y) + 2y. 
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Hence , 

(34) 

(l-y2 )r(x,y) = 2(1-y2 )s*(x,y) - (l+y)(l+3y-3y2+y3)t(x,y) 

+ 2y(l+y) 

2 2 3 ' 2 = [2(l+y-y ) - (l+y)(l+3y-3y +y )]t(x,y) + 2y 

. 2 3 4 2 = (l-2y-2y +2y -y )t(x,y) + 2y 

= (l-y4)t(x,y) - 2y[(l+y-y2 )t(x,y) - y] 

= (l-y4)t(x,y) - 2y(l-y2 )s*(x,y) 

where the relation 

(l-y2 )s*(x,y) = (l+y-y2 )t(x,y) - y 

has been used twice. Cancelling the common factor l-y2 gives 

(34a) r(x,y) = (l+y2 )t(x,y) - 2ys*(x,y) 

or 

* r (x) = t (x) + t 2 (x) - 2s 1 (x) n n n- n-

which gives immediately the equation cited in the introduction, 

namely 
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It may be noticed that (34a) and 

y = (l+y-y2 )t(x,y) - (l-y2s*(x,y)) 

( 
imply 

(35) D(y)t(x,y) = (l-y2 )r(x,y) - 2y2 

( 
D(y)s*(x,y) = (l+y-y2 )r(x,y) - y - y3 

with D(y) = l - 2y - 2y2 + 2y3 - y4. 

Finally, the generating function q(x,y) of 
, 

polynomials q (x), where r (x) = nq 1(x) the prime n n n-
denoting a derivative, is given by 

~(x,y)q(x,y) = 1 - y 

with ~(x,y) 3 . 2 = 1 + 2y - y - xy + xy , as in equations ( 17). 

Hence 

(36) (l+y)q(x,y) = (1-y)t(x,y) 

or 

( 

and, if as in problem 8.27, 

( then 
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Since 

( . 
equation (37) may be rewritten as 

= n(n+l)A (t) - (1-t)n(n+l)A 1(t) n n- ,, 

with c n = ( -1) nr ( 0). n A short table of the numbers is as 

follows 

n 0 1 2 3 4 5 6 7 8 9 10 

c 1 3 5 6 9 13 20 31 49 78 125 --/t-2 ,, ~ n 

Note that en = cn-l + cn_ 2 - 2, n > 2. ) 

( 

r 
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TABLE 1 

/"'"" The Polynomials An(t) and Bn(t) 

I 

"' ~fl-1 1r An(t) 
( 

9 f.gt- I k\n 0 1 2 3 4 5 6 7 8 - y 
0 .1 0 0 0 1 4 29 206 ' 1708 15702 ·- I if 3 
1 1 0 1 2 20 104 775 6140 55427 - l ~~'r 
2 2 2 10 28 207 1288 10366 91296 - l V8S" 

( 
3 3 6 44 180 1407 10384 92896 -- rf8~ I -\_ 

4 5 16 151 830 7298 63140 
5 

C\~ 
8 36 437 3100 31278 

6 13 76 1138 10048 
7 M rs oo \ <:z 21 152 2744 
8 34 294 
9 55 

rlrs 
Bn(t) 

0 1 0 0 0 1 5 33 236 1918 17 440 - l ~ Cj 7 . 
1 1 1 1 4 21 122 849 6719 59873 - ( y9 \? 

' 95516 -ft?~~ 2 1 4 8 38 209 1400 10849 
......... 

92708 -19'10 3 1 10 34 206 1351 10543 
........ 

4 1 21 109 836 6629 60284 
5 1 40 295 2821 26870 

( 6 1 ' A-ogoo0L 1 72 715 8372 
7 L53 1 125 1604 
8 1 212 
9 '-.... 

~ ltll' -A\,,' 1 18 ,, 

( / 

~ 
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