login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001895
Number of rooted planar 2-trees with n nodes.
(Formerly M1258 N0481)
2
1, 2, 4, 12, 34, 111, 360, 1226, 4206, 14728, 52024, 185824, 668676, 2424033, 8839632, 32412270, 119410390, 441819444, 1641032536, 6116579352, 22870649308, 85764947502, 322476066224, 1215486756372, 4591838372044
OFFSET
1,2
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 78, (3.5.28).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
G.f.: (4-8*x^2-sqrt(1-4*x)-(3+2*x)*sqrt(1-4*x^2))/(8*x^2).
a(n) ~ 4^n/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 13 2013
Recurrence: (n+1)*(n+2)*(8*n^3 - 43*n^2 + 67*n - 36)*a(n) = 4*n*(n+1)*(8*n^3 - 39*n^2 + 41*n - 3)*a(n-1) + 4*(8*n^5 - 43*n^4 + 80*n^3 - 26*n^2 - 61*n + 36)*a(n-2) - 8*(n-3)*(2*n-3)*(8*n^3 - 19*n^2 + 5*n - 4)*a(n-3). - Vaclav Kotesovec, Aug 13 2013
MATHEMATICA
Rest[CoefficientList[Series[(4-8x^2-Sqrt[1-4x]-(3+2x)Sqrt[1-4x^2])/ (8x^2), {x, 0, 30}], x]] (* Harvey P. Dale, Aug 08 2011 *)
CROSSREFS
Sequence in context: A343663 A377101 A108530 * A267618 A148200 A148201
KEYWORD
nonn,nice,easy
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, Aug 24 2001
STATUS
approved

  NODES
orte 1
see 1
Story 1